Design of variable-stiffness composite panels for maximum buckling load

Design of variable-stiffness composite panels for maximum buckling load
Design of variable-stiffness composite panels for maximum buckling load

Design of variable-sti?ness composite panels

for maximum buckling load

Shahriar Setoodeh,Mostafa M.Abdalla,Samuel T.IJsselmuiden,Zafer Gu ¨rdal *

Faculty of Aerospace Engineering,Delft University of Technology,Kluyverweg 1,2629HS Delft,The Netherlands

Available online 26January 2008

Abstract

A generalized reciprocal approximation is presented for design of variable-sti?ness laminated composite panels for maximum buck-ling load.The buckling load is expanded in terms of the inverse of the sti?ness tensor.For discretized panels such an approximation has

the important property of being separable,which allows the maximization to be carried out at each discrete node separate from the oth-ers.This makes the algorithm particularly suited to parallel computations.The sensitivity analysis is performed exactly using an adjoint method,requiring only one back substitution using the already factored inplane sti?ness matrix with di?erent right hand sides to com-pute the sensitivities for all design variables.A conforming CLPT ?nite element is used for the buckling analysis of rectangular plates and the proposed reciprocal approximation is used to update ?ber orientation angles at each ?nite element node.Numerical results obtained for rectangular plates show that signi?cant improvements can be gained in the buckling load by allowing the sti?ness properties to vary spatially.The case of repeated eigenvalues is handled using a dual formulation.ó2008Elsevier Ltd.All rights reserved.

Keywords:Tow-placement;Variable-sti?ness panels;Buckling design;Reciprocal approximation;Adjoint sensitivity analysis

1.Introduction

Buckling design of laminated composite plates is well studied in the literature [8,9,27].Grenestedt [9]used lami-nation parameters with an approximate feasible domain de?nition to design panels against shear buckling.In his formulation,four design variables corresponding to the bending lamination parameters over the entire domain were used to design a panel.His work was later extended by Fukunaga [8]using exact de?nitions for the feasible combination of lamination parameters for panels with and without shear coupling,and with two and four design variables,respectively.Liu et al.[15]showed that the feasi-ble domain of the bending lamination parameters for lay-ups with only discrete 0 ;?45 ,and 90°layers assumes a hexagonal shape inside the Miki Parabola,and then used it to design panels for maximum buckling load.

Although signi?cant increase in the buckling load can be

obtained through tailoring laminate stacking sequence of composite panels with traditional straight ?bers,the poten-tial of ?brous composites is not fully exploited.An approach for the design of panels with cutouts was ?rst introduced in the late eighties [12]in which curvilinear ?bers were suggested to improve structural response instead of straight ?ber paths.The approach has been gen-eralized later by Gu ¨rdal and Olmedo [10]by designing var-iable-sti?ness laminates that use continuous curvilinear ?ber paths.For such variable-sti?ness panels,the sti?ness properties are continuous functions of position.Ideally,by steering the ?ber paths the ?ber orientation angle can be varied,which in turn changes the sti?ness properties at each point in the panel independently.The additional freedom in locally tailoring the sti?ness properties means that the performance of variable-sti?ness panels can be highly improved over constant-sti?ness (straight ?bers)panels.However,this additional freedom comes at the price of having signi?cantly enlarged design space as well as the complexity of maintaining uniform ?bre paths.

0263-8223/$-see front matter ó2008Elsevier Ltd.All rights reserved.doi:10.1016/https://www.360docs.net/doc/c34344001.html,pstruct.2008.01.008

*

Corresponding author.

E-mail address:z.gurdal@tudelft.nl (Z.Gu ¨rdal).

https://www.360docs.net/doc/c34344001.html,/locate/compstruct

Available online at https://www.360docs.net/doc/c34344001.html,

Composite Structures 87(2009)

109–117

Research in variable-sti?ness concept has been stimu-lated by recent developments of advanced tow-placement technology[5,26].Tow-placement machines are computer numerical controlled multi-axis machines that are capable of steering multiple tows(up to32with each tow having a width of about1/8inch)along prescribed paths.Each tow can be placed at a di?erent rate allowing a radius of curvature as low as12inches[17].Moreover,tows can be independently stopped(cut)and started permitting?exible coverage patterns to build composite panels.

The idea of curved?bers or?ber orientation angle dis-tribution has been used earlier to design composite lami-nates for maximum buckling loads.Improvements in buckling resistance of composite plates with a circular cen-ter hole was studied by Hyer and Lee[13]using curvilinear ?ber format.They used?nite di?erence based sensitivity analysis to?nd conditions that maximize buckling perfor-mance of a plate with a central circular hole.To reduce the problem size,they use a quarter model with selected regions of straight?ber orientations.Banichuk et al.[3] used triangular?nite elements to search for optimal angles of orthotropy,which maximizes the critical buckling parameter.They performed exact sensitivity analysis for both simple and multiple eigenvalues.Their numerical results showed a signi?cant increase in the critical buckling load just with reorientation of the orthotropic material in an optimal manner.Tatting and Gu¨rdal[25]used a two parameter based continuous curvilinear?ber path de?ni-tion,in which?ber orientation angles vary linearly along the panel side,to design variable-sti?ness panels with a cen-ter hole for maximum buckling load.Their study showed that up to60%improvement can be gained by optimal design of panels while complying with the existing manu-facturing techniques for curvilinear?bre paths.A so called discrete material optimization approach was used by Lund et al.[16]based on a semi-analytic sensitivity analysis to design rectangular plates for maximum buckling load.

In the present study,the generalized reciprocal approx-imation approach introduced by Abdalla et al.[2]is extended to buckling design of variable-sti?ness panels. In this formulation,the critical load is approximated using a?rst order Taylor series expansion in terms of the point-wise compliance tensors.Such an approximation has the important property of being separable,which is highly suit-able for parallel computing.Therefore,the problem of maximizing the buckling load is reduced to a simple local optimization problem at any discretization point.For buckling analysis,a conforming bilinear?nite element is used while the sensitivity of the buckling load is performed analytically.Practical manufacturing constraint on smooth spatial variation of the?ber orientation angle has been addressed approximately by using an interpolation scheme.

In the following sections,?rst the?nite element discret-ization of the buckling analysis is brie?y discussed,then the generalized reciprocal approximation applied for maxi-mum buckling design of variable-sti?ness panels is pre-sented followed by the sensitivity analysis.Sti?ness smoothing(or rather compliance smoothing)scheme is introduced next,followed by design update rule for the buckling load maximization and the treatment of the mul-timodal design.Finally numerical results are provided to demonstrate the performance of the current formulation along with the potential gains in the buckling load using a variable-sti?ness design compared to a constant-sti?ness design.The e?ect of boundary conditions on the optimal buckling load are also investigated.

2.Buckling analysis

The buckling loads are determined through the eigen-value problem

eK bàk K gTáa?0;e1Twhere K b is the global bending sti?ness matrix,K g is the global geometric sti?ness matrix,a is the mode shape com-prising of deformation degrees of freedom,and k is load multiplier.The mode shapes are normalized such that

a TáK báa?1:e2T

The geometric sti?ness matrix is constructed through an assembly of element geometric matrices.The sti?ness matrix of each element takes the form

K g

e

?àn x K xàn y K yàn xy K xy;e3Twhere n e?en x;n y;n xyTT is the vector of inplane stress resultants averaged over the element,and K x;K y and K xy are constant matrices that depend only on element geometry.

The averaged inplane stress resultants can be expressed as

n e?A eáe e;e4Twhere A is the inplane sti?ness matrix and e is the average strain vector given by

e e?B eáu e;e5Twhere u is the vector o

f inplane displacements,B is the average element strain displacement matrix(see Appendix for the de?nitions),and u e is the vector of the degrees of freedom associated with nodes connected to the e th ele-ment.The inplane displacements can be found from the solution of the inplane equilibrium equations

K máu?f:e6Twhere f is the vector of inplane loads.

3.The generalized reciprocal approximation

In the standard reciprocal approximation,a function is expanded in a Taylor series in terms of reciprocal variables [11].Reciprocal variables are traditionally de?ned as the reciprocals of the design variables.The reciprocal approx-imation is used extensively for truss design,in which the design variables are the cross sectional areas of the mem-

110S.Setoodeh et al./Composite Structures87(2009)109–117

bers.To generalize the reciprocal approximation,it is noted that the cross sectional area for trusses plays the role of the sti?ness of the member.In composite panel buckling design this rule is played by the inplane and bending sti?-ness matrices A and D.The generalized reciprocal approx-imation is,therefore,obtained by expanding the objective function in a Taylor series in terms of the inverse tensor of the sti?ness tensors,commonly known as the compli-ance tensors,which is denoted by R?Aà1and S?Dà1.

The derivatives of the buckling load with respect to the components of the bending compliance tensor,S,for the element e can be written using the chain rule as

o k o S e ?

o k

o D e

á

o D e

o S e

:e7T

Noting that the second term is simply the derivative of the sti?ness tensor with respect to the compliance tensor,it can be shown that

o k o S e ?àD eá

o k

o D e

áD e:e8T

The same formulation applies to the derivative of the buck-ling with respect to the in-plane compliance tensor

o k o R e ?àA eá

o k

o A e

áA e:e9T

4.Sensitivity analysis

The sensitivity of the critical eigenvalue k cr to a change in a design variable which is generically denoted by b is considered here.The variable b is assumed to a?ect only the local sti?ness properties of a single element i.The expression of the sensitivity can be written as[11]

d k d b ?k a Tá

d K b

d b

àk

d K g

d b

áa:e10T

The sensitivity value in(10)is composed of two terms.The ?rst term depending on the derivative of the bending sti?-ness is local in the case when b is linked to the sti?ness of a single element.By local it is meant that this term can be evaluated using information from a single element,viz.

