浅谈玻尔对量子力学建立的贡献

浅谈玻尔对量子力学建立的贡献
浅谈玻尔对量子力学建立的贡献

本科生毕业(学位)论文

浅谈玻尔对量子力学建立的贡献

敖成松

(2007061105)

指导教师姓名:张小伟

职称:讲师

单位:物理与电子科学系专业名称:物理学

论文提交日期:2011年月日论文答辩日期:2011年月日学位授予单位:黔南民族师范学院

答辩委员会主席:

论文评阅人:

2011 年月日

浅谈玻尔对量子力学建立的贡献

敖成松

(2007061105)

(黔南民族师范学院物理与电子科学系,贵州都匀 558000)摘要:简要介绍了二十世纪丹麦伟大的物理学家尼尔斯·玻尔对量子力学做出的巨大贡献。

关键词:量子力学;玻尔;玻尔理论;互补原理;哥本哈根学派

A Brief Talk on Bohr Contributed to Quantum Mechanics

Ao ChengSong

(2007061105)

(Department of Physics and Electronic Science , Qiannan Normal College for Nationalities,

Duyun 558000, Guizhou)

Abstract: The paper analyzed that Bohr,which was the twentieth century great physicis, greatly contributed to quantum mechanics development.

Keywords: Quantum mechanics; Neils Bohr; Boulder theory; Complementary principle; Copenhagen school

在现代科学发展史上,量子力学的创立,标志着现代物理学大厦基本构造完成。它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构,性质的基础理论,它与相对论一起构成了现代物理学的理论基础。在这一理论创立过程中,当时一大批世界一流的天才物理学家为此立下汗马功劳。他们之中,又以海森伯、薛定谔、泡利、波恩、狄拉克等人的工作最为杰出、他们被视为量子力学的创始人。玻尔在这方面著述不多,他没有被正式列为这一伟大理论的创始人。但玻尔对量子力学的贡献,与上述这些人相比毫不逊色,甚至更为巨大。如果将哥本哈根理论物理研究所比做一个大熔炉的话,量子力学理论就是在这座熔炉中锻造出来的,玻尔在哥本哈根这个学术集体中,就像一个指引着大家向既定目标前进的统帅,或者说是“哥本哈根乐团”的总指挥。[1]

尼尔斯·玻尔(Niels Henrik David Bohr。1885—1962)1885年10月7日出生于丹麦的哥本哈根,从小学到大学,玻尔一直在哥本哈根读书,1905年获得丹麦科学协会征文比赛金质奖,于1911年取得博士学位。从1920年起,一直领导哥本哈根大学理论物理研究所,直到1962年去世,由于对理解原子结构的卓越贡献,玻尔于1922年获得诺贝尔奖金。[2]他对量子力学的贡献主要有以下几个方面:

1.玻尔理论的提出

1859年,本生(R,W.Bunsen,1811—1899)和基尔霍夫发明了棱光分光镜,这使光谱的测量成为可能,因而,实验光谱学在十九世纪下半叶发展到了很高的水平,有关的研究工作首先是向寻找线光谱规律性的方向发展。其中,巴尔末(Johann Balmer,1825—1898)在1885年发现,氢光谱当时已知的全部谱线的波长可用这样一个公式来表达:λ=b[n2/ (n2-2)],这里,b是一个常数(由巴尔末根据实验经验地定出了它的值),n取3、4、5…等值,以对应各条谱线。当时对已知的氢光谱的九条谱线的测量结果都极好地和这一公式相吻合(误差还不到千分之一)。其他光谱中的规律性也随即被发现了,其中里德伯发现了一个适用于许多光谱组的普遍公式:如果按照较为常用的波数的表达式(u =1/n ),巴

尔末公式就成了具有普遍意义的里得伯公式的一个特例:u=1/λ =R H(1/22-1

/n2) (n=3,4,5?)式中,R

H 称做氢里德伯常数。如果把括号中的第一项换做n

f

并令n取(n

f +1)(n

f

+2)(n

f

+3)?等值,便可得到氢光谱中各个已知谱线系的表达式。

除此以外,还有里兹提出了里兹组合原则。这些经验公式在许多方面很有用处,特别是在预言新谱线方面,但对于这些线光谱存在的原子机制,当时没有人能够给出令人信服的结论。1911年,卢瑟福(Ernest Rutherford)根据自己的α粒子散射实验提出了原子的核式模型,指出原子中含有电子云,它分布在质量密集的、带正电的原子核周围,而核的线度比起整个原子的线度来是极其微小的,然而,原子的卢瑟福模型存在着一个基本困难:依照公认的电动力学法则,绕核运动的电子将连续发光,并因能量损耗终将崩溃落人核内,这与观察到的分立光谱线并不一致。

为了解决这一矛盾,1913年,玻尔提出了两点假没:第一点假设认为,电子只能在某些确定的轨道上运动,这就是所谓的“定态”,电子只要停留在这些态中的任何一个,它就不会发光;第二点假设认为只有当电子从一个较高能量的定态跃迁到一较低能量的定态时,辐射才从原子中放出,放出的辐射能量等于两定态能量的差值,通过一个类似的逆过程,原子能够吸收一个辐射量子,使得一个电子跃迁到较高能量的定态。按照普朗克的假设,他还给出了辐射光子的能量计

