公交线路发车间隔优化的双层规划模型与算法

公交线路发车间隔优化的双层规划模型与算法
公交线路发车间隔优化的双层规划模型与算法

1、公交线网优化

1、公交线网优化 公交优先项目提出了成都市中心城区公交线网优化方案、骨干线网优化方案,同时对天府新区公交线网进行优化和规划。 成都市常规公交目前已初步形成“环形+放射状”的“快、干、支、微”四级线网体系。 城市公交骨架线路是在公交网络体系中起支架作用的线路,它衔接区域内公交客流需求较大的枢纽点,主要满足直达客流的需要,以实现乘客快速、便捷的转移。公交骨架线路效率的高低直接影响整个网络运行效率。 成都市公交线网概念骨架图 按照城市任何两个公交服务区之间均应提供快速公交服务的理念,构筑抽象的理想快线网络。通过网络拟合,筛选可行网络,考虑对策略发展区快线支持,补充得到近期快线实施网络。以实施网络为基础,对现有线网进行改造,得到近期快线方案,如下图。

成都市近期公交快线网络规划图 线网优化实例图 随着2014年四川天府新区正式成立,天府新区成都直管区与中心城区形成双核发展;成都市第十三次党代会报告提出:“推动天府新区产城融合,突出国际化服务和创新型引领,突出天府国际空港新城的国际门户功能和龙泉山现代化

产业基地的集聚优势,把天府新区打造成为新兴增长极核。”因此,将天府新区成都直管区与中心城区的快捷连通作为公交快线布设的重要因素,同时兼顾天府新区内部各核心组团(天府新城、成都科学城、南部特色优势产业功能区)的连通性,规划布局多条公交干线。 天府新区新增/调整快线布局

天府新区公交干线布局 2、交通集成模型数据库 交通模型数据库项目的开展形成了多个预测模型和各项交通指标数据库,使得成都在机动化快速发展中的交通模式向智慧出行、绿色出行和可持续发展方向转变。 数据库建设一览表

最优化理论与算法(第八章)

第八章 约束优化最优性条件 §8.1 约束优化问题 一、 问题基本形式 min ()f x 1()0 1,,.. ()0 ,,i e i e c x i m s t c x i m m +==?? ≥=?L L (8.1) 特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。 记 {} 1()0 (1,,);()0 ,,i e i e X x c x i m c x i m m +===≥=L L ,称之为可行域(约束域)。 {}1,,e E m =L ,{}1,,e I m m +=L ,{}()()0 i I x i c x i I ==∈ 称()E I x U 是在x X ∈处的积极约束的指标集。积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。 应该指出的是,如果x * 是(1)的局部最优解,且有某个0i I ∈,使得 0()0i c x *> 则将此约束去掉,x * 仍是余下问题的局部最优解。 事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ?>,存在x δ,使得 x x δδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。注意到当δ充分小时,由0() i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x * 是局部极小 点矛盾。 因此如果有某种方式,可以知道在最优解x * 处的积极约束指标集()()A x E I x * *=U ,则问题 可转化为等式的约束问题: min ()f x .. ()0i s t c x = ()i A x *∈ (8.2) 一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x * 。

基于动态规划的面试时间优化模型概述

2015年天津商业大学数学建模竞赛 承诺书 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、 电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨 论与赛题有关的问题。 我们明白,抄袭不人的成果是违反竞赛规则的, 假如引用不人的成 果或其他公开的资料(包括网上查到的资料),必须按照规定的参考 文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。 如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 参赛队员 (打印并签名) :1. 叶恒扬 2. 施艺敏 3. 张一鸣 日期: 2015 年 4 月 27 日

基于动态规划的面试时刻优化模型 摘要 现代信息社会中,求职面试差不多成为就业的一个重要环节。科学有效的组织和安排不管对面试者依旧对组织单位、用人单位差不多上省时省力、节略成本的。因此如何紧凑、高效、省时地安排面试者按顺序完成面试具有重要研究意义。 本文综合运用运筹学、统计学、经济学、平面设计、计算机软件等知识,通过建立数学模型来求解面试的最短时刻,进一步规划最优的面试流程。 针对问题一,通过分析给定的面试时期顺序和不同意插队等特性,为满足面试时刻最短,建立了求解最短时刻的0-1非线性规划模型(见公式(1)),然后利用Lingo11.0程序(见附录1),求解出最短面试时刻为100分钟,最佳安排顺序为:3 → →,同学最早9:40 → 4→ 1 5 2 一起离开。接着利用AutoCAD2007分不绘制出同学和面试官的面试过程时刻图(见图1~2)。在此基础上,利用Excel2007制作出同学的