S b1 a Tád K b

d b

áa?a T

i

á

d K b

i

d b

áa i:e11T

The second term in(10)is not necessarily local.This is due to the fact that even when the sti?ness of a single element is altered,the distribution of the inplane loads is altered for all elements and thus the geometric matrices of all element would change.In the following,an e?cient way for the evaluation of this term is described.

Substituting from(3)into(10)and rearranging the terms S b2is de?ned as

S b2 a Tád K g

d b

áa?à

X

e

s T

e

á

d n e

d b

;e12T

where the vector s e can be calculated locally as

s e?a T

e áK xáa e;a T

e

áK yáa e;a T

e

áK xyáa e

àáT

:e13TThe derivative of the inplane stress resultants can be ob-tained by di?erentiation of(4)as

d n e

d b

?

d A e

d b

áe etA eá

d e e

d b

:e14TThus,the sum in(12)can be decomposed into two terms corresponding to the two terms in(14).The?rst term can be evaluated locally since only the inplane sti?ness ma-trix of the i th element depends on b.The second term in-volves the derivative of the average strain of an arbitrary element with respect to the change of sti?ness of the i th ele-ment and is not local

S b2?às T

i

á

d A i

d b

áe ià

X

e

s T

e

áA eá

d e e

d b

:e15T

To evaluate the second term above,which is denoted by S b22in(15)term,(5)is di?erentiated with respect to b to obtain

d e e

d b

?B eá

d u e

d b

:e16TThus the strain term S b22simpli?es to

S b22?àg T

e

á

d u e

d b

;e17Twhere the vector g is assembled from element contributions

g

e

?B T

e

áA eás e:e18TThe derivative of the inplane displacement vector is ob-tained by di?erentiation of(6)as

K má

d u

d b

d K m

d b

áu:e19TDe?ning the adjoint displacement vector v as the solution of the problem

K máv?àg:e20TThe strain term can be simpli?ed to

S b22?àv Tá

d K m

d b

áu e;e21Twhich can be also evaluated locally.

Thus,all the calculations required to evaluate the sensi-tivity of the buckling load with respect to local change of sti?ness of the i th element can be calculated using informa-tion at the element level.The global redistribution of loads is accounted for totally through the evaluation of the adjoint displacement vector v.Substituting the above sensi-tivity equations back to(10),d k

d b

can be written as

d k

d b

?k a T

i

á

d K b

i

d b

áa i

tk2s T

i

á

d A i

d b

áe itv T

i

á

d K m

i

d b

áu i

:e22T

Recalling Eqs.(8)and(9),the element sensitivities is decomposed into two separate bending and membrane parts as follows(see the Appendix for more details on the element matrices):

S.Setoodeh et al./Composite Structures87(2009)109–117111

/ebTab e

à

o k

o S e

ab

?k D br D qa a T

e

á

d K b

e

d D qr

áa e

e23T

and

/emTab e

à

o k

o R e

ab

?k2A br A qa s T

e

á

d A e

d A qr

áe etv T

e

á

d K m

e

d A qr

áu e

:

e24T

5.Reciprocal interpolation

An important requirement in the design optimization of variable-sti?ness panels is to ensure the continuity of the distribution of the?ber orientation angles.Traditionally, design variables are linked to element properties.This is the intuitive approach suggested by the use of the?nite ele-ment method for analyzing the response of a structure. When independent design variables are linked to element properties to simulate the variable-sti?ness concept,there is no guarantee that the distribution of the design variables is going to be smooth.This issue is well known and espe-cially severe in topology optimization,where it results in checkerboard patterns.

To ensure the smoothness of the optimal?ber orienta-tion angles distribution,following the methodology intro-duced in[1,20,22]is proposed here,where the design variables are associated with nodes rather than elements. For the construction of element matrices,the variation of the sti?ness properties over the element is required.The simplest rule is to use an average value over the element. The use of an average value simpli?es the construction of element matrices.It also simpli?es the calculation of sensi-tivities with respect to nodal variables.

The key-point in introducing average element properties is that instead of de?ning the element sti?ness tensor as the average of the sti?ness tensor at the nodes,the element compliance tensor is calculated as the average of the com-pliance tensors at the nodes.This approach,?rst intro-duced in[1,22]was shown to be e?ective in producing smooth distribution of design variables for topology opti-mization problems.In this paper,the work of[1,22]is expanded to the case of composite sti?ness properties design rather than density measure.

The average element compliances are given by

eR e;S eT?

X

c2I e

w e;ceR c;S cT;e25T

where superscript c denotes node numbers and I e is the set of nodes connected to element e.The sum is weighted by integration weighing coe?cients w c such that for a smooth function f,

Z X e f d X%

Z

X e

d X

X

c2I e

w e;c f c:e26T

The e?ective element sti?ness tensor is calculated as the in-verse of the average compliance tensor given by(25).6.Design update rule

The reciprocal interpolation scheme introduced in Sec-tion5?ts nicely with the generalized reciprocal approxima-tion introduced in Section3.In this section,an approximation of the eigenvalue of the panel is obtained in terms the nodal values of the compliance tensors R and S,and derive the corresponding optimality conditions.

It is presumed here that an initial design R c and S c are known together with the corresponding mode shape a. The eigenvalue of the system is expanded in a?rst order Taylor expansion

k% kt

o k

e

ab

eR e

ab

à R e

ab

Tt

o k

e

ab

eS e

ab

à S e

ab

T;e27TSubstituting the expressions for the eigenvalue sensitivity (23)and(24),and the interpolation formulas(25)into (27),the following compact form of the generalized reci-procal approximation in terms of nodal values is obtained:

k%e ktUemTc

ab

R c

ab

tUebTc

ab

S c

ab

TàUemTc

ab

R c

ab

àUebTc

ab

S c

ab

;e28Twhere

e/emTc;/ebTcT?

X

e2I c

w e;ce/emTe;/ebTeT;e29T

in which I c is the set of elements connected to node c.

The generalized reciprocal approximation(28)has the important property of being a separable approximation [11].Each term in the summation depends only on the com-pliance tensor at one node,and hence only on the?ber ori-entation angles at this node.In order to update the design for the next iteration,the reciprocal approximation of the eigenvalue is maximized.Because of separability,the max-imization can be carried out at each node separate from the others.This makes the algorithm particularly suited to par-allel computations.

The design update rule for the nodal values of the?ber orientation angles can thus be expressed as

min

h c

eUemTc

ab

R c

ab

eh cTtUebTc

ab

S c

ab

eh cTT...no sum on c;e30TIn numerical implementation of the update rule a move limit of2.5°is used to stabilize the iterative design process. Note that the design update involves a minimization prob-lem because of the minus sign in(28).

If the optimization is carried out for a constant-sti?ness panel,the compliance tensors of all nodes are identical,and the update rule is no longer dependent on the node num-ber.The?ber orientation angles are thus updated as

min

h c

X

c

eUemTc

ab

R abeh cTtUebTc

ab

S abeh cTT:e31T7.Multimodal design

The multimodal case can be handled in a similar fashion to the method employed by Olho?[19]where the problem is regularized by introducing an independent parameter b

112S.Setoodeh et al./Composite Structures87(2009)109–117

max b

s :t :b 6a i k i ;

e32T

where a 1?1,and a i 61;i ?2;3;....

The purpose of the a i coe?cients is to be able to impose mode spacing constraints.This can be particularly useful when modal interaction leads to unstable post buckling behavior.

The problem described by (32)can be solved using the dual method by Fleury [6].The Lagrangian is written as,

L ?X l i à1 b àX a i l i k i ;e33Twhere l i are Lagrange multipliers.The complementary Lagrangian is de?ned as the minimum over the design vari-ables of the Lagrangian.This leads to two conditions,

L C ?min àX

a i l i k i e34Tand X

l i ?1:

e35T

It is noted that the auxiliary variable b is now eliminated from the formulation.

The Lagrange multipliers are determined through the dual problem,max L C ;

e36T

subject to (35),and non-negativity of the Lagrange multi-pliers l i .The gradient of the complementary Lagrangian with respect to the Lagrange multipliers is readily available as

o L C

o l i

?àa i k i :e37T

The Lagrange multipliers can now be solved for by using any gradient based optimization routine to solve the dual problem.1This can be e?ciently accomplished since the number of the Lagrange multipliers is small (the number of considered modes).The evaluation of the complemen-tary Lagrangian requires the update of all design variables through the minimization problem (34).When the proce-dure is applied to the reciprocal approximation of the eigenvalues rather than the actual objective,the evaluation of the complementary Lagrangian is reduced to the solu-tion of a separable set of optimization problems similar to the uni-modal case.8.Numerical results

Based on the design formulation presented,a Fortran code was implemented.The design and analysis cycle is repeated until the relative change in the buckling load is smaller than a given tolerance as mentioned earlier.In order to stabilize this iterative process,a move limit of 2.5°is used in design update rule.The mode spacing coef-?cients in Eq.(32)are set to a i ?1:0;i ?1;2;3;...with three modes considered in all of the examples.The buckling load P of a rectangular plate of dimensions a ?b is non-dimensionalized using the following relation N ?12a 2

p 2Q 22h P ;

e38T

where h is the total laminate thickness and Q 22is the re-duced sti?ness transverse to the ?ber.In the following examples,symmetric rectangular plates are considered with di?erent boundary conditions and di?erent loadings (see Fig.1).