算公式:hv=W

1 一W

2

:(h为普朗克常数)。玻尔还进而提出了计算这些轨道的方法,

他设想定态就是绕原子核转动的角动量等于h/2π宙的整数倍时的状态,再令电子和原子核之间静电引力等于电子作圆周运动时所受的向心力,由此便计算出了这些轨道.这就是著名的玻尔理论。这样,玻尔一方面摒弃了传统概念,一方面又借助传统方法去计算原子的能级,即各种定态下电子转动所具有的动能与电子因受原子核的静电“结合力”所具有的势能之和,由此,他推出了普遍的里得伯公式对氢的表达式。慕尼黑的索末菲(Arnold Sommerfeld)在原子理论中迈出了重要一步,他引入了椭圆轨道及附加的量子化条件,从而能够把简单的玻尔模型

加以推广,结果对更复杂的原子体系有了较好的理解。

由于玻尔把量子概念引入他的原子理论,从而把他的研究直接与德国物理学家普朗克(Max-Plank)和爱因斯坦(alber Einstein)分别在1900年和1905年所做的工作联系起来,他们的研究工作已经表明,辐射和物质相互作用所涉及的能量交换是以有限的数量(或量子)进行的,这种过程无法用经典物理加以解释。另外,作为玻尔理论核心的两个假设,是理解前面所说的光谱辐射规律的关键。多年来,全世界各实验室中的物理学家,都一直为暴露于辐射之中的元素发射出分立波长的数据感到迷惑不解,以前曾经认为,这些表征某一元素的波长总会以某种形式与原子中电子运动的周期相联系。但玻尔的理论表明,这些波长事实上只相应于电子轨道间的跃迁,而与轨道本身没有关系。玻尔的这些假设显得有些武断,而且他的这种把经典物理和量子物理混在一起的做法也让人觉得不舒服。但是,这个理论在很大的范围内成功地解释了许多现象:如原子光谱的离散性,原子的核式结构等。非但如此,它还提供了关于原子行为的“图象”。诸如电子轨道、能级、轨道间的跃迁等概念,从心理上更符合我们这些习惯了以经典概念思考者的胃口。所以,“玻尔原子”无疑仍将作为用途最广的模型之一在量子物理学中保留下去。如果说普朗克的量子论揭开了量子世界帷幕的一角,那么玻尔的原子理论已打开了量子世界的第一重帷幕,人们可以由此“登堂入室”了。

2.提出了互补原理(又称并协性原理)

玻尔在量子力学上取得的另一伟大成就是他的互补原理。互补原理是玻尔为了协调量子力学与经典力学之间的矛盾而于1927年提出的,其目的是为了更好地理解和解释微观粒子的测不准原理。玻尔的互补原理含有多层含义:

(1)两类经典概念互补,比如微观粒子既具有波动性又具有粒子性。但并非同时出现,不论注意现象的连续性或不连续性,我们总会丢掉一面,即二者是互斥的。

(2)两种实验装置互补,微观粒子既相互排斥又相互补充的两种性质不可能在同一种实验装置和实验条件下观测,必须采取可以相互补充的实验安排,如电光效应实验只能观察微观粒子的粒子性,而在衍射实验的条件下可观测电子的波动性等。

(3)时空描述和因果关系互补,类似于海森堡的测不准关系。

(4)如果位置X完全确定,则动量P完全不确定或无意义,反之亦然,这就必须放弃因果描述和时空描述。海森伯的测不准原理和玻尔的并协性概念,构成了量子理论的物理诠释的进一步工作的基础,它们是后来众所周知的量子理论的哥本哈根诠释的两个主要支柱。

3. 创建了哥本哈根理论物理研究所(1965年改名为尼尔斯·玻尔研究所),并领导其工作多年。

哥本哈根理论物理研究所是由玻尔于1921年3月倡导成立的,研究所成立的最初目的是重建被战争中断的国际性科学合作。它曾在量子理论尤其是量子力学方面的研究中作出了杰出的贡献,在玻尔的领导下,很快成为当时国际物理学的三大研究中心之一,被许多物理学家誉为“物理学界的朝拜圣地”和量子力学的诞生地。研究所积极倡导科学上的国际合作,一些世界著名的物理学家都曾在这里工作、学习或讲学、访问,其中在这里长期工作过的有荷兰的克喇末、匈牙利的赫维赛,做过较长时间停留的有德国的海森伯、瑞典的克莱因、挪威的罗瑟兰等,短期访问过的有德国物理学家帕邢和玻恩、泡利、索末菲,奥地利的薛定谔、英国人理查森、以及美国的斯莱特等等。几十年来,哥本哈根理论物理研究所培养了600多名外国学者,其中很多人成为世界著名的科学家,获得诺贝尔奖金的就有1O人以上。研究所已成了一所学校,成了培育世界各国物理实验室和研究所的未来指挥员的一个苗圃。玻尔不仅建立了一个中心,而且哺育它成长,对其他国家发展物理学研究产生了显著的影响。这一事实本身就是一个了不起的成就,足以与他对物理学发展的直接贡献的重要性相提并论。