城市公交线网优化的非线性模型_姚本伦

《交通标准化》2006年第10期 COMMUNICATIONSSTANDARDIZATION.No.10,2006 报告认为该段路堑处于古滑坡前缘,最大开挖坡高为13m左右。根据勘探地质资料,路堑开挖后可能诱发古滑坡复活,故在滑体中部设14根抗滑桩。由于对该路段土性的误判,即将残坡积层下伏厚层河流阶地沉积物判为上部滑坡堆积物,滑动面为基岩面,人为增加了滑体厚度及滑坡规模。当施工第一根抗滑桩挖到设计标高处时,设计人员到现场验槽,发现下部挖桩废渣为卵石土,主要成分为砂岩、花岗岩、 石英岩等,成分杂乱,砂质充填,不是残坡积成因堆积物;但二级坡开挖面仍为残坡积物,为谨慎起见,施工方暂停抗滑桩施工,局部开挖一级坡断面,开挖后发现下部卵石层为河流堆积物,卵石排列韵律明显,且无变形迹象。根据揭露地层情况,滑坡残坡积堆积物厚度薄,上部山体基岩出露,后缘残留物较少,重新分析路堑开挖后稳定性,认为不可能复活,因而取消原抗滑桩措施及有关附属工程措施,只 进行一般边坡防护,为工程建设挽回直接经济损失200多万元。 4结语 4.1公路工程设计是一系统性 工程,边坡工程是公路工程中重要的组成部分,同时受建设区域自然地质环境、路线设计、施工等多因素的影响,不确定因素较多,需认真分析研究。 4.2山区公路工程病害的发生, 主要受坡体地质条件(时代成因、物力力学性质等)控制,而人工切坡、降水等外在条件为诱发因 城市公交线网优化的 非线性模型 姚本伦1,张卫华2 (1.合肥城市规划设计研究院,安徽合肥230001;2.合肥工业大学交通研究所,安徽合肥230009) 摘要:通过对城市公交线网优化的整体研究,给出其优化的主要内容、优化原则以及线网优化的主要因素,提出公交线 网优化的约束条件和三大优化目标,并给出相应的数学表达式使约束条件和优化目标定量化,同时建立公交线网整体优化的模式,并对其进行讨论和评价,有助于提高城市公交线网的优化效率,同时可使约束条件和优化目标定量化。 关键词:公共交通;线网优化;整体模式;中图分类号:U22 文献标识码:A 文章编号:1002-4786(2006)10-0094-04 ANon-lineOptimumModelofUrbanPublicTrafficNetwork YAOBen-lun1,ZHANGWei-hua2 (1.HefeiUrbanPlanning&DesignInstitute,Hefei23001,China;2.TrafficInstitute,HefeiUniversityofTechnology, Hefei230009,China) Abstract:Basedonthestudyofurbantrafficlinenetworkoptimizationandthediscussiononthe content,principleandmainfactorsforoptimizationwithrelativemathematicalexpressionsfordistinctopti-mumobjectsfunctionformandrestrictconditions,avariedobjectivesandprogrammingmodelofpublictrafficlinenetworkoptimizationcanbebuilt.Itishelpfulforimprovingtheoptimizingefficiencyofurbantrafficlinenetwork. Keywords:publictraffic;linenetworkoptimization;integermodel""""""""""""""""""""""""""""""""""""""""""""" 94

运输优化模型参考

运输问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公司 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