First design of single layer uni-directional constant-sti?-ness panels is considered based on the design update rule (31).Numerical results for design of panels with di?erent aspect ratios against shear buckling eN xx ?N yy ?0Tare given in Table 1.As this table shows,there is a good agr-ement between the present results and those reported by Grenestedt [9].The buckling loads for the Grenestedt results are computed using the present ?nite element code resulting in di?erences less than %0.15with the present optimal buckling loads.The di?erence in the optimal orien-tation angle is attributed to the fact that the buckling load

1

DNCONG of IMSL version 3.0is used in the present study.

Table 1

Design of constant-sti?ness single layer plates with di?erent aspect ratios for shear buckling eN xx ?N yy ?0Ta =b Present Grenestedt [9]%Di?erence

h °N xy h °N xy 1.044.7104.6545.0104.6à0.011.249.089.4849.489.480.001.553.679.1354.479.130.001.756.075.9956.675.980.012.057.373.4358.073.420.012.557.169.8357.869.820.023.058.968.2159.868.180.054.0

59.5

66.57

60.7

66.48

0.14S.Setoodeh et al./Composite Structures 87(2009)109–117113

is rather?at close to the optimal design[9]and di?erences in the analysis tools used in the two studies.

To validated the formulation for multilayer symmetric composite panels for uni-axial and bi-axial loading the results are compared to those found by Narita and Turvey [18],who implemented an optimization routine using a lay-erwise approach.As can be seen from Table2,the results correlate exceptionally well,di?ering no more that0.5%.

The results of the proposed approach are further com-pared to those of Erdal and Sonmez[4]who optimized a 64ply balanced symmetrical rectangular plate with simple

supports using simulated annealing.The optimal results found by the present formulation are compared to the best three designs found by Erdal and Sonmez in Table3.The di?erence in optimal buckling load of approximately3% can be attributed to the continuous nature of the presented formulation as opposed to the discrete set of ply angels used in Ref.[4].The last row shows the optimal buckling load when designing the plate using the closed form solu-tion of simply supported plates and lamination parameters [14].The results are obtained using the reciprocal approx-imation following the formulation presentated in[14].It is to be seen that the values of the optimum lamination parameters are quite di?erent from the corresponding val-ues at the continuous and discrete optima.On the other hand,the value of the optimum buckling load is fairly close.This can be explained by the relative insensitivity of the buckling load to changes in lamination parameters in certain directions[9].

Now to demonstrate the performance of the proposed design methodology for design of variable-sti?ness panels, design of a rectangular composite panel as depicted in Fig.1is considered with the following orthotropic material properties:

E11

E22

?25;

G12

E22

?0:5;m12?0:25:

Optimal buckling loads for single layer constant-sti?ness and variable-sti?ness designs are listed in Table4for sim-ply supported and clamped plates.The corresponding var-iable-sti?ness designs are depicted in Fig.2a and b. Optimization process for these examples was started from a design with all?bers in the90°direction(direction of the loading).Similar designs were also reported in Lund et al.[16].For both boundary conditions considered sub-stantial improvement in the buckling load of the variable-sti?ness panels with respect to their constant-sti?ness coun-terparts were observed.Also note that in the case of simply

Table2

Comparison of the critical buckling factor of an8-layer,symmetric constant-sti?ness square panel(a/b=1)

k h1h2h3h4

Uni-axial,simply supported

Present320.9744.96à44.93à44.93à44.93 Narita[18]321.0045.00à45.00à45.00à45.00 Uni-axial,clamped

Present687.56à0.01à0.01à0.01à0.01 Narita690.900.000.000.000.00 Bi-axial,simply supported

Present160.4944.92à44.96à44.96à44.96 Narita160.5045.00à45.00à45.00à45.00 Bi-axial,clamped

Present347.29à0.0990.0090.00à90.00 Narita348.000.0090.0090.0090.00 Table3

Comparison of critical buckling factor of a64-layer,simply supported symmetric constant-sti?ness rectangular panel(a/b=2)

k W1W3 Present4097.3à0.06690.0243 Erdal and Sonmez[4]

(1)?9010=?452=902=?453=902=?454 s3973.0à0.06190.0405

(2)?908=?45=902=?45=902=?45=902=?456 s3973.0à0.06190.0405

(3)?9010=?45=902=?457=902=?45

s 3973.0à0.06190.0405

Optimal lamination parameters(W1;W3)[14]4102.3à0.79480.2660Table4

Design of single layer square panels for uni-axial buckling;cs:constant-sti?ness;vs:variable-sti?ness(a=b?1,N xx?N xy?0:,30?30nodes) Design N1N2N3%Improvements Simply supported

cs?h 28.5050.98102.75–

vs?h 75.6876.6492.07165.58 Clamped

cs?h 106.87140.32208.52–

vs?h 136.46160.22203.76

27.70

114S.Setoodeh et al./Composite Structures87(2009)109–117

supported boundary conditions optimal buckling load shows coalescence of the?rst and second eigenloads.The iteration histories for single layer variable-sti?ness design of simply supported and clamped plates are depicted in Fig.3a and b respectively.Convergence is typically fast requiring less than50analysis iterations.In the case of modal coalescence of simply supported plates the optimiza-tion requires and increased number of iterations.

Next design of balanced symmetric??h

s panels with

only one design variable per node is considered.The con-

stant-sti?ness designs in this case are??45

s and?90

s

lay-

ups for simply supported and clamped plates respectively. The corresponding variable-sti?ness design are shown in Fig.2c and d for which the buckling loads are listed in Table5.

In all the cases presented in Fig.2the?ber orientation towards the center of the panel is perpendicular to the applied loading.This reduces the local extensional sti?ness at the center,resulting in the the majority of the load being carried by the region near the edges of the plate,where the boundary conditions suppress the out of plane displace-ments while reducing the compressive load at the center.

It is important to mention here that both the buckling maximization problem and the local minimization problem of Eq.(30)are not convex(as most design optimization problems when parameterized using?ber orientation angles)and hence the result of the optimization process is highly dependent on the starting?ber orientation angles. Such problems are often remedied by parametrizing the design using lamination parameters[7].It is interesting to note that the lamination parameters for all the optimal laminates found by Erdal et al.[4](see Table3)are identi-cal to each other.It is also clear from Table3that the buckling performance can be improved even further when optimizing using lamination parameters.The authors believe that using the approximate feasible lamination parameters obtained by Setoodeh et al.[23]it is possible to design panels for maximum buckling based on the pres-ent work and similar to the previous studies by the authors for compliance[24]and frequency[2]design of variable-sti?ness composite panels.

9.Conclusions

A reciprocal approximation is proposed to design vari-able-sti?ness panels for maximum buckling load.Fiber ori-entation angles at?nite element nodes are treated as design variables and exact sensitivity analysis was performed based on an adjoint formulation.The adjoint sensitivity analysis requires only one back substitution using an already factored left hand side(the inplane sti?ness used in the buckling analysis)with a di?erent right hand side to compute the sensitivities for all design variables.The approximation assumes a separable form and therefore

Table5

Design of balanced symmetric??h

s square panels for uni-axial buckling;

cs:constant-sti?ness;vs:variable-sti?ness(a=b?1;N xx?N xy?0:; 30?30nodes)

Design N1N2N3%Improvements Simply supported

cs??h

s 38.4347.6671.72–

vs??h

s

64.0673.65128.8166.71 Clamped

cs??h

s 106.87140.32208.52–

vs??h

s 139.28144.98190.7530.33

S.Setoodeh et al./Composite Structures87(2009)109–117115

can be easily solved at each node.The case of multimodal design is handled using a dual formulation of a bound formulation.

Numerical results are compared with existing constant-and variable-sti?ness results in the literature and show good agreement between the two.In general,signi?cant improvements in the buckling loads of variable-sti?ness plates are obtained as compared to constant-sti?ness designs.Moreover,the proposed generalized reciprocal approximation exhibits good convergence behavior.How-ever,due to the non-convexity of the design problem when parametrized using?ber orientation angles,results depend on the starting points.This problem can be potentially remedied by using lamination parameters as design vari-ables instead of the?ber orientation angles.Additionally by introducing lamination parameters the in-plane and out of plane sti?ness properties can be prescribed indepen-dently,allowing the in?uence of extensional sti?ness and ?exural sti?ness distribution to be investigated individu-ally.This will allow for a better understanding of the load redistribution mechanism responsible for an increased buckling load.

Appendix A

The bending sti?ness matrix according to the classical laminate theory is computed as follows[21]:

K b

e

?D11T xxxxtD12eT xxyytT yyxxTt2D16eT xxxytT xyxxT

t2D26eT xyyytT yyxyTt4D66T xyxytD22T yyyy;e39Twhere the elements are of T xxxx;T xxyy,etc.depend on the ele-ment geometry and bending shape functions u i

T ngfl ij ?