这个研究所之所以能取得如此辉煌的成就,主要原因是在玻尔领导下,这里形成了一种闻名于世的哥本哈根精神,以强调合作和不拘形式的气氛为其特征。这种精神在很大程度上打上了玻尔自己性格和人生观的烙印,这种精神的实质是“高度的智力追求,大胆的涉险精神,深奥的研究内容与快活的乐天主义的混合物”。正是这种优良的精神品德,使他们成功地建立了世界一流的理论物理学派一哥本哈根学派。这个学派坚持从实验事实出发建立理论,并以实验结果检验理论的正确性,因而找到了解决量子力学问题的正确途径,建立了矩阵力学,发现了测不准关系,提出了量子力学的统计解释,为现代物理学的革命建立了卓越功勋。

哥本哈根学派的成就不仅在于自身的学术讨论结果,还在于他们同以爱因斯坦为代表的科学大师们的尖锐论战。由于在量子力学的物理诠释以及与之俱来的科学哲学问题上所持的观点不同,玻尔和爱因斯坦常常在学术问题上辩论和探讨,有时竞争得面红耳赤,互不相让。这种争论持续了3O年,极大地推进了人们对现代科学的理解。论战的结果还有待于物理学的进一步发展才能澄清,但这种不畏艰难,勇于坚持真理的精神就足以使玻尔和他的哥本哈根学派名载史册。[3] 1965年,当玻尔8O岁诞辰时,人们决定将哥本哈根理论物理研究所改名为尼尔斯-玻尔研究所,以示后人对他的永久敬仰和怀念。

丹麦物理学家尼尔斯·玻尔是20世纪最伟大的物理学家之一。在50多年的科学生涯中,他对现代物理学的发展所做的杰出贡献,是他成为科学史上堪与牛顿、爱因斯坦相并列的科学巨匠。玻尔的科学成就涵盖了原子和原子核物理以及量子理论的各个方面,他的科学智慧和人格魅力,不仅使他成为量子理论发展的

领路人,也使他成为那个时代一大批最优秀的科学家的统帅。在他崇高的学术威望和人格魅力的感召下,20世纪二三十年代,大批来自世界各国的著名物理学家聚集丹麦的哥本哈根,在由他筹建的哥本哈根研究所内,开辟了现代物理学发展的新纪元。在玻尔的影响和带动下,哥本哈根研究所这个学术集体,不仅给科学界奉献了最杰出的科学思想和理论,而且还培植了团结、协作和和平、自由的学术氛围。这种被称之为“哥本哈根精神”的科学合作精神,成为科学合作的范例。[1]他对近代物理的贡献使他无疑地成了20世纪上半叶与爱因斯坦并驾齐驱的、最伟大的物理学家与哲学家之一。

参考文献:

[1]颜振珏. 物理学史新编. 贵州科技出版社.2002.

[2]亚伯拉罕-派斯(戈革译).尼耳斯·玻尔传[M].北京:商务出版社.2001.

[3]P.罗伯森.玻尔研究所的早期岁月.北京:科学出版社,1985.

指导老师:张小伟讲师

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

对量子力学的认识

对量子力学的认识 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特征,如不确定性、量子涨落、波粒二象性等,其基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。量子力学的关键现象有黑体辐射、光电效应、原子结构和物质衍射,前人正是在在这些现象的基础上建立了量子力学。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。 黑体是一个理想化了的物体,它可以吸收所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。但从经典物理学出发得出的有关二者间关系的公式(维恩公式和瑞利公式)与实验数据不符(被称作“紫外灾变”)。1900年10月,马克斯·普朗克通过插值维恩公式和瑞利公式,得出了一个于实验数据完全吻合的黑体辐射的普朗克公式。但是在诠释这个公式时,通过将物体中的原子看作微小的量子谐振子,他不得不假设这些原子谐振子的能量,不是连续的,而是离散的。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。 1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹和菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子理论,来解释这个现象。光的量子的能量在光电效应中被用来将金属中的电子射出和加速电子。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。照射时间有多长,都不会发生光电效应,而入射光的频率高于极限频率时,即使光不够强,当它射到金属表面时也会观察到光电子发射。 20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(来曼系)、一个可见光系列(巴耳麦系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。1913年,尼尔斯·玻尔提出了以他名字命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量的轨道上运转。假如一个电子,从一个能量比较高的轨道,跃到一个能量比较低的轨道上时,它发射的光的频率为通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+, Li2+, Be3+ 等。 1919年克林顿·戴维森等人,首次成功地使用电子进行了衍射试验,路易·德布罗意由此提出粒子拥有波性,其波长与其动量相关。简单起见这里不详细描写戴维森等人的试验,