流线优化模型与算法研究及应用

配套的处理方式;果蔬采后商品化处理量几乎达到了100%,形成了完整的果蔬冷链体系。而我国的产地基础设施不完善,未能解决分选、分级、预冷、冷藏运输和保鲜等采后果蔬的处理问题。我国果蔬冷链存在许多问题:产地预冷环节薄弱;冷藏运输工具落后;冷库发展水平低;缺乏有影响力的第三方冷链物流。我国果蔬冷链发展水平要赶上发达国家还有较长的路要走。 要完善我国的果蔬冷链业,除了大力研发性价比合理、符合国情的相关冷链设备、设施以外;还需要全面的对整个果蔬冷链过程中存在的影响果蔬产品质量的风险因素进行分析和评价,从而一一破解;更需要系统地梳理整个果蔬冷链链条,是指实现协同化,构建果蔬冷链质量质量保障体系。这样才能真正确保果蔬产品的质量安全,确保千万消费者食用上安全放心的果蔬产品。 流线优化模型与算法研究及应用 张锦*(交通与物流学院) 1 研究背景 目前我国物流产业正处于高速发展期,理论体系与应用研究正在不断完善。物流活动的目的就是使物流服务来满足物流需求,即通过仓储、加工、运输、配送、包装、装卸搬运等活动来满足社会经济活动中供应商、制造商、零售商、消费者等需求方的对物的移动、储存与服务的需求。在宏观层面的区域及城市经济和微观层面的制造、贸易、消费等典型社会经济活动中的物流活动可抽象为具有特定需求的空间结构,称作物流需求网络。 在物流系统中,由若干特定的点、线和特定的权构成的,反映物流服务与需求关系的供需网络称之为流线网络,它具有以下典型特征。 1.反映了仓储、加工、运输、配送、包装、装卸搬运等物流服务与需求方在物品数量、到达时间、物流费用等方面的物流需求间的供需关系。 2.具有嵌套、多层、多级、多维、多准则、拥塞等典型的超网络结构特征,并且具有连接供需两个物流网络的超网络结构。 3.当实际需求为特定值时,物流服务追求的目标为用恰当的费用,在恰当的时间把恰当数量的恰当物品,经恰当的路线送到恰当的地点。 物流供应网络与物流需求网络之间的关系可由超网络结构进行刻画,用匹配度刻画物流服务与物流需求之间的适应程度。 2 国内外研究现状 目前,国内外学者对流线的组织与优化问题研究较少,与此问题相关的内容包括物流网络、物流网络分配、动线优化、超网络理论与应用、变分不等式算法及其在供应链网络中的应用等内容。 2.1 物流网络研究现状 国外的学者大都倾向从微观的企业角度去研究物流网络的资源配置和协调问题,如物流基础设施、市场竞争机制以及配送运输等问题。这类研究大多利用数学规划法、系统仿真法、启发式 *作者简介:张锦,男,教授。