Z

X e

o2u i

o n o g

o2u j

o f o l

d x d yei;j?1;2;...;16T:e40T

Notice that d K b e

d D qr terms as appear in Eq.(23)can now b

e eas-

ily obtained,for example

d K b

e

d D11

?T xxxx;

d K b

e

d D12

?eT xxyytT yyxxT=2:

The inplane sti?ness matrix on the other hand,can be writ-ten in the following form:

K m

e ?

k11k12

sym:k22 "#

:

The above4?4sub-matrices are given in terms of the lam-inate extensional sti?ness A as follows[21]:

k11?A11S xxtA16eS xytS yxTtA66S yy;

k12?A12S xytA16S xxtA26S yytA66S yx; k22?A66S xxtA26eS xytS yxTtA22S yy;e41T

where the elements of the S xx;S xy;and S yy matrices depend

on the inplane shape functions w

i

and are de?ned as

S ng

ij

?

Z

X e

o w i

o n

o w j

o g

d x d yei;j?1;...;4T:

In this paper,only square bilinear elements are used with

?xed side length s.Therefore matrices S xx;S xy;T xxxx,etc.

are the same for all elements and can be computed and

stored.The d K m e

d A qr

terms appearing in Eq.(24)can be obtained similar to their bending counterparts.

Finally,the average strain displacement matrix as used in Eq.(5)for an square element with side s is computed

from

B e?

1

2s

à111à10000

0000à1à111

à1à111à111à1

2

64

3

75:e42T

References

[1]Abdalla MM,Gu¨rdal Z.Structural design using optimality based

cellular automata.Proceedings of the43rd AIAA/ASME/ASCE/

AHS structures,structural mechanics and materials conference.Den-

ver,CO:AIAA;2002.

[2]Abdalla MM,Setoodeh S,Gu¨rdal Z.Design of variable sti?ness

composite panels for maximum fundamental frequency using lami-

nation parameters.J Compos Struct2007;81(2):283–91.

[3]Banichuk NV,Saurin V,Barsuk AA.Optimal orientation of

orthotropic materials for plates designed against buckling.Struct

Opt1995;10:191–6.

[4]Erdal O,Sonmez FO.Optimum design of composite laminates for

maximum buckling load capacity using simulated https://www.360docs.net/doc/c34344001.html,pos

Struct2005;71:42–52.

[5]Evans DO,Vaniglia MM,Hopkins PC.Fiber placement process

study.In:34th international SAMPE symposium and exhibition,

May1989.p.1822–33.

[6]Fleury C,Schmit LAJ.Dual methods and approximation concepts in

structural synthesis.Technical Report CR-3226,NASA,December

1980.

[7]Foldager J,Hansen JS,Olho?N.A general approach forcing

convexity of ply angle optimization in composite laminates.Struct

Opt1998;16:201–11.

[8]Fukunaga H,Sekine H,Sato M,Iino A.Buckling design of

symmetrically laminated plates using lamination https://www.360docs.net/doc/c34344001.html,put

Struct1995;57(4):643–9.

[9]Grenestedt https://www.360docs.net/doc/c34344001.html,yup optimization against buckling of shear panels.

Struct Opt1991(3):115–20.

[10]Gu¨rdal Z,Olmedo R.In-plane response of laminates with spatially

varying?bre orientations:Variable sti?ness concept.AIAA J

1993;31(4):751–8.

[11]Haftka RT,Gu¨rdal Z.Elements of structural optimization(solid

mechanics and its applications).Kluwer Academic Publishers;

1992.

[12]Hyer MW,Charette https://www.360docs.net/doc/c34344001.html,e of curvilinear?ber format in

composite structure design.In:30th structures,structural dynam-

ics,and material conference.Mobile,AL:AIAA;April1989.p.

1011–15.

[13]Hyer MW,Lee HH.The use of curvilinear-?ber format to improve

buckling resistance of composite plates with central https://www.360docs.net/doc/c34344001.html,pos

Struct1991;18(3):239–61.

[14]IJsselmuiden S,Seresta O,Abdalla M,Gu¨rdal Z.Multi-step blended

stacking sequence design of panel assemblies with buckling con-

https://www.360docs.net/doc/c34344001.html,pos Part B,submitted for publication.

116S.Setoodeh et al./Composite Structures87(2009)109–117

[15]Liu B,Haftka RT,Trompette P.Maximization of buckling loads of

composite panels using?exural lamination parameters.Struct Mul-tidiscip Opt2004;26:28–36.

[16]Lund E,Ku¨hlmeier L,Stegmann J.Buckling optimization of

laminated hybrid composite shell structures using discrete material optimization.In:6th World Congress on Structural and Multidisci-plinary Optimization,Rio de Janeiro,June2005.

[17]Moruzzi M,Oldani T,Tatting BF,Gu¨rdal Z,Blom AW.Tailoring of

composite layup through tow-placement manufacturing techniques.

In:Proceedings of the SAMPE2006conference,Long Beach,CA, May2006.

[18]Narita Y,Turvey GJ.Maximizing the buckling loads of symmetri-

cally laminated composite rectangular plates using a layerwise optimization approach.Proc Ins Mech Eng Part C J Mech Eng Sci 2004;218:681–91.

[19]Olho?N.Multicriterion structural optimization via bound formula-

tion and mathematical programming.Struct Opt1989(1):11–7. [20]Rahmatalla S,Swan CC.Continuum topology optimization of

buckling-sensitive structures.AIAA J2003;41:1180–9.

[21]Reddy JN.Mechanics of laminate composite plates,theory and

analysis.CRC Press;1997.[22]Setoodeh S,Abdalla MM,Gu¨rdal https://www.360docs.net/doc/c34344001.html,bined topology and?ber

path design of composite layers using cellular automata.Struct Multidiscip Opt2005;30(6):413–21.

[23]Setoodeh S,Abdalla MM,Gu¨rdal Z.Approximate feasible regions

for lamination parameters.In:11th AIAA/ISSMO multidisciplinary analysis and optimization conference,Portsmouth,VA,September6–8,2006.

[24]Setoodeh S,Abdalla MM,Gu¨rdal Z.Design of variable-sti?ness

laminates using lamination https://www.360docs.net/doc/c34344001.html,pos Part B Eng 2006;195(9–12):836–51.

[25]Tatting BF,Gu¨rdal Z.Analysis and design of tow-steered variable

sti?ness composite laminates.In:AHS Meeting,Williamsburg,VA, October30–November1,2001.

[26]Tatting BF,Gu¨rdal Z.Design and manufacture of elastically tailored

tow placed plates.Technical Report CR-211919,NASA,August 2002.

[27]Walker M,Adali S,Verijenko V.Optimization of symmetric

laminates for maximum buckling load including the e?ects of bending-twisting https://www.360docs.net/doc/c34344001.html,put Struct1996;58(2):313–9.

S.Setoodeh et al./Composite Structures87(2009)109–117117

门禁系统使用说明书

安装、使用产品前,请阅读安装使用说明书。 请妥善保管好本手册,以便日后能随时查阅。 GST-DJ6000系列可视对讲系统 液晶室外主机 安装使用说明书 目录 一、概述 (1) 二、特点 (2) 三、技术特性 (3) 四、结构特征与工作原理 (3) 五、安装与调试 (5) 六、使用及操作 (10) 七、故障分析与排除 (16) 海湾安全技术有限公司

一概述 GST-DJ6000可视对讲系统是海湾公司开发的集对讲、监视、锁控、呼救、报警等功能于一体的新一代可视对讲产品。产品造型美观,系统配置灵活,是一套技术先进、功能齐全的可视对讲系统。 GST-DJ6100系列液晶室外主机是一置于单元门口的可视对讲设备。本系列产品具有呼叫住户、呼叫管理中心、密码开单元门、刷卡开门和刷卡巡更等功能,并支持胁迫报警。当同一单元具有多个入口时,使用室外主机可以实现多出入口可视对讲模式。 GST-DJ6100系列液晶室外主机分两类(以下简称室外主机),十二种型号产品: 1.1黑白可视室外主机 a)GST-DJ6116可视室外主机(黑白); b)GST-DJ6118可视室外主机(黑白); c)GST-DJ6116I IC卡可视室外主机(黑白); d)GST-DJ6118I IC卡可视室外主机(黑白); e)GST-DJ6116I(MIFARE)IC卡可视室外主机(黑白); f)GST-DJ6118I(MIFARE)IC卡可视室外主机(黑白)。 1.2彩色可视液晶室外主机 g)GST-DJ6116C可视室外主机(彩色); h)GST-DJ6118C可视室外主机(彩色); i)GST-DJ6116CI IC卡可视室外主机(彩色); j)GST-DJ6118CI IC卡可视室外主机(彩色); k)GST-DJ6116CI(MIFARE)IC卡可视室外主机(彩色); GST-DJ6118CI(MIFARE)IC卡可视室外主机(彩色)。 二特点 2.1 4*4数码式按键,可以实现在1~8999间根据需求选择任意合适的数字来 对室内分机进行地址编码。 2.2每个室外主机通过层间分配器可以挂接最多2500台室内分机。 2.3支持两种密码(住户密码、公用密码)开锁,便于用户使用和管理。 2.4每户可以设置一个住户开门密码。 2.5采用128×64大屏幕液晶屏显示,可显示汉字操作提示。 2.6支持胁迫报警,住户在开门时输入胁迫密码可以产生胁迫报警。 2.7具有防拆报警功能。 2.8支持单元多门系统,每个单元可支持1~9个室外主机。 2.9密码保护功能。当使用者使用密码开门,三次尝试不对时,呼叫管理中 心。 2.10在线设置室外主机和室内分机地址,方便工程调试。 2.11室外主机内置红外线摄像头及红外补光装置,对外界光照要求低。彩色 室外主机需增加可见光照明才能得到好的夜间补偿。 2.12带IC卡室外主机支持住户卡、巡更卡、管理员卡的分类管理,可执行 刷卡开门或刷卡巡更的操作,最多可以管理900张卡片。卡片可以在本机进行注册或删除,也可以通过上位计算机进行主责或删除。

