数学物理方程——4 热传导方程的建立

数学物理方程第三版第一章答案(全)

数学物理方程第三版答案 第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ????

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

数学物理方程第二版答案

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??- 23 222)( 22 52222 3 2222 2 ) (3) (t y x t y x t t u ?--+---=??- -

第四章导热题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条 件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件 为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2 222)1(])1[(t u h x x u h x x E ??-=??-??ρ 其中h 为圆锥的高(如图1) 证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:

传热学第二章答案

第二章 思考题 1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。 答:傅立叶定律的一般形式为: n x t gradt q ??-=λλ=-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流 密度矢量。 2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量? 答:k q j q i q q z y x ?+?+?=,其中k j i ,,分别为三个方向的单位矢量量。 3 试说明得出导热微分方程所依据的基本定律。 答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。 4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。 答:① 第一类边界条件:)(01ττf t w =>时, ② 第二类边界条件: )()( 02τλτf x t w =??->时 ③ 第三类边界条件: )()( f w w t t h x t -=??-λ 5 试说明串联热阻叠加原则的内容及其使用条件。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。使用条件是对于各个传热环节的传热面积必须相等。 7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。 6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。 8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗? 答:只要满足等截面的直肋,就可按一维问题来处理。不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。 9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。试分析这一观点的正确性。 答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。 10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。 答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x 方向和y 方向的数值相等并为常数。 11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。矩形的一个边绝热,其余三个边均与温度为f t 的流体发生对流换热。你能预测他所得的温度场的解吗? 答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。 习题

传热学第四版课后题答案解析第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法试分析比较之. 6.什么是非稳态导热问题的显示格式什么是显示格式计算中的稳定性问题 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解不能得出收敛的解时是否因为初场的假设不合适而造成 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ ? 你能否判断这一表达式是否正确,为什么 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=,1,10 的三种情况计算下列特征方程的根 :)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 Bi n n =μμtan Fo=及时计算结果的对比列于下表: δ=x

0=x δ=x 4-2、试用数值计算证实,对方程组 ? ? ????????=++=++=-+5223122321321321x x x x x x x x x 用高斯-赛德尔迭代法求解,其结果是发散的,并分析其原因。 解:将上式写成下列迭代形式 ()()? ???? ?????--=-+=--=2131323213212/1252/1x x x x x x x x x : 假设3,2x x 初值为0,迭代结果如下: 迭代次数 0 1 2 3 4 1x 0 2x 0 - 1. 3x 0 -0. 显然,方程迭代过程发散 因为迭代公式的选择应使每一个迭代变量的系数总大于或等于式中其他变量的系数绝对值代数和。 4-3、试对附图所示的常物性,无内热源的二维稳态导热问题用高斯-赛德尔迭代法计算 4 321,,,t t t t 之值。 、

数学物理方程第一章部分答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数学物理方程第一章答案

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 ),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ) ,()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条 件为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为

数学物理方程课程

《数学物理方程》课程 教学大纲 课程代码:B0110040 课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部 一、课程的地位、目的和任务 课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。 课程的目的与任务:使学生了解数学物理方程建立的依据和过程,认识这门学科与物理学、力学、化学、生物学等自然科学和社会科学以及工程技术的极密切的广泛的联系。掌握经典数学物理方程基本定解问题的提法和相关的基本概念和原理,重点掌握求解基本线性偏微分方程定解问题的方法和技巧。使学生掌握与本课程相关的重要理论的同时,注意启发和训练学生联系自己的专业,应用所学知识来处理和解决实际问题的能力。 二、课程与相关课程的联系与分工 学生在进入本课程学习之前,应修课程包括:大学物理、高等数学、线性代数、复变函数、场论与向量代数。这些课程的学习,为本课程奠定了良好的数学基础。本课程学习结束后,可进入下列课程的学习:四大力学、电磁场与微波技术、近代物理实验等。且为进一步选修偏微分方程理论、数值计算、控制理论与几何分析等课程打下基础。

三、教学内容与基本要求 第一章绪论 1.教学内容 第一节偏微分方程的基本概念 第二节弦振动方程及定解条件 第三节热传导方程及定解条件 第四节拉普拉斯方程及定解条件 第五节二阶线性偏微分方程的分类 第六节线性算子 2.重点难点 重点:物理规律“翻译”成数学物理方程的思路和步骤,实际问题近似于抽象为理想问题 难点:数学物理方程的数学模型建立及数学物理方程的解空间是无限维的函数空间 3.基本要求 (1)了解数学物理方程研究的基本内容,偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念;了解算子的定义。了解三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 (2)掌握微分算子的运算规律,理解线性问题的叠加原理 (3)了解二阶线性方程的特征理论 (4)掌握两个变量二阶线性偏微分方程分类方法及化简方法 (5)掌握三类方程的标准形式及其化简过程,会三类方程的比较,并能通过标准形式求得某些方程的通解。 第二章分离变量法 1.教学内容 第一节有界弦的自由振动。 第二节有界长杆的热传导问题。 第三节二维拉普拉斯方程的边值问题。 第四节非齐次方程得求解问题。