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

智能公交动态调度优化模型

Abstract An intelligent bus dispatching system can better meet people's travel needs.The optimized algorithm takes advantage of advanced technology and equipments.However,in recent years the development of Chinese intelligent bus dispatching systems is not satisfactory with an.excessive attention to advanced technology but less to practicality.Dynamic scheduling has yet to be fully exploited.In this paper,intelligent transportation scheduling systems and scheduling characteristics are analyzed. The information about dynamic transportation and vehicle locations is acquired and merged.An optimization model for intelligent dispatching of buses is proposed on basis of real data.This model is under the support of GPS positioning,communications,computers and other technologies,where intelligent algorithms are used in bus operation and dispatching and both passengers satisfaction and company profit are considered.The method of collecting data automatically and the algorithm of this model are presented.This model is shown to be able to significantly improve the rate of bus full loading,shorten the waiting time of passengers,and reduce the total vehicle trips,with an evident effect of optimized dispatching. Keywords intelligent transportation;optional model;dynamic dispatching;intelligent bus;Matlab software 0引言 伴随经济社会的发展,中国城市交通问题日益突出。交 通问题的出现,严重影响了城市的生产生活,而且从长远来看,影响了城市功能的发挥,制约了城市的健康发展。国际上城市交通发展的经验证明,解决城市交通问题,关键是要树立城市公共交通在城市交通体系中的主导地位,大力优先发展公共交通,建立先进的公共交通系统APTS (Advanced Public Traffic System )[1],实现公交调度智能化,提高道路通行 能力和公交运营管理水平。 近年来,由于科学技术的进步和政府对公交投入力度的加大,中国智能公共交通调度系统初现端倪,已经有杭州、上海、北京等地安装了电子站牌,车载GPS 定位设备,实现了车辆的实时跟踪、定位,公交车与调度室的双向通讯,以及电子站牌上实时显示下班车位置信息等功能。青岛、贵阳、石家庄等城市在实现公交系统智能化管理方面,已经有了一系列有益的探索[2]。但是,这些系统普遍存在先进的系统与静态、原始的调度方法共存现象,未能充分利用智能系统提供的动态 智能公交动态调度优化模型 摘要 利用先进的技术和设备实现公交的优化调度,充分满足人们的出行需要,是智能公交系统发展的目标。然而近年来中国智 能公交发展在一定程度上出现过于追求先进性、忽略实用性、运营效果不理想、动态调度尚待充分开发等问题。结合中国智能公交系统现状,通过对智能公交调度系统和调度特点深入分析,在GPS 定位、通信、计算机等技术的支持下,将动态交通状态信息与车辆定位信息有效融合,将智能化算法引入到公交运营调度中,建立了基于实时动态数据,兼顾乘客满意度和企业效益的动态调度优化模型。并且阐述了模型数据的自动采集方法、模型Matlab 程式化的解法。结果表明,该模型可以显著提高公交车辆满载率、缩短乘客等车时间和减少车辆总班次,优化调度效果明显。 关键词智能交通;优化模型;动态调度;智能公交;Matlab 软件 中图分类号U494.22,TP29文献标识码A 文章编号1000-7857(2009)17-0069-04 李志强,周建立,张毅 河南科技大学车辆和动力工程学院,河南洛阳471003 An Optimization Model for Dynamic Intelligent Dispatching of Buses 收稿日期:2009-05-11 基金项目:河南教育厅自然科学基金项目(200510464028);河南科技大学科研基金项目(2004ZY030,2006ZY027)作者简介:李志强,经济师,研究方向为智能交通,电子信箱:liqiangsqjt@https://www.360docs.net/doc/c34414255.html, LI Zhiqiang,ZHOU Jianli,ZHANG Yi Vehicle &Motive Power Engineering College,Henan University of Science and Technology,Luoyang 471003,Henan Province,China

公交线路选择的优化模型

龙源期刊网 https://www.360docs.net/doc/c34414255.html, 公交线路选择的优化模型 作者:张俊丽 来源:《价值工程》2015年第28期 摘要:本文针对城市公交线路选择问题建立了相应的数学模型。将公共自行车看作独立于公汽、地铁的第三种交通方式。利用网络图,主要从换乘次数、出行花费和出行总时间三个方面来确定最佳线路,分别考虑了各单目标,增加不同的上限约束,建立了任意两站点的最佳线路相应的网络流模型。 Abstract: In this paper, the corresponding mathematical model is established for the problem of urban public transportation route selection. The public bicycle as independent of the bus, the subway third modes of transport. Using the network diagram, three main factors are considered to find the best route, the number of trips, travel expenses and travel time.The network flow model of the best optimal line between any two sites, which considers the single objective and the different upper bound constraints. 关键词:公交系统;最佳线路;最小费用流;优先因子 Key words: bus system;best line;minimum cost flow;priority factor 中图分类号:U491.1+7 文献标识码:A 文章编号:1006-4311(2015)28-0206-02 0 引言 城市公共交通网络是城市交通网络的重要组成部分,提高城市交通系统的利用率被公认为是改善交通拥堵的有效途径之一。而如何优化城市现有公交网络以提高城市公交系统的利用率,是当今倍受关注的一个重要课题。公交汽车和城市轨道交通在城市公共交通体系中发挥着大动脉的作用,但是由于线路和站点布局的限制,是无法覆盖城市每一个角落的。即在公共交通体系的末端,缺少一套针对每个乘客特定的短途出行需求的公共交通微循环系统。为了解决这一问题,一种能够实现城市公共交通微循环的公共自行车租赁系统被引入我国。西安市区也常规地在轨道交通站点、公交站点、社区门口设置租赁点,通过“公共自行车管理系统”来管理这些租赁点的自行车。对租赁站点的发展规模预测、追加投资额的分配问题进行探讨,对政府建设城市公共自行车租赁系统具有一定的指导意义。但是在如何将公共交通中地铁、公共汽车、公共自行车租赁有效结合一直是个空白。 本文给出了城市中任意两站点最佳线路方案。本文认为所谓最佳线路,应该从乘车费用、公共自行车骑行时间、换乘次数、出行时间四个方面来理解。对于任意两站点的最佳线路,建立了网络流模型。 1 模型准备:构造容量费用网络图N=(V,E,C,B)