F6门禁管理系统用户手册

F6门禁管理系统用户手册 目录 1.系统软件 (2) 2.服务器连接 (2) 3.系统管理 (3) 3.1系统登录 (3) 3.2修改密码 (3) 4.联机通讯 (4) 4.1读取记录 (4) 4.2自动下载数据 (5) 4.3手动下载数据 (5) 4.4实时通讯 (6) 4.5主控设置 (6) 5.辅助管理 (8) 5.1服务器设置 (8) 5.2系统功能设置 (9) 5.3读写器设置 (10) 5.4电子地图 (13) 6.查询报表 (14) 6.1开锁查询 (14) 7.帮助 (18) 7.1帮助 (18)

1.系统软件 图1 门禁管理软件主界面 F6版门禁管理系统的软件界面如上图,顶端菜单栏包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”和“帮助”菜单;左侧快捷按钮包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”、“状态”等主功能项,每个主功能项包含几个子功能,在主界面上可以不依靠主菜单,就可在主界面中找到每个功能的快捷按钮。以下按照菜单栏的顺序进行介绍。 2.服务器连接 如图2点击设置则进入远程服务器设置,此处的远程服务器IP地址不是指数据库服务器,而是指中间层Fujica Server服务管理器的IP地址。 图2 服务连接

图2 远程服务器设置 3.系统管理 3.1系统登录 系统默认的操作员卡号为“0001”,密码为“admin”,上班人员输入管理卡号和密码后可以进入系统,进行授权给他的一切操作。 图3 系统登录 3.2修改密码 修改密码是指操作员登录成功后,可以修改自己登录的密码。先输入操作员的旧密码,再输入新密码并确认,则密码修改成功。

智能门禁管理系统说明书.doc

ID一体式/嵌入式门禁管理系统 使用说明书

1 软件使用说明 (1)配置要求 在安装软件之前,请先了解您所使用的管理电脑的配置情况。本软件要求安装在(基本配置): Windows 2000,windows xp操作系统; 奔腾II600或更高的处理器(CPU); 10GB以上硬盘; 128MB或更大的内存; 支持分辨率800*600或更高的显示器。 (2)安装说明 在光盘中运行“智能一卡通管理系统”安装程序(ID版),按照安装提示依次操作即可。 安装数据库以后,有两种创建数据库的方式,手动创建和自动创建。手动创建:在数据库SQL Server2000的数据库企业管理器中,建立一个database(数据库)。进入查询分析器/Query Analyzer 运行智能一卡通管理系统的脚本文件,形成门禁数据库表;自动创建:在安装智能一卡通管理软件中自动创建默认门禁数据库,默然数据名:znykt。 上述安装完后,在安装目录下,在first.dsn 文件中设置其参数,计算机server的名字(无服务器时即本机名)和数据库database的名字。 在桌面运行智能一卡通管理系统运行文件,选择卡号888888,密码为123456即可进入系统。 2 人事管理子系统 部门资料设置 首先运行‘智能一卡通管理系统’软件后,进入软件主界面,如下图所示:

然后点击进入“人事管理子系统”,如图所示: 选择<人事管理>菜单下的<部门管理>或点击工具栏内的‘部门管理’按钮,则会出现如下所示界面: 在<部门管理>中可以完成单位内部各个部门及其下属部门的设置。如果公司要成立新的部门,先用鼠标左键单击最上面的部门名,然后按鼠标右键弹出一菜单,在菜单中选择“增加部门”,则光标停留在窗口右边的“部门编号”输入框中,在此输入由用户自己定义的部门编号后,再在“部门名称”输入框中输入部门名称,最后按 <保存>按钮,此时发现窗口左边的结构图中多了一个新增的部门。如果要给部门设置其下属部门,则首选用鼠标左键选中该部门,再按鼠标右键弹出一菜单,在菜单中选择“增加”,最后输入、保存。同时也可以对选中的部门或下属部门进行“修改”或“删除”。特别要注意的是,如果是“删除”,则被选中的部门及其下属部门将被全部删除,所以要特别谨慎。

博克门禁系统使用说明书

《门禁系统使用说明书》

陕西********科技有限公司 单位地址:**************************** 联系电话:**************************** 目录 ( 1.1)软件系统---------------------------------------------------------------------------------------1-135 第一章软件基本操作...................................................................................................................... - 5 - 2.1进入操作软件 (5) 2.4人事管理 (7) 2.4.1 企业信息.................................................................................................................................................................. - 7 - 2.4.2添加/编辑部门信息 ................................................................................................................................................ - 9 - 2.4.2.1添加部门 ............................................................................................................................................................... - 9 - 2.4.2.2修改部门 ............................................................................................................................................................ - 10 - 2.4.2.3 删除部门 ........................................................................................................................................................... - 11 -

门禁系统使用说明书

-- - XX职业技术学院信息工程学院 门禁管理系统 操作说明书

制作人:X珍海 日期:2014年3月25日 目录 (请打开【帮助H】下的【使用说明书】,这样方便您了解本系统) 第1章软件的基本操作3 1.1 登录和进入操作软件3 1.2 设备参数设置4 1.3 部门和注册卡用户操作4 1.3.1 设置部门4 1.3.2 自动添加注册卡功能(自动发卡)5 1.4 基本操作7 1.4.1 权限管理8 1.4.2 校准系统时间11 1.5 常用工具12 1.5.1 修改登陆用户名和密码12 第2章考勤管理功能模块13 2.1 正常班考勤设置13 2.1.1 设置考勤基本规则13 2.1.2 设置节假日和周休日14 2.1.3 请假出差的设置15 2.2 考勤统计和生成报表17 2.2.1 生成考勤详细报表17 2.2.2 启用远程开门错误!未定义书签。

第1章软件的基本操作 1.1登录和进入操作软件 1.点击【开始】>【程序】>【专业智能门禁管理系统】>【专业智能门禁管理系统】或双击桌面钥匙图标的快捷方式,进入登录界面。 2.输入缺省的用户名:abc 与密码:123(注意:用户名用小写)。该用户名和密码可在软件里更改。 3.登录后显示主操作界面

入门指南。如果您没有经验,您可以在该向导的指引下完成基本的操作和设置。我们建议您熟悉后, 关闭操作入门指南,仔细阅读说明书,熟悉和掌握软件的操作。 “关闭入门指南”后,操作界面如下。 1.2设备参数设置 1.3部门和注册卡用户操作 1.3.1设置部门 点击【设置】>【部门】,进入部门界面。 点击【添加最高级部门】。

门禁系统管理平台-详细设计说明书

门禁系统管理平台详细设计报告 2015年09月20日

目录 一、基本信息 .................................................................................................................. 错误!未定义书签。 二、市场分析 (4) 1.客户需求分析 (4) (1)国际国内市场需求量预测及客户咨询类似产品情况..... 错误!未定义书签。 (2)客户对该产品的功能、安全、使用环境要求等............. 错误!未定义书签。 2.市场现状分析 (4) 三、详细设计 (4) 1. 模块描述 (4) 2. 功能描述 (4) 3. 信息传输过程 (6) 4. 标准符合性分析 (6) 5. 验证(试制/试验/检测)确认方法、手段的分析 (8) 四、资源论证 (8) 1.人力资源需求分析 (8) 2.开发设备资源需求分析 (9) 3.项目开发成本预算 (9) 五、研发时间安排 (9) 六、项目风险评估 (10) 1.技术方面 (10) 2.人员方面 (10) 3.其它资源 (10) 七、评审结论 (11) 八、公司意见 (11)

一、市场分析 1.客户需求分析 1.2014年7月份由三大运营商出资成立了中国通信设施服务股份有限公司,同年9月份 变更名称为中国铁塔股份有限公司。铁塔公司成立后,2015年12月下旬,2000多亿存量铁塔资产基本完成交接。而从2015年1月1日起,三大运营商停止新建铁塔基站,交由中国铁塔进行建设。据统计,2015年1-11月,中国铁塔累计承接三家电信运营企业塔类建设需求53.2万座,已交付41.8万座。针对如此庞大的存量基站及新建基站。 铁塔公司总部急需对基站人员进出做到统一管理,有效管控。提高效率。因此所产生的市场需求量是很大的。 2.随着互联网及物联网技术的快速发展,原有传统门禁管理系统、单一功能的管理软件已 经无法管理众多不同品牌、不同通讯方式、不同厂家的IC/ID读卡设备,因此客户需要一种开放式、分布式的云管理平台,来管理整个基站门禁系统中的所有设备 2.市场现状分析 ●同行业中,各厂家的产品采用传统的门禁方案,既读卡器和控制器及电磁锁或电插锁对 现场的基站门进行管理。造价昂贵,安装复杂。。 ●目前大部分厂家的管理平台架构单一,系统兼容性差,各家的门禁管理平台只能兼容自 家的控制器。开放性不够。 ●目前很多厂商的平台都是针对某一个硬件厂商的设备来运行的,当项目中有多家设备时 平台的控制力明显不足 二、详细设计 1. 模块描述 铁塔基站门禁系统管理平台系统主要包括三部分:BS/CS客户端、云服务器和手机APP。 其中客户端的主要功能包括: 支持对多家基站锁具设备的识别、获取、登录 支持对不同用户进行权限划分。 支持对锁具根据区域进行分组。 支持多家基站锁具设备的设备配置 支持多家设备通过手机APP开锁、获取状态、日志查询。 支持多家设备的设备时间校准 支持设备更新,当设备更新时,可以方便的只更新涉及到的文件,而不需要重装整个系统 支持电子地图