浅谈量子力学的前沿进展

量子力学论文 题目:浅谈量子力学的前沿进展 学院: 专业: 学号: 姓名: 时间:2014年7月1日 指导教师:

浅谈量子力学的前沿进展 摘要:量子力学是在19世纪末发展起来的一门新科学,而且它还一直处于不断地发展中,在自然科学中具有重要作用。量子力学的规律已成功地运用于各个领域,物理、材料、化学、生命、信息和制药等,量子力学与我们的生活密切相关。量子力学是研究微观粒子的运动规律,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。本文将对量子力学目前的发展、应用以及前沿进展做出阐述。

关键词:量子力学;发展;前沿 Abstract Quantum Mechanics was a new subject that was formulated at the end of the 19th century and is still under development. It plays a key role in natural sciences. The theory of Quantum Mechanics is applied to a variety of areas, such as physics, materials, chemistry, life science, informatics and pharmacy and is closely related to our daily life. Quantum Mechanics is a basic theory that studies the motion law of microscopic particles and studies mainly atoms, molecules, condensed matter, and the structure and nature of atomic nucleus and fundamental particles. It has been one hundred years up to now when Quantum Mechanics was founded. It extended from kinetic theory at atomic level to Physics and other subjects and high-tech within one hundred years of development. As a matter of fact, it has beyond the scope of Physics; it is not only the backbone of modern matter science, but also one of the main theoretical basis of modern science and civilization construction. This paper will make a simple exposition for the modern development, application and leading edge of Quantum Mechanics.

量子力学的发展综述

量子力学的发展综述 量子力学是对经典物理学在微观领域内的一次革命,是现代物理学的基础,它从根本上否定了牛顿物理学。本文带大家再次回到那个伟大的年代,再次简要回顾下那场史诗般壮丽的革命。 标签:量子力学发展量子多世界解释 量子理论的中心思想是一切东西都是由不可预言的量子构成,但这些粒子的统计行为遵循一种可以预言的波动图样。简简单单的一句话,深入研究起来确实那样令人困惑,整个20世纪的物理学家们就是在不断的量子的迷雾中摸索着。现在我们也要沿着他们的航线领略一下量子理论奇。 一、量子的创生 19世纪末,物理学界取得了一系列举世瞩目的成就,当人们为所谓的物理学大厦已经根深蒂而感到皆大欢喜时,几个悬而未决的谜题却一直困扰着高瞻远虑的物理学家们[1]。“在物理学阳光灿烂的天空中飘浮着两朵小乌云”这句话在几乎每一本关于物理学史的书籍中被反复提到,具体一些的话,指的是人们在迈克尔—莫雷实验和黑体辐射研究中的困境。这两朵乌云带来的狂风暴雨,远远超出了人们的想象:第一朵乌云,最终导致了相对论革命的爆发;第二朵乌云,最终导致了量子论革命的爆发。1900年,普朗克在解决黑体辐射问题时,做了一个假定,“必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。”普通的一个假设,却推翻自牛顿以来200多年,曾被认为坚固不可摧毁的物理世界。这与有史以来的一切物理学家的观念截然相反,自牛顿和伽利略以来,一切自然的过程都被当成是连续不间断的,是微积分的根本基础,牛顿、麦克斯韦那庞大的体系,都是建立在这个基础之上,从没有人怀疑过这个物理学的根基。1900年12月14日,量子的诞辰,这一天,量子这个幽灵从普朗克的方程中脱胎而出。这个幽灵拥有彻底的革命性和无边的破坏力,物理学构成的精密体系被摧毁成断壁残垣,甚至推动量子论的某些科学家最终也站到了它的对立面。量子论这场前所未有的革命,从这个叫马克思·普朗克的男人这里开始了。 二、量子力学的建立和论战 量子这个概念已经诞生了,然而他的创造者普朗克却抛弃了它,不断地告诫人们,不到万不得已不要使用,不要胡思乱想。不怪普朗克本人畏首畏尾,实在是量子这个概念太过惊世骇俗,但是接下来一系列的成就证明了它的价值:1.为了解释光电效应,1905年爱因斯坦提出光量子论,揭示了光的波粒二象性;2.玻尔结合原子的核式结构模型和量子论,1913年提出了氢原子理论;3.德布罗意从光量子理论得到启发,于1923年提出物质波假说;4.海森堡抛弃了玻尔的轨道概念,建立了矩阵力学(1925年)[2]。海森堡建立矩阵力学标志着量子力学的建立,但是刚诞生的矩阵力学立刻受到了挑战:薛定谔于1926年把物质波的思想加以发展,建立了波动力学。矩阵力学?波动力学?全新的量子论建立不到一

浅析量子力学

Despite the name, the Underground Railroad was not really a railroad, but was a network of people who assisted fugitive slaves. Many fugitives who escaped to the North and Canada received assistance along the way from individuals who were involved in this network. By the early 19th century, the organization became so successful that it is estimatal that between 1810 and 1850,100,000 slaves escaped from the South through the Underground Railroad. It was not a coincidence that it was called the Underground Railroad. Steam railroads had just emerged and the terms used to describe the people who helped and the fugitives were related to the railroad line. Fugitive slaves were called “parcels”and “passengers”, the helpers were the “conductors”, the people who provided their homes as refuge were called “stationmasters”, and the homes were referred to as “depots” or “station”. The route used was an important part of a successful escape. There were numerous secret routes that a conductor could use. The one used depended on where the search parties and slave catchers were stationed . Some trips required the use of many different routes. If it appeared that they might be in danger, a guide would change paths. Some guided and