公共交通网络运营优化系统的设计与实现

公共交通网络运营优化系统的设计与实现3 王建明,靳文舟,郝小妮 (华南理工大学土木与交通学院,广东广州 510640) 摘 要:阐述了公共交通网络运营优化系统的功能结构,分析了系统的运行思路;针对公交预测子系统,提出了基于IC卡的基础公交数据的获取及分层配流思想;针对网络运营评价子系统, 提出了以政府、企业和乘客三方主体为目标的评价方法;针对网络运营优化子系统,提出了逐层实 现公交线网优化的“分层配流优化”思想;基于组件ArcEngine等软件,设计了公共交通网络运营 优化系统,实现对优化结果的图形化显示,为规划部门及企业提供决策信息。 关键词:公共交通;系统开发;网络运营优化;网络运营评价 中图分类号:U491.1 文献标志码:A 文章编号:1671-2668(2010)02-0033-03 3基金项目:国家863计划项目(2007AA11Z201);国家自然科学基金项目(50878089) 随着中国城市道路建设步伐的不断加快,城市 土地利用日益紧张,道路供给远远低于需求,交通拥 堵问题愈演愈烈,于是,优先发展运量大、占地少的 城市公共交通成为各大城市解决交通问题的共识。 但公共交通的发展速度远远跟不上城市发展的步 伐,主要有以下原因:1)政府、企业在运营模式上 缺乏对构建一体化公交体系的深入思考;2)公共交 通便捷、经济的优势没有体现出来;3)公共交通网 络运营优化技术理论还未形成可操作、成熟、完备的 体系;4)国际上流行的软件和模型很难适应中国的 实际交通状况。而公共交通网络运营优化系统的实 现是解决线网优化和运营优化的重要手段。因此, 通过深入研究公共交通的网络运营优化技术,运用 综合交通网规划思想,建立一套公共交通网络运营 优化系统尤为重要。 1 系统架构 公共交通网络运营优化系统的功能结构如图1 所示,主要由基础数据、公交预测、网络运营优化和 网络运营评价等子系统组成。 公共交通网络运营优化系统的运行思路:针对 铁路与公路客运站、轨道交通和常规公交的基础数 据及社会经济情况、城市规划布局和人口分布情况 等建立数据库,通过数据分析和建模计算公交需求 预测数据,把得到的预测数据分配到公交线网上,对 公交网络运营效果进行评价;在评价的基础上建立 优化目标与模型,对公交网络运营进行优化调整;再 在调整后的公交线网上进行公交需求预测,通过预 测结果进行线网的再次评价。这样通过根据实际网 络营运状况不断进行优化调整,形成客流数据与公 交网络的动态调整平衡,最终使公共交通网络运营 总体趋向最优化 。 图1 公共交通网络运营优化系统功能结构 2 系统设计 建立公共交通网络运营优化系统的目的是调整 网络运营配置、整合各种公交方式以发挥网络运营 的最佳总体效率,为动态公交网络调整和运营策略 的制定提供科学的决策支持。其设计目标:1)为公 交企业及管理部门提供管理和决策的辅助手段;2) 提供便捷的属性和空间数据库建立、维护、分析方法 33 公 路 与 汽 运  总第137期 H i g hw ays&A utomoti ve A p plications