智能门禁管理系统说明书

IC一体式/嵌入式门禁管理系统 使用说明书

目录 1.系统简介 (3) 2.功能特点 (3) 3、主要技术参数 (4) 4、系统组成 (4) 5、设备连接 (5) 6、门禁管理系统软件 (6) 6.1 软件的安装 (6) 6.2 人事管理子系统 (7) 6.3 一卡通管理系统 (9) 6.4 门禁管理子系统 (12) 7. 调试操作流程 (28) 8、注意事项 (28)

1.系统简介 在高科技发展的今天,以铁锁和钥匙为代表的传统房门管理方式已经不能满足要求,而集信息管理、计算机控制、Mifare 1 IC智能(射频)卡技术于一体的智能门禁管理系统引领我们走进新的科技生活。 Mifare 1 IC智能(射频)卡上具有先进的数据通信加密并双向验证密码系统,卡片制造时具有唯一的卡片系列号,保证每张卡片都不相同。每个扇区可有多种密码管理方式。卡片上的数据读写可超过10万次以上;数据保存期可达10年以上,且卡片抗静电保护能力达2KV以上。具有良好的安全性,保密性,耐用性。 IC卡嵌入式门禁管理系统以IC卡作为信息载体,利用控制系统对IC卡中的信息作出判断,并给电磁门锁发送控制信号以控制房门的开启。同时将读卡时间和所使用的IC卡的卡号等信息记录、存储在相应的数据库中,方便管理人员随时查询进出记录,为房门的安全管理工作提供了强有力的保证。 IC卡嵌入式门禁管理系统在发行IC卡的过程中对不同人员的进出权限进行限制,在使用卡开门时门禁控制机记录读卡信息,在管理计算机中具有查询、统计和输出报表功能,既方便授权人员的自由出入和管理,又杜绝了外来人员的随意进出,提高了安全防范能力。 IC卡嵌入式门禁管理系统,在线监控IC卡开门信息、门状态,给客户以直观的门锁管理信息。 IC卡嵌入式门禁(简称门禁读卡器,门禁控制机,控制器)是目前同行业产品中体积较小的门禁,可以嵌入到市场上几乎所有的楼宇门禁控制器中,解决了因为楼宇门禁控制器内部空间小所带来的麻烦,是楼宇门禁控制器的最佳配套产品;它绝不仅仅是简单的门锁工具,而是一种快捷方便、安全可靠、一劳永逸的多功能、高效率、高档次的管理系统。它能够让你实实在在享受高科技带来的诸多实惠和方便。 2.功能特点 2.1.IC卡嵌入式门禁具有的功能: 2.1.1使用MIFARE 1 IC卡代替钥匙,开门快捷,安全方便。 2.1.2经过授权,一张IC卡可以开启多个门(255个以内)。 2.1.3可以随时更改、取消有关人员的开门权限。 2.1.4读卡过程多重确认,密钥算法,IC卡不可复制,安全可靠。 2.1.5具有512条黑名单。

门禁管理系统使用说明书

门禁管理系统使用说明书

乌石化汽车定量装车系统 门禁管理系统使用说明书 河北珠峰仪器仪表设备有限公司 2013.08.03

目录 一、系统组成 (5) 二、道闸 (5) 1.主要特点 (5) 2. 设备组成 (6) 3. 基本工作原理 (7) 4. 设备使用说明 (7) 三、车辆检测器 (8) 1.车辆检测器的安装 8 2.主要技术参数 8 3.车辆检测器的接线图 8 4.车辆检测器灵敏度设置 9 四、门禁控制器 (9) 五、读卡器 (10) 六、车牌识别 (11) 七、摄像机 (12) 八、门禁控制管理软件 (13) 九、常见问题及解决方法 (14)

一、系统组成 门禁管理系统由行人出入口读卡器、行人大门电磁锁、车辆出入口道闸、摄像机、白光灯、车牌识别仪、控制主机、数据存储服务器等组成。 门禁控制系统组成 二、道闸 车辆出入口道闸采用深圳捷顺生成的JSDZ0203数字式道闸,该道闸采用先进的直流伺服技术和全电路无触点控制技术,使整机运行更加平稳、可靠。而且采用了数字化电路自学习检测功能,有效地杜绝砸车现象,使系统运行更安全可靠。并配备了标准的外接电气接口,可配置车辆检测器以及上位机,实现系统的自动控制。可广泛适用于道路管理、道路收费及停车场管理等系统中。1.主要特点 1)外形美观大方,结构轻巧;部件标准化,可方便更换;箱体铝合金制作,防 水防锈。 2)集光、电、机械控制于一体,操作灵活、方便,使用安全、可靠。

3)系统具有极限位置自锁功能或人为抬杆报警功能(可根据要求设定)。 4)采用先进的直流伺服控制技术,确保系统动作更加准确、平稳。 5)全电路无触点控制,确保系统运行更加安全、可靠。 6)采用PWM调速实现了无极变速,可根据现场需要在速度段内任意调整。 7)按钮滚动菜单设置方式,方便快捷设置闸机运行参数,可根据现场需要进行 设置。 8)采用数字化电路的自学习功能,采集闸杆运行数据并进行计算来判断闸杆是 否碰到障碍物,若检测碰到障碍物,闸杆则会立即自动升起。 9)强、弱电智能控制系统,除具有一般电气控制功能外,既可使用三联按钮、 遥控装置进行手动控制,也可通过车辆检测器进行自动控制,而且系统对外配置标准485电气接口,可通过电脑对其进行远程控制与管理。 10)手动开闸记忆功能:在系统自动运行中,非正常人为开闸数据将被系统自动 记录下来备查询,有效防止人为作弊。 11)开闸次数记忆功能:在系统自动运行中,道闸将会记忆上位机发出的开闸指 令次数,闸杆会保持开状态直到车辆检测器感应车次与开闸指令次数等同时才进行关闸动作。 12)手摇自动升杆功能:在意外断电情况下可用手摇摇柄轻轻摇动使关到位的闸 杆偏离水平方向约30度,闸杆则会自行升起。 13)温度控制功能:闸机可自动检测工作环境温度,并启动温控装置进行温度调 整,保证设备在高低温环境下正常工作。 14)各运动部件均已调整到最佳运动和平衡状态,故本机性能稳定,运行平稳, 噪声小,使用寿命长。 2. 设备组成 JSDZ0203道闸主要由主机、闸杆插头、闸杆等组成,而主机则由机箱、机芯和电控系统等组成 ,见下图。

门禁系统使用说明书1

门禁控制系统 使 用 说 明 书 公司名称: 联系人: 联系电话:

目录 一、系统概况 ..................................................... 错误!未定义书签。 二、系统组成 ..................................................... 错误!未定义书签。 三、系统使用 ..................................................... 错误!未定义书签。 1、IC感应卡 ................................................. 错误!未定义书签。 2、读卡器 ...................................................... 错误!未定义书签。 3、进出门按钮 .............................................. 错误!未定义书签。 4、机箱电源 .................................................. 错误!未定义书签。 5、系统控制器 .............................................. 错误!未定义书签。 6、电脑软件 .................................................. 错误!未定义书签。 6.1 进入和登陆操作软件 .......................... 错误!未定义书签。 6.2 添加IC感应卡的用户 ...................... 错误!未定义书签。 6.3 设置I C卡进出权限 ......................... 错误!未定义书签。 6.4 怎样查询记录 ...................................... 错误!未定义书签。 7、485/232信号转换器 ................................ 错误!未定义书签。 8、电锁........................................................... 错误!未定义书签。 四、简单的维修维护............................................................................. 错误!未定义书签。

门禁系统操作手册

欢迎阅读 I 第1章系统简介 1.1系统功能简介 安全管理在近些年的现代企业管理中越来越受到管理者的关注。本系统实现门禁系统管理统一化、流程化, 并帮助客户实现运营安全。 ? 系统特点 .强大的数据处理能力,能管理30000个人员的门禁数据,能连接100台设备。 .形象而合理的操作流程融合了多年的门禁经验。 .自动化的用户名单管理,使得管理更科学、高效。 .建立在多级管理角色上的权限管理,能保证用户数据的保密性。 服务器硬件配置要求 :主频2.0G 以上。 内存:1G 及以上。 硬盘:可用空间10G 及以上,推荐使用NTFS 的硬盘分区作为系统安装目录(NTFS 硬盘分区能提供更好的性能和更高的安全性)。 系统运行环境 可支持的操作系统:WindowsXP/Windows2003/WindowsVista/Windows7 可支持的数据库:MSSQLServer2005/MicrosoftAccess 系统功能模块介绍 本系统主要分为四大功能模块: 人事:主要包括两部分,一是部门管理设置,即设置公司的主要架构;二是人员管理设置,为系统录入人员,分配部门,然后进行人员维护管理。 设备:设置连接设备的通信参数,通信参数正确才能够与设备正常通信,包括系统中的设置和设备中的设置。 通信成功后就能查看到已连接设备的信息并能对设备进行远程监控、上传、下载等操作。 ? 备注:指静脉功能在系统的“设备”和“人员”界面显示。 门禁:基于C/S 框架的管理系统,能够实现普通门禁功能,通过计算机对网络门禁控制器进行管理,实现 对人员进出的统一管理。门禁系统是对已经登记用户的开门时间及权限进行设置;即在某个时间段内,在某些门 上,允许某些用户可以验证开锁。 1