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

浅谈量子力学与量子思维

量子力学:不平凡的诞生预示了不平凡的神奇 ——浅谈量子力学与量子思维 理学院物理系林功伟 量子力学自诞生以来,极大地推动了现代科学和技术的发展,已经深刻地改变了我们的生活方式。从电脑、电视、手机到核能、航天、生物技术,处处它都在大显身手,它已经把人类社会带入量子时代。但量子理论究竟带给了我们什么?这个问题,至今带给我们的仍只是无尽的想象。近年来,校长钱旭红院士,从改变思维的角度出发,在多种场合呼吁全社会要重视量子思维方式并加以运用,不久前又在“文汇科技沙龙”上,提议让“量子思维”尽早走入中小学课堂。那么,量子力学究竟是什么? 量子力学的诞生是一段波澜壮阔的传奇。它的发展史是物理学乃至整个科学史上最为动人心魄的篇章之一。不平凡的诞生预示了不平凡的神奇。在量子世界中,处事原则处处与我们熟悉的牛顿力学主宰的世界截然不同。在我们熟悉的世界,要么是波,要么是粒子。在量子世界,既是波也是粒子,既不是波也不是粒子,兼具波和粒子的特质,即波粒二象性。从而引申出量子叠加、测量塌缩、量子纠缠等种种神奇的现象。 量子叠加:鱼和熊掌亦可得兼 在经典的牛顿力学体系中,把粒子的运动都归结为确定轨道的机械运动。知道粒子某个时刻的运动状态与力的作用,就可以推断粒子的过去,也可以预知粒子的未来。就像一个算命先生,你告诉他生辰八字,他掐指一算就知道你的前世来生。在这种机械观下,仿佛一切都是注定的、唯一确定的。然而,在量子世界,一切都变得不一样。比如,有一天要从上海去北京,异想天开的你既想乘坐京沪高铁体验沿途的风光,又想搭乘飞机享受鸟瞰大地的感觉。我们习惯的方式是同

一时间我们只能选择其一,必须割爱其一。但在量子世界中你可以在火车上和飞机里共存量子叠加态上,鱼和熊掌亦可得兼。 这种量子叠加状态非常奇特。同一时刻,你既体验着高铁沿途的风光,也享受着飞机上鸟瞰大地的感觉,如果说同一时刻有两件事,但分别要求在火车上和在飞机里完成,量子叠加态的你完全可以神奇地一一照做。就像《西游记》中的孙悟空有分身术,同时一个上天一个入地。现在科学家们正利用这一原理来研制未来的量子计算机。量子计算机中的量子比特可以在无数的空间中量子叠加。它们并行地操作完成复杂的计算。已有研究表明这种量子并行计算确实可以在某些特定的复杂计算问题上大大提高效率。例如:一个400位的阿拉伯数字进行质数因子分解,目前即使最快的超级计算机也要耗时上百亿年,这几乎等于宇宙的整个寿命;而具有相同时钟脉冲速度的量子计算机可能只需要几分钟。还有利用量子快速搜索算法,可能很快从一个大森林里找到一片叶子,或者在一个沙滩上找到一颗沙子。在量子世界,“大海捞针”已不再是没有可能的事,简直“易如反掌”。 量子叠加不仅可以是同一个物质在它不同状态的叠加,还允许不同物质的叠加,哪怕这两个物质是迥然不同类的。比如光和原子,前者是宇宙中最快的,一眨眼可以绕地球好几周;后者可以慢悠悠地停留在某处。如果让它们量子叠加一起会怎么样呢?有种叫电磁诱导透明的技术就可以让光和原子相干叠加。叠加后我们称之为暗态极子,它是半光半原子的混合体,就像希腊神话中半人半神的帕尔修斯,既具备人的情感,也具备神的能力。人们发现这种半光半原子混合体的速度是介于之间的,它既不像光速那么快,也不像原子慢悠悠停留在某处,它的速度取决于光在其中叠加的比重。人们通过调节这个比重就可以让光乖乖地慢下来,需要的时候还可以让光再飞奔起来。在运用上,光子相互作用很小,而原子之间容易产生大的相互作用。有趣的是:最近,我们研究小组通过合理设计可以利用原子的优点来弥补光子的缺点,设计出强的单光子相互作用。如果把这个过程提升到量子思维的话,不就是我们生活中的“取长补短”“协同合作”吗?而这个思维能力正是当代社会所迫切需要的。

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学地发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。 爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。爱因斯坦进一步指出,这两者并不是水火不相容的。这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对