第十八章动态优化模型

第十八章 动态优化模型 动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。 §1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。 1.1 变分法的基本概念 1.1.1 泛函 设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是对应在S 上的泛函,记作))((t x J 。S 称为J 的容许函数集。 通俗地说,泛函就是“函数的函数”。 例如对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函))((x y J 。由微积分知识不难写出 dx x y x y x y J x x )('1)(2))((2 12?+=π (1) 容许函数集可表示为 })( ,)(],,[)(|)({2211211y x y y x y x x C x y x y S ==∈= (2) 最简单的一类泛函表为 ?=2 1 ),,())((t t dt x x t F t x J (3) 被积函数F 包含自变量t ,未知函数x 及导数x 。(1)式是最简泛函。 1.1.2 泛函的极值 泛函))((t x J 在S t x ∈)(0取得极小值是指,对于任意一个与)(0t x 接近的 S t x ∈)(,都有))(())((0t x J t x J ≥。所谓接近,可以用距离ε<))(),((0t x t x d 来度量,而距离定义为 |})()(||,)()({|max ))(),((0002 1t x t x t x t x t x t x d t t t --=≤≤ 泛函的极大值可以类似地定义。)(0t x 称为泛函的极值函数或极值曲线。 1.1.3 泛函的变分 如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为泛函的自变量,函数)(t x 在)(0t x 的增量记为 )()()(0t x t x t x -=δ 也称函数的变分。由它引起的泛函的增量记作 ))(())()((00t x J t x t x J J -+=?δ 如果J ?可以表为 ))(),(())(),((00t x t x r t x t x L J δδ+=?

最优化理论与算法 fibonacci法

function [a,b,n,x]=fibonacci(fname,a,b,d,L) % fname函数句柄,d辨别常数,L最终区间长度a(1)=a; b(1)=b; F=zeros(1,10); %选择fibonacci数列k值为10,可任意更改 F(1)=1; F(2)=2; for k=2:10 %k取到10,生成fibonacci数列 F(k+1)=F(k)+F(k-1); F(k); end Fn=(b(1)-a(1))/L; Fk=[F Fn]; N=sort(Fk); n=find(Fn==N); %查找计算函数值的次数n t(1)=a(1)+F(n-2)*(b(1)-a(1))/F(n); %计算试探点t(1),u(1) u(1)=a(1)+F(n-1)*(b(1)-a(1))/F(n); for k=1:n-2 ft=feval(fname,t(k)); fu=feval(fname,u(k)); if ft>fu a(k+1)=t(k); b(k+1)=b(k); t(k+1)=u(k); u(k+1)=a(k+1)+F(n-k-1)*(b(k+1)-a(k+1))/F(n-k); while k==n-2 t(n)=t(n-1); u(n)=t(n-1)+d; ft=feval(fname,t(n)); fu=feval(fname,u(n)); if ft>fu a(n)=t(n); b(n)=b(n-1); else a(n)=a(n-1); b(n)=t(n); end end else a(k+1)=a(k); b(k+1)=u(k); u(k+1)=t(k); if k~=n-2 t(k+1)=a(k+1)+F(n-k-2)*(b(k+1)-a(k+1))/F(n-k); ft=feval(fname,t(k));

城市公交线路选择优化模型

城市公交线路选择优化模型 摘要 本文针对城市公交线路选择问题建立了两个模型,一个是基于集合寻线算法模型,另一个是图论模型。 基于集合寻线算法模型中,首先固定换乘次数n,通过集合论的相关知识把确定换乘点的具体位置, 转化成确定一些集合间的交集,从而建立集合寻线算法,再根据集合相关公式,得到所有可行线路;进一步考虑时间和费用等因素,对可行线路进行处理比较,得出最佳线路。 图论模型中,通过图论的知识将整个北京市交通线路构建出一个有向图,每个站点与有向图的顶点一一对应,同一线路上的相邻站点对应为有向边,通过不同目标(时间、费用)给有向图进行不同的赋权,分别将不同目标转化为赋权有向图寻找最短有向路,根据最短路径算法,得到最佳线路。最后综合评价了两个模型的优缺点。 关键词:集合寻线算法;最短路算法;换乘点;赋权有向图