门禁系统使用说明

门禁系统使用说明 一、硬件设备稳定运行的先决条件 保证系统各组成部分----前段读卡器、磁力锁、门禁控制器有稳定的UPS电源支持,各个相关门自然状态开关闭合良好。 二、门禁管理系统的操作指南 2.1 登录和进入操作软件 点击开始\程序\iCCard\一卡通[门禁考勤]V6.5,或者双击桌面的快捷方式 进入登录界面。 输入缺省的用户名:admin密码:888888 (注意:用户名用小写)。该用户名和密码可在软件里更改。具体操作请参考相关内容。

3登录后显示主操作界面 2.2 怎样更改控制方式和设置开门延时时间 在【总控台】界面中,鼠标右键单击某个门会弹出菜单。可以设置开门延时和控制方式。所谓开门延时时间,是指门打开多长时间后会自动关闭,缺省是 3秒,可设置为 1-6000秒之间的任一时间。 2.3.1 设置部门和班组名称

单击设置\部门信息进入以下界面 单击 [新增] 可添加部门,可设置所属公司、部门级别、上级部门、部门描述。 2.3.2 添加注册卡用户 单击门禁\持卡人进入以下界面

单击然后在文本输入栏中填写您要添加的相应 姓名选定卡号(在ID感应卡表面一般会印刷两组号码, 0013951989 212 58357 前面10位数为内置出厂号不用管他,后面 212 58357 中间的空格不要,这8位数就是真正的卡号。如果卡上没有印刷卡号, 请用实时监控功能来获取卡号)。选择相应的部门和班组名称。除卡 号外所有的信息都可以修改。如果卡遗失,请到(工具――挂失卡)菜单中挂失相应的卡片。一般的软件挂失卡后会用新卡号全部修改以 前的记录设置,我们的软件会进行科学的标注,以前的记录继续可以 保留。 编号可以自动生成无需修改。姓名和卡号是必填项目,工号可以输入 字母和数字的组合,可填可不填。如果该持卡人不需要考勤,请将 的勾去掉。但是如果需要考勤,此处一定要打勾。 单击该按钮后,就已经将该用户加入系统中。

门禁管理系统使用说明书

门禁管理系统使用 说明书

乌石化汽车定量装车系统 门禁管理系统使用说明书 河北珠峰仪器仪表设备有限公司 .08.03

目录 一、系统组成 .............................................................. 错误!未定义书签。 二、道闸 ...................................................................... 错误!未定义书签。 1.主要特点 ....................................................... 错误!未定义书签。 2. 设备组成 ......................................................... 错误!未定义书签。 3. 基本工作原理.................................................. 错误!未定义书签。 4. 设备使用说明.................................................. 错误!未定义书签。 三、车辆检测器 .......................................................... 错误!未定义书签。 1. 车辆检测器的安装......................................... 错误!未定义书签。 2. 主要技术参数................................................. 错误!未定义书签。 3. 车辆检测器的接线图 ..................................... 错误!未定义书签。 4. 车辆检测器灵敏度设置 ................................. 错误!未定义书签。 四、门禁控制器 .......................................................... 错误!未定义书签。 五、读卡器 .................................................................. 错误!未定义书签。 六、车牌识别 .............................................................. 错误!未定义书签。 七、摄像机 .................................................................. 错误!未定义书签。 八、门禁控制管理软件............................................... 错误!未定义书签。 九、常见问题及解决方法........................................... 错误!未定义书签。

门禁系统说明书

门禁系统入门指南 系统登录 1.点击开始\程序\STOneCard\一卡通门禁管理,或者双击桌面的快捷方式。进入登录界面。 2.选择缺省的用户名:Admin 密码:空该用户名和密码可在软件里更改。选中上图的更改密码选项后,点击确定,弹出密码更改框,输入新密码,即可更改,如下图所示:

门禁管理主界面 主界面:显示常用功能模块和操作流程系统参数系统管理->系统参数

系统参数:主要设置进出门事件是否显示人员照片和是否需要将卡号转换为Wigand26格式,上次清理数据日期,是否采用IC卡序列号做门禁卡号,初始化时段。 如果有勾选中进门\出门事件是否显示人员照片,则只要发生进出门事件即可显示当前人员照片信息. 如果有选中是否需要将卡号转换为Wigand26格式,则10位卡号将自动转换为8位卡号.在核心平台用读卡器发卡即可. 如:ID卡号:0000924214 014 06710 发给姓名为:张三:卡号为前十位: 924214,则在门禁机上刷卡,显示后卡号:924214且将显示姓名 如果没有选中是否需要将卡号转换为Wigand26格式,则需要用定自8位读卡器发卡才可用.否则发卡后,在门禁机读卡器刷卡,在门禁控制台上显示非法卡,8位卡号,且将不显示姓名如:ID卡号:0000924214 014 06710 发给姓名为:张三:卡号为前十位: 924214,则在门禁机上刷卡,显示后卡号:1406710且将不显示姓名 初始化时段:将门属性的开关时段初始化为一个默认开关时段,将人员设置的进出时段初始化为一个默认进出时段.创建数据库时会自动初始化一个门默认开关进段和一个人进出默认进出时段 如::如果有多个门开关时段和多个人进出时段,进行初始化是会初始化最小时段编号,如:门开关时段有编号1.2.3,人进出时段编号有4,5,6,时行初始化时,初始化门开关时段编号为1和人进出时段编号为:4. 操作说明:点进“初始化时段”输入密码,点击“确定”即可。 注意事项: 1.卡位数不一定是10位或8位,只是一个概念,用于区别而己 2.门禁是读8位卡号,显示出来的是已转换成十位的卡号. 3.初始化时段前,需先进入人员设置模块。 控制器设置 门禁管理->控制器设置

门禁系统使用说明书

目录 一系统概述 (01) 二系统操作 (04) 三系统编程 (09) 四系统配置及选材 (19) 五系统原理图 (21) 六系统连线示意图 (25) 七安装调试 (29) 八系统各部件的安装说明 (31) 九其它事项 (31) 备注:本手册中所提及的终端设备(门口机、分机、管理机、围墙机),除特别说明外,主要是以可视系统AB-6A-402的设备为主。

第 页 1 一、系统概述 AB-6A-402楼宇对讲系统是采用单片机微电脑控制技术,数位总线传输技术而设计的小区联网可视对讲系统。系统数据传输距离可达5000米(需加中继器),防雷抗干扰,可实现大型小区的系统联网。AB-6A-401楼宇对讲系统是非可视系统,除无视频外,其余性能与AB-6A-402系统相同。两种系统主要适用于高楼大厦房型。 整个系统由门口主机(带联网功能)、室内分机、信号隔离器、主机电源、管理中心、管理中心电源、多门选择器、围墙机、信号中继器以及联网信号切换器等设备构成。(见下表)

第 页 2

第 页 3 ◇ 编码门口主机AB-402D 长×宽×厚(mm) 外形尺寸:316×136×56 开孔尺寸:280×114×34 ◇ 可视室内分机 长×宽×厚(mm) 外形尺寸:220×205×65(AB-402M ) 235×188×50(AB-402MQ ) ◇ 信号隔离器(AB-402A ,AB-402B ) 长×宽×厚(mm) 外形尺寸:85×85×37

第 页 4 ◇ 主机电源/隔离器电源/管理中心电源 (UPS-DP/UPS-P/UPS-CP ) 长×宽×厚(mm) 外形尺寸:190×180×73 ◇ 管理中心(AB-602C ) 长×宽×厚(mm) 外形尺寸:240×267×65 二、系统操作 (一)门口机(402D )与用户分机通话 1.来访者键入用户分机号码,若号码正确,则门口机发出悦耳的回铃声,呼叫开始。若号码错误或该分机不存在,则经过短暂等待后,门口机将显示“Err ”,然后返回至待机状态。 2. 若呼叫有效,分机发出悦耳的振铃声,同时来访者的影像亦将出现在可视分机的显示屏上。此时用户摘机,可与来访者通话。 3.在通话中,用户可按开锁键,打开相应门的电控锁并结束通话。 4.在呼叫或通话过程中,门口机上的“*”键被按下,则门口机当前