浅谈量子力学的哲学含义

浅谈量子力学的哲学含义 【摘要】量子力学的产生和发展受到经济生活的多方面影响,量子力学的产生也相应地对于政治、经济生活提供积极因素影响,量子力学中包含的量子场理论和微观粒子的提出,微观世界物质的特性等提出都在一定程度上包含一定的哲学含义。 【关键词】量子力学;哲学含义 1.量子力学的主要表述 量子力学确立了普遍的量子场实在理论。宇宙最基本的物理是量子场,量子场是第一性的,而实物粒子是第二性的。微观粒子没有经典物理学中的决定论表述,只有非决定论论述。量子力学的微观粒子理论中,包含具有叠加态的波函数,秉有波粒二象性和非定论的远程联系。特定的测量方式造成波函数的失落,越来越显露出它的本质特征。量子场实在论证明了宇宙的实在性,不同于德谟克里特所说的宇宙存在,宇宙更多如毕达哥拉斯和柏拉图描述的:宇宙是用数学公式表达的波函数以及所显示的各种图形的组合。 量子力学对于波粒二象性的揭示和微观粒子中反粒子存在的表述,阐释着物质和反物质的辩证存在关系。量子力学的多世界论认为世界大系统由多个平行世界构成,世界论中也存在反世界物质。无论是物质和反物质还是世界论中的反世界物质都表现着哲学中黑格尔和马克思主义哲学的正确性和真理性成分。其中物质与反物质是一对矛盾体,物质相对于反物质而存在。矛盾的普遍性阐释了时时刻刻存在矛盾的真理性。宇宙世界的基本属性是矛盾性和对立统一性。矛盾的特殊性要求必须正确把握主要矛盾和次要矛盾以及矛盾的主要方面和次要方面。主要矛盾的主要方面决定事物的根本性质。然而,在矛盾的哲学理论体系中,矛盾的双方是相对立而存在的,所谓物质和反物质的矛盾性从表象上分析是对立的存在,对立关系就是阐释着物质和反物质的相对应。在某一特殊世界领域中,各种客观实在具有方面上的相对关系。历史经验告诫区分“现实矛盾”和“逻辑矛盾”。 2.量子力学包含的矛盾哲理 其中逻辑矛盾表现在概念提出中的逻辑关系的对立;现实矛盾是隐藏在逻辑矛盾之下更深层次的以客观事实为导向的矛盾。任何话语系统不允许逻辑矛盾,A是B与A是-B同时为真,正如“正粒子”与“反粒子”碰撞,这两个命题是可以互相抵消为无的。然而,现实的矛盾,如“正电荷”和“负电荷”,“正粒子”和“反粒子”的相互矛盾关系,是长期存在的,共同构成了物质世界的矛盾客体。可以说矛盾的存在是世界物质性发展和产生的基本推动力。世界是充满矛盾的世界,矛盾构成了世界的真实存在。矛盾具有同一性和斗争性,在量子力学理论体系中正电荷和负电荷是在同一和斗争中不断转化的,正电荷和负电荷的交汇形成电荷的不带电中和性质,正负电荷在同一的过程中各自改变其特性以适应向新物质存在的客观转化。正负粒子的斗争性体现于正负粒子的正负电子相互碰撞和作用,不

量子力学发展史浅析(可编辑修改word版)

量子力学发展史浅析 工程科学(1)班 肖玉超 摘要本文将以量子力学发展的重大事件与重要人物为主要分析对象,以量子力学发展的时间顺序为线索,对量子力学发展历史进行浅谈并针对量子力学发展过程中“物质的波动性与粒子性”,“随机论与决定论”问题,以及其引申出的EPR 佯谬等问题进行讨论,探究量子力学发展是如何不断自我完善的。 关键词:量子力学波动粒子EPR 佯谬 一、风暴前夕 量子力学发展中最大的争论——“物质的波动性与粒子性”的起源可以追溯到古希腊时期,古希腊时期对于光的思考与假设已经可以大致的看出其中包含的波动或是粒子的影子。古希腊时期伟大的哲学家恩培多克勒提出了“四根说”,即世界由土、气、火、水四种根源组成,他提出假设光是从人的眼睛中射出的火焰(古人由于技术条件,光火不分),当火焰到达物体是我们看见了物体。这不难看出其中包含着光的连续性的影子。这个假说无法解释我们在黑暗中无法看见其他物体而被推翻。对于我们如何感知光线的正确解释一直到了罗马时期,学者卢克来修在其著作中指出光线是直接到达眼睛而被人感知的。在光的传播的一些性质问题上欧几里德对光的反射进行了研究;托勒密、开普勒、哈桑都对光的折射进行了研究;最终费马总结了前人的研究,并将其归结为一个简洁明了的理论——的光程最短法则,物理学的简约美充分得到体现。此时,光学,作为物理学的一门学科建立