1 问题提出 北京将于2008年举行奥运会,届时会有从四面八方而来观看奥运比赛观众,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。随着现代化的步伐加快,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。在现实生活中,公交线路以及其相应经过的站点非常多且密,乘客往往难以知道如何选择公交线路,所以针对市场需求以及公交线路选择上的问题,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。 该系统的核心在于线路选择的模型与算法,应该从实际情况出发,满足查询者的各种不同需求。根据附录1、附录2,解决如下问题: 1.仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。并根据附录数据,利用建立的模型与算法,求出以下6对起始站→终到站之间的最佳线路。 (1) S3359→S1828(2) S1557→S0481(3)S0971→S0485 (4) S0008→S0073 (5)S0148→S0485 (6)S0087→S 3676 2.同时考虑公汽与地铁线路,解决以上问题。 3.假设知道所有站点之间步行时间,给出任意两站点之间线路选择的数学模型。 2 问题分析 为了研制开发一个解决公交线路最佳选择(即乘客在多条公交线路中根据自己的需求获得最适合自己的线路)问题的自主查询计算机系统,只要乘客给出起点站A和终点站B两个站点,系统就给出最佳交通线路,使得公众出行更加通畅、便利。而问题核心是如何在多条线路选择中获得最佳线路。 乘客往往不能只乘一辆公交便直达终点,而是要通过换乘一辆或多辆公交才能到达终点站,但若多次换乘公交,可能导致乘客所花时间及其费用的增加,更会给乘客造成不便。在奥运将在北京举行的背景下,我们知道乘客前往观看奥运比赛时,主要注重的是能否及时到达,所以在为乘客选择线路时,力求乘坐花费的时间尽可能少以及路程尽可能短的线路,同时考虑换乘车辆以及乘车费用尽量少的最佳线路,而现实是很难同时满足上面三个目标的。为了使问题简单化,我们分别以乘车时间、乘车费用以及换乘次数为目标函数,得到各自的较优线路,再通过对比,有效地处理这些线路,最终得出查询系统给出的结果。 3 模型准备 3.1 模型假设 1.假设同一地铁站对应的任意两个公汽站之间可以通过地铁站换乘(无需支付地铁费); 2.假设所有交通线路都不出现停运或者线路变动; 3.假设公汽的环行行驶线路是单向的。 3.2符号约定 c:相邻公汽站平均行驶时间(包括停站时间),min c; = 3 d; = d:相邻地铁站平均行驶时间(包括停站时间),min 5.2 e:公汽换乘公汽平均耗时,min e(其中步行时间2min); 5 = f(其中步行时间2min); = 4 f:地铁换乘地铁平均耗时,min

对动态优化设计的认识及其应用-

东北大学 研究生考试试卷 考试科目:对动态优化设计的认识及其应用 课程编号: 阅卷人: 考试日期:2012.06 姓名:黄孙进 学号:1100487 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生

对动态优化设计的认识及其应用 摘要 本文主要阐述了动态优化设计的概念、内容方法;介绍了动态优化设计相关理论;以及以系统体积、重量最小和传动构件的扭转振动加速度最大值最小为目标函数,以传动构件的扭转振动加速度均方根值为动态性能约束,建立时变外载荷下系统的动态优化设计模型,采用混合离散变量优化方法进行优化,即风力发电机齿轮传动系统动态优化设计方法。 关键词:动态优化设计;风力发电机;齿轮传动;

摘要 (i) 第一章动态优化设计的认识 (1) 1.1引言 (1) 1.2动态优化设计的目标、内容及方法 (1) 1.3动态优化设计的相关理论 (4) 1.3.1有关动态优化设计内容方面的理论基础 (5) 1.3.2有关动态设计手段方面的理论基础 (7) 第二章风力发电机齿轮传动系统动态优化设计方法 (10) 2.1风力发电机齿轮传动系统结构 (10) 2.2齿轮传动系统动态优化设计模型目标函数 (10) 2.3齿轮传动系统动态优化设计模型设计变 (11) 2.4风电齿轮传动系统优化结果比较 (11) 2.5风力发电机齿轮动态优化设计结论 (14) 参考文献 (15)