门禁系统操作手册

门禁软件系统使用详解 1.软件功能简介 门禁管理系统主要功能为门禁设置、系统监控、数据采集与处理,用户可以完成系统网络配置、员工设置、权限设置等;软件提供实时事件列表和实时状态及报警事件列表,使用户对系统动作状态有即时的掌握;同时软件实现对智能设备的管理,进行数据下载、远程控制、数据采集。软件具有输出报表功能,可以根据不同的用户要求生成不同类型的报表文件,适应于不同的应用。 ● 软件简单易用,界面清晰; ● 实时事件列表和实时状态功能,对报警事件作单独的处理; ● 硬件控制功能,实现参数设置、远程控制门、门状态检测、系统时间设置等; ● 支持硬件系统脱机操作,可以在系统连机后采集数据; ● 系统具有自测功能,根据用户的设定检测系统运行状态; ● 对网络硬件采用树型管理方式,组织关系直观明了; ● 分级系统操作管理员,提高系统安全性能; ● 支持无限多的用户定义时间段数 ● 多种出入权限模式(单卡、双卡、卡加密码、密码、无限制通行) ● 出入口的权限为时间段与出入模式的组合,针对不同员工、地点可实现细致的划分; ● 持卡人出入权限分配简单灵活,可按出入点或时间段等方式进行分配; ● 详细的员工资料管理,包括:员工的姓名、照片、职务、部门、卡号、生日、入职日期、工号、地址、电话; ● 支持卡号预先录入功能,无需人工录入; ● 灵活的报表输出功能,可按部门、职位、有卡、无卡、事件类型、事件来源、工号、卡号或根据用户需要定制不同的条件,生成报表,或存成文件格式存档或电子邮件发给不同地方的管理者。 2.门禁系统软件快速入门

1.操作功能面板:是指软件操作功能的一个集合,软件所有功能都在此面板内,通过操作此面板来实现门禁相关功能; 2.设备或部门选择树:选择当前操作的对象,对象可以是某个部门、或某个控制器、或控制器的某个门。一次可以从该<设备或部门选择树>中,选择一个或多个操作对象; 3.快捷功能工具条:将<操作功能面板>中的某些常用功能,放到该工具条上,方便快捷操作; 4.编辑常用工具条:对当前<功能操作区>的操作对象,进行“新增”、“修改”、“删除”、“选中”等操作功能的一个集合工具条,操作对象具体来说,就是从<设备或部门选择树>选择过来的部门、控制器以及某个具体的门; 5.功能操作区:对某项功能进行操作的工作区,一般包括“功能操作按键”、“操作对象列表”、“信息显示”等 6.操作对象列表:是指需要操作的对象都放在此列表内,根据功能不同可以勾选后,单个执行某项功能或一起执行,简单化操作。 7.功能操作按键:对选中的对象,执行具体的某项功能。 3.软件常规操作步骤 第一步:在<操作功能面板>或<快捷功能工具条>中,选择你需要操作的功能项;

门禁考勤管理系统操作说明书

门禁考勤管理系统 (V1.11/V1.15) 操 作 用 说 明 书 目录 一、前言 (4) 二、软件安装 1、系统要求 (6) 2、安装 (6) 3、卸载 (8) 三、操作说明 (10) 1、系统管理 (11) 2、人事管理 (19) 3、考勤管理 (21) 4、查询 (24) 5、数据管理 (25) 四、操作流程 (30)

五、常见故障与解决方法 (30) 前言: 软件安装默认目录:C: \Program Files\门禁考勤管理系统,(建议安装到D:\Program Files\门禁考勤管理系统) 。在WIN2000系统安装时,一定要以管理员帐号登陆WIN2000系统才能安装;否则安装运行门禁考勤管理软件时会出错! 硬件建议:赛扬1.5G或PIII 1.0G以上,128M内存,20G硬盘7200转以上 补充说明: 1.如果安装完后运行门禁考勤管理系统时出现如下错误:“连接数据出错” 请作出如下调整: A.在控制面板中‘“区域选项”日期设为{yyyy-mm-dd}的形式,时间设为 {hh:mm:ss}的形式 做完A步骤后如果再出现“连接数据出错”再做B步骤 B.在控制面板中的ODBC项中建立一个的ODBC是HYkaoqin 的ODBC 到控制面板中的ODBC项双击“数据源(ODBC)” 进入以下界面后,点击选择:MS Access Database,再点击“添加” 再进入如下界面再点击“完成” 进入如下界面,在“数据源名(N)”输入:Hykqoqin然后点击“确定” 创建完毕。

门禁考勤网络结构图: 1、系统要求 开始安装HY 门禁考勤管理系统软件之前,请确认计算机满足以下最小系统要求: ? 系统资源要求: ? 在安装门禁考勤管理系统前您的机器必须已安装一个操作系统。针对不同的操作系统,具体配置要求不同, 详情如下: ? 硬件环境: ? 软件环境: 2、安装: 安装前准备:(首先启动操作系统Windows9X,Windows2000 WindowsXP)安装门禁考勤管理系统之前,请首先卸载 (其方法请参见“卸载”)旧版的门禁考勤管理系统。 1.当所有的准备就绪后,请根据以下步骤安装门禁考勤管理系统;

电梯门禁系统说明书

电梯门禁控制系统 操 作 手 册 深圳市亚安信实业有限公司

目录 第一章软件安装 (3) 第1.1节软件系统对计算机的配置要求 (3) 第1.2节SQL数据库安装 (3) 第1.3节一卡通平台软件安装 (8) 第二章初学指南 (12) 第2.1节第一次启动和模块选择 (12) 第2.2节系统界面认识 (13) 第三章设备管理 (15) 第3.1节设备组维护 (15) 第3.2节设备列表 (15) 第3.3节梯控设备控制 (17) 第四章人事管理 (28) 第6.1节公司信息 (28) 第6.2节部门管理 (28) 第6.3节职位管理 (28) 第6.4节人事资料 (29) 第6.5节部门调动 (30) 第6.6节离职管理 (31) 第五章梯控管理 (32) 第5.1节权限设置 (32) 第5.2节下传权限 (33) 第5.3节远程授权 (33) 第5.4节密码信息管理 (34) 第5.5节数据采集 (34) 第5.6节数据查询 (35) 第六章工具 (37) 第6.1节用户管理 (37) 第6.2节高级选项(数据备份与恢复) (38) 第6.3节日志查询 (40) 第6.4节人事资料导入 (40)

第一章软件安装 第1.1节软件系统对计算机的配置要求 计算机设备: CPU Celeron4 266MHz 或Pentium4 3.0MHz以上 内存最低要求256 MB [推荐512MB或以上] 硬盘20G以上的可用空间 显示Super VGA (1024x768) 或更高分辨率的显示器(颜色设置为256 色或更高)鼠标Microsoft 鼠标或兼容的指点设备 操作系统: Windows 2000中文简体版 Windows XP中文简体版 Microsoft Windows 2003 Windows NT 中文简体版 第1.2节SQL数据库安装 将正版SQL安装光盘放入光盘驱动器中,运行光盘中的程序,出现如下页面。若是网络安装包,请在安装包中直接点击运行程序。 图(一) 然后选择安装SQL SERVER 2000 组件(见图一)

门禁考勤管理系统-使用说明书(v3.0)

声明 衷心感谢您购买并使用哈尔滨新中新电子股份有限公司的产品,请您在安装使用前仔细阅读本说明书。本公司向您做出如下严肃声明: 本手册陈述的内容基本有效,请您认真遵照执行。但在今后的程序升级时可能会有所变动,我们将在系统软件说明书的电子文档中做出相应更改并以其为准,恕不另行通知。本手册的例子中使用的单位均为虚构。依据有关服务规程的规定,本公司只对发行的正版软件在合法的使用范围内承担服务的义务。对于本系统软件和相关的文档资料,在未得到哈尔滨新中新电子股份有限公司的正式书面许可下,您不得擅自拷贝和传播。否则将根据知识产权保护的相关法规追究相应的法律责任。 本公司不承担如下情况的相关责任: 1)未正确按照本操作手册说明的规程进行操作 2)病毒感染和黑客破坏造成的各种故障 3)因其他厂家生产的软硬件的不兼容或存在缺陷而导致的 故障 4)使用非法软件(操作系统和数据库) 本系统采用的产品的注册商标声明: 1)金龙、Synjones是哈尔滨新中新电子股份有限公司的注 1

册商标 2)SCO UNIXWARE 是SCO公司的注册商标 3)Solaris是SUN公司的注册商标 4)Windows是美国微软(Microsoft)公司的注册商标 5)奔腾、Pentium是美国英特尔(Intel)公司的注册商标 6)ORACLE 是Oracle公司的注册商标 7)本书提及的所有其它公司及产品名称属各自公司的专有 商标或注册商标 金龙卡金融化一卡通系统软件V2.6.0.4产品登记号为: 黑DGY-2004-0099,本软件系门禁考勤管理系统软件模块。 2

3

目录 声明 (1) 版本历史 (5) 1.系统概述 (5) 1.1系统功能 (6) 1.2系统特点 (9) 1.3系统构成 (9) 1.4系统联系 (9) 2.术语定义 (9) 3.业务流程 (10) 3.1流程概述 (10) 3.2流程图 (11) 4.使用说明 (11) 4.1系统登陆 (12) 4.2系统缺省主页面 (13) 4.3系统设置 (14) 4.4系统功能菜单 (15) 4.5系统信息管理 (20) 4.6门禁信息管理 (30) 4.7考勤信息管理 (41) 4.8会议考勤管理 (53) 4.9流水信息管理 (64) 5.后记 (67) 附件一、KZQ-125UEN门禁控制器方案 (68) 附件二:KZQ-126UEN控制器初始参数配置方法: (68) 4

相关文档
最新文档