了起来。 关于光的本质到底是什么,人们的观点大致可以分为两派,即波动派与粒子派。波动派从弗朗西斯科·格里马第的光衍射条纹得到支持,认为光是一种依靠介质震动的波,然而光的介质却为人所困惑,因为光可以从遥远的星系传播到这里,其途径并没有我们常见的空气等作为介质,为此,波动说假设空间中有一种名为以太的介质来传递光波的震动。 而粒子派,却从光的严格反射与光总是沿直线传播这两点入手,认为光的本质是一种十分微小的微粒,然而粒子派也有自己的难题,就是两束光交叉的时候为什么没有发生想象当中的物理碰撞而弹开的现象。 十七世纪中叶,由对光的颜色这一问题的讨论引发的关于光本质的大论战开始了,这两个引发世纪论战的学派此时真正地正面对立了起来。论战一直持续到1704 年,牛顿的著作《光学》的问世宣告了粒子说的暂时胜利,这场论战才谢幕。论战期间,波动派的代表人物格里马第力图通过实验证明光色的不通是由于其频率不同导致的,胡克重复了格里马第的工作并在《显微术》一书中支持格里马第的理论。另一代表人物惠更斯,他运用了高超的数学天赋,成功的数学证明了波动的光的折射反射定律,既而证明的牛顿环的问题。这令波动说大占优势。 牛顿关于光的颜色问题的解释是光是颜色不通的微粒色散,实验证明白光是各种色光的混合,是不通颜色微粒的分开,他在进一步吸收波动说的一些理论,例如周期性与震动,在利用已经成名的牛顿力学,成功的解释了诸多光学问题。随着《光学》的出版,粒子说走向了那时巅峰。牛顿的巨大成功,不仅仅因为牛顿的个人的探索,同时也有牛顿吸收对立学派的理论,强化自己的理论的原因。正如牛顿自己说说:“我能取得成功,因为我站在巨人的肩膀上!”粒子说能运用波动说的理论,反之可不可以呢?这是否意味着波和粒子在对对立的性质在更高的层面上是统一的呢?物理,这本来是客观描述世界规律的学问,为何出现了哲学的影子? 1807 年,托马斯·杨在其《自然哲学讲义》一书中提示出双缝干涉实验,实验现象的明暗相间的条纹表明,明亮条纹是光波波峰的叠加,暗条纹收波谷的叠加。针对这一现象,粒子说完全无法得到一个合理的解释。雪上加霜的是,在菲涅耳提出光是一种横波的假设, v ≈ 3c 成功解决了光的偏振问题,傅克测得水中光速 4 后,更是宣判了粒子说的死刑,似乎 没有什么能阻止波动取代粒子,走向了主宰光学的皇位。 然而波动说始终有着“以太为介质”这一个致命的前期假设,在这个假设下,光速要

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

浅谈化学发展史

浅谈化学发展史 【摘要】:化学的发展,对人类社会的进步至关重要。化学与人们的生活息息相关,了解化学的发展史,有助于我们更好的利用化学。化学的历史渊源非常古老,可以说自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器等等。当时只是一种经验的积累,化学知识的形成和发展经历了漫长而曲折的道路。而它的发展,又极大地促进了当时社会生产力的发展,成为人类进步的标志。 【关键词】:重要意义;定义;发展;化学 【正文】:第一次学习化学发展史,首先要知道它有什么意义,那么我们为什么要学化学发展史呢?首先,学习和研究化学式的重要意义已为化学家和化学史家所重视,甚至已经发展到为教育领导部门所重视,这不是偶然,而是由化学史的内容所决定的。学习化学史,不仅是为史而学,而是史为今用,为了更好地学习和研究现代化学。因此,学习化学史至少有以下几个方面的积极意义。 第一,掌握化学产生和发展全过程的系统历史知识,有利益培养化学人才的良好素质。通过化学史的学习,可以清楚的了解到化学发展到今天的水平并不容易,是广大劳动群众和化学家们经过长期的艰辛努力,甚至不惜付出健康和生命代价,取得这样或那样的成果,汇集成一部化学的历史。 第二,通过对化学的学习,可以正确的理解和处理化学中实验与理论二者的辩证关系,它们是具体的历史的同意,二者相辅相成,不可偏废。它们共同促进了化学学科的发展。 第三,学习化学史,有利于提高化学人才的独立工作能力。在经过二三年的基础课程和专业课程以及实验课程的学习和训练之后,在学习化学史,可以讲全部化学连贯起来通盘考察其发展过程中成功与失败的原因,分析和比较各种方法的优劣,寻求研究问题的方法和规律。 知道了化学发展史的意义,那么什么是化学发展?化学史是科学史的一个分支。什么是科学史呢?科学史的重要奠基人,美国著名科学史家G.萨顿曾经这样定义:“如果把科学定义为系统化的实证知识,或者看做是在不同时期不同地索系统化的这样一种知识,那么科学史就是这种知识发展的描述和说明。”如果我们用更习惯的语言为科学史下定义,可以认为科学史史人类在长期社会实践活动过程中,关于自然知识的系统的历史的描述。 化学史则是人类在长期的社会实践过程中,对大自然的化学知识的系统的历史的描述。因此,化学史不是纯自然科学,而是自然科学与历史科学相互交叉的一门特殊的历史科学。化学史也是化学的一个分支学科,余华的其他分支学科有区别也有联系。化学的其他分支学科,以讲授知识的理论和现状为目的,随着学科的不断发展更新其内容。化学史则不然,他是从化学发展的历史角度,在纵的方向上,阐述从化学萌芽开始,经过漫长的岁月,怎样发展为现代化学史的过程。即化学怎样产生,发展和繁荣起来的全过程的系统阐述。 那么化学是怎样发展的呢?化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,派生出不同层次的许多分支。在20世纪20年代以前,化学传统地分为无机化学、有机化学、物理化学和分析化学四个分支。20年代以后,由于世界经济的高速发展,化学键的电子理论和量子力学的诞生、电子技术和计算机技术的兴起,化学研究在理论上和实验技术上都获得了新的手段,导致这门学科从30年代以来飞跃发展,出现了崭新的面貌。现在把化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等五大类共80项,实际包括了七大分支学科。那么它们又是如何发展的呢?我们就从分析化学来看。在化学还没有成为一门独立学科的中世纪,甚至古代,人们已开始从事分析检验的实践活动。这一实践活动来源于生产和生活的需要。如为了冶炼各种金属,