第一章动态优化设计的认识 1.1引言 现代机械产品正在向高速、高精度、轻量化的方向发展,产品结构日趋复杂,产品更新换代的速度日益加快,对产品或设备的结构系统的静态和动态特性要求越来越高。如何提高系统的性能越来越受到人们的重视。对产品进行动态优化设计是提高产品性能的主要手段,在产品设计中起着非常重要的作用。现代机械动态优化设计是在产品的研究和开发过程中,对机械产品的运动学与动力学及与此相关的动态可靠性、安全性、疲劳强度和工作寿命等问题,进行分析和计算,以保证所研究和开发的设备具有优良的结构性能及其它相关性能。动态优化设计在现代机械产品设计中占有十分重要的地位,这是因为绝大多数现代机械设备都处在连续运转过程中,而且由于这些机械的工作速度越来越高,结构越来越复杂,尺寸越来越大(对微型机械来说,尺寸越来越小),精度越来越高,功能越来越齐全,对其工作的可靠性、安全性和工作连续 性的要求也越来越高。在这种情况下,产品动 态设计已成为现代机械研究开发不可缺少的和 至关重要的环节,对保证产品的工作可靠性、 安全性、工作耐久性。本文将概要论述通过学 习机械设备的动力学与动态分析这门课程对动 态优化设计的认识,并运用ANSYS对简单结构 进行了模态分析和静力学分析。 1.2动态优化设计的目标、内容及方法 现代机械产品动态优化设计是一项涉及现代动态分析、计算机技术、产品结构动力学理论、设计方法学等众多学科领域的新的学科分支,其基本思想是对按功能要求设计的结构或要改进的机械结构进行动力学建模,并做动特性分析。根

数学建模案例分析--最优化方法建模6动态规划模型举例

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p Λ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

最优化理论与算法

最优化理论与算法笔记 在老师的指导下,我学习了最优化理论与算法这门课程。最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多方案中什么样的方案最优以及怎样找出最优方案。 由于生产和科学研究突飞猛进的发展,特别是计算机的广泛应用,使最优化问题的研究不仅成为了一种迫切的需要,而且有了求解的有力工具,因此迅速发展起来形成一个新的学科。至今已出现了线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。 整个学习安排如下,首先介绍线性与非线性规划问题,凸集和凸函数等基本知识及线性规划的基本性质;然后再这个基础上学习各种算法,包括单纯形法、两阶段法、大M 法、最速下降法、牛顿法、共轭梯度法等,以及各种算法相关的定理和结论;最后了解各种算法的实际应用。 主要学习的基础知识: 1、一般线性规划问题的标准形式 1min n j j j c x =∑ 1 .., 1,...,, 0, 1,...,. n ij j i j j s t a x b i m x j n ===≥=∑ 学会引入松弛变量将一般问题化为标准问题;同时掌握基本可行解的存在问题,通过学习容易发现线性规划问题的求解,可归结为求最优基本可行解的问题。 2、熟练掌握单纯形法、两阶段法和大M 法的概念及其计算步骤。 单纯形法是一种是用方便、行之有效的重要算法,它已成为线性规划的中心内容。其计算步骤如下: 1)解,B Bx b =求得1B x B b b -==,令0,N x =计算目标函数值B B f c x =;

2)求单纯形乘子ω,解B B c ω= ,得到1B c B ω-=; 3)解k k By p =,若0k y ≤,即k y 的每个分量均非正数,则停止计算,问 题不存在有限最优解,否则,进行步骤(4); 4)确定下标r ,使min{0}r r rk rk rk b b y y y =>,得到新的基矩阵B ,返回第一 步。 两阶段法:第一阶段是用单纯形法消去人工变量,即把人工变量都变换成非基变量,求出原来问题的一个基本可行解;第二阶段是从得到的基本可行解出发,用单纯形法求线性规划的最优解。 大M 法:在约束中增加人工变量a x ,同时修改目标函数,加上罚项T a Me x ,其中M 是很大的正数,这样,在极小化目标函数的过程中,由于M 的存在,将迫使人工变量离基。 3、掌握最速下降法的概念及其算法,并且能够讨论最速下降算法的收敛性。掌握牛顿法,能够熟练运用牛顿迭代公式:(1) ()2()()()()k k k k x x f x x x +=-?- ,掌 握共轭梯度法及其相关结论,以及其收敛性的讨论,掌握最小二乘法及其基本步骤。 最速下降法:迭代公式为(1) ()()k k k k x x d λ+=-。 计算步骤:1)给定点(1)n x R ∈,允许误差0,ε>臵1k =; 2)计算搜索方向() ()()k k d f x =-?; 3)若() k d ε≤,则停止计算,否则,从()k x 出发,沿()k d 进行一维搜索,求k λ,使()()()() ()min ()k k k k k f x d f x d λλλ≥+=+; 4)令(1) ()()k k k k x x d λ+=-,臵:1k k =+,转步骤(2)。

相关文档
最新文档