浅谈量子力学的统计解释及其哲学思考.doc

浅谈量子力学的统计解释及其哲学思考- 在量子力学的发展史上,寻找一个能够合理地描述观察现象和实验数据等一系列相关事件的量子力学的自洽解释,必然是使抽象的理论达到现象学的一座中间桥梁和纽带,是使远离直觉的量子力学的数学形式能够清晰明白地被得到理解的一种有效手段和方法,同时,也是几十年来一些物理学家和科学哲学家在量子力学的数学程式已基本确立之后,一直没有放弃的一项追求。 1统计解释的提出和发展 量子力学的统计解释(Statistical Interpr-eta tion)是在量子力学的系综解释( EnsembleInterpretation )的基础上演变和发展起来的。 2统计解释与传统解释和PIV系综解释之间的区别与联系 50年代以来,除了上述两种解释外,还存在一些其它解释,如1957年Evevett的相关态解释(后来发展为多世界解释),BoPP 等人的随机解释等。由于这些解释都缺乏可操作性,而无法进行检验,因而均没有在物理学界产生的影响。所以,以下我们主要讨论统计解释、传统解释及Piv解释。 3统计解释的基础和意义 Jammer在《量子力学的概念发展》一书中曾指出,量子力学这套程式是一个复杂自彭不断摸索的概念演化过程的产物,可以并不夸张地说,这套程式超前于它本身的解释,这种事态在物理学史上几乎是独一无二的。 4统计解释的哲学思考 统计解释在对几率的各种可能的解释中采用了频度解释。

可是,频度解释并不是对几率的一种唯一可能的解释。并且,频度解释也不是没有缺点的。这种解释主要受到的批评是关于测量次数趋近于无限大时,对系综测量的统计平均值是否趋近于所希望存在的确定的极值,这一点并没有严格的数学基础,而只还是一种一般的信念。 统计解释是量子力学的基本公设所包含的一种解释,它在承认量子力学是一种根本意义的统计性理论、承认事物演化中存在着本质上的随机性的同时,强调了在个别事件出现中起决定作用的偶然性因素,在继承和发展传统的严格因果性观念的基础上,确立了一种前所未有的统计因果性观念,从而使人们在方法论上得到更深人的教益。我们相信,随着科学认识能力的提高,随着量子力学在实际应用中适用范围的确定,统计解释的观念也许将会象一些经典观念一样受到强烈限制的,只不过是这种限制现在还没有明显地表现出来而已。

量子力学的发展及应用

量子力学论文题目: 量子力学发展历史及应用领域 学生姓名武术 专业电子科学与技术 学号_ 222009322072082 班级2009 级 2班 指导教师张济龙 成绩 _ 工程技术学院 2011年12 月

量子力学发展历史及应用领域 武术 西南大学工程技术学院,重庆 400716 摘要:量子力学发展至今已有一百年了,它发展的道路并不是一帆风顺的。这一百年虽是艰难的,但是辉煌的。此后,人们发现量子力学与现代科技的联系日益紧密,它的发展潜力是不能低估的。本文从两个部分逐次论述了量子力学的发展及应用。第一部分是量子力学的发展,这部分阐述了早期量子论。第二部分是量子力学的应用,这部分阐明了量子力学在固体物理和信息科学中的应用。 关键词:早期量子论;量子力学的发展;量子力学的应用 量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。 建立在量子概念的量子力学及其物理诠释,促使人类的思想观念产生根本性转变;虽然这新概念很抽象,但就目前文明的空前繁荣而言,量子力学所产生的影响是相当广泛的。而看看量子力学的前沿性进展新貌,则会感到心驰神往。 量子力学可谓是量子理论的第二次发展层次,第一次常称作早期量子论,第三次就是量子场论。本文除了论述这三个层次以外,又说了它在现代物理乃至现代物质科学中的地位,阐述了它应用的状况。 一.量子力学的发展 19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。而对于微观世界的

相关文档
最新文档