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。 定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则 x 点处的张力)(x T 为 ) ()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)] ([22ρ∣ x u x l g x x ??--?+] [ρ∣ g x ρ 利用微分中值定理,消去x ?,再令0→?x 得

])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 2 2 1),,(y x t t y x u --=在锥2 22 y x t -->0中都 满足波动方程 2 22222y u x u t u ??+??=??证:函数 2 2 2 1),,(y x t t y x u --= 在锥 2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 2 2 52222 32222 2)(3) (t y x t y x t t u ?--+---=??-- ) 2()(22223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 2 25222232222 23x y x t y x t x u - ---+--=?? ( )( )2 22 252222y x t y x t -+- -=- 同理 ()()22225222222y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题

数学物理方程(谷超豪)第二版前两章答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数学物理方法第一章作业答案

第一章复变函数 §1.1 复数与复数运算 1、下列式子在复数平面上个具有怎样的意义? (1)z≤ 2 解:以原点为心,2 为半径的圆内,包括圆周。 (2)z?a=z?b,(a、b 为复常数) 解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。 (3)Re z>1/2 解:直线x=1/ 2右半部分,不包括该直线。 (4)z+Re z≤1 解:即x2 +y2 +x≤1,则x≤1,y2 ≤1?2x,即抛物线y2 =1?2x及其内部。(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数) 解: (6)0 0 x 2 2 + +( y y 2 + ? 1 1) 2 > 所以 ,即x <0,x2 +y2 ?1+2x >0 x 0

z -1 ≤(7)1, z +1

2 z-1 x 1 iy x y 1 4y ?+?+?? 2 2 2 ==+ ?? 解:()[()] +++++ iy 1 y2 2 2 z 1 x 1 x ?x 1 y ?+ 2 + 2 所以()[()] x+?+≤++ 2 2 2 y 1 4y2 x 1 y 2 2 2 化简可得x≥0 (8)Re(1 /z) =2 ????? 1 x iy x 解:Re( ?=R e 2 1/ z=? ) R e 2 == ???? ?iy? x ?x ++y+y ?x 2 2 2 即(1/ 4)1/16 x? 2 +y= 2 (9)Re Z2 =a2 解:Re Z2 =x2 ?y2 =a2 +z+z?z=2 z+2 z 2 (10) z 1

数学物理方程与特殊函数第二、三章作业

习 题 2.1 4. 一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。试写出定解问题。 解:由题意可知定解问题为: ?? ?? ???<<-=-<<=========== )(,)/(,)0(,0,00,0)/(0 00002L x L I u L x u u u u u a u Y u t t t t t x x x xx xx tt εερερ 习 题 2.2 3. 设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡—玻尔兹曼定律正比于u 4,即d Q =k u 4d S d t ,设物体与周围介质之间,只有热辐射而无热传 导,周围介质的绝对温度为已知函数 ),,,(t z y x ?。试写出边界条件。 解:由题意可知: dsdt u dsdt n u k )(44?σ-=??- ∴边界条件为: )(44?σ -- =??u k n u s 习 题 2.3 4. 由静电场Gauss 定理?????= ?V S V S E d 1 d 0 ρε,求证:0 ▽ερ = ?E ,并由此导出静电势u 所满足的Poisson 方程。 证明:由题意可知由静电场高斯定理: ????????= =?V S V V V divE S E d 1 d d 0 ρε ∴ 0 0▽ερερ=??= E divE 习 题 2.4 2. (1) 032=-+yy xy xx u u u 解:由题意可知: △=12-1×(-3)=4﹥0 => 双曲型

03d d 2d d 2 =--?? ? ??x y x y => 3d d =x y 或 -1 令 ???+=-=y x y x ηε3 则 ??? ???-=????????=1113 y x y x Q ηηεε => ??????=??????-??????-??????-=?? ????=??????''''08801113311111132212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε ∴ )()3()()(016y x g y x f g f u u ++-=+=?=ηεεη (5) 031616=++yy xy xx u u u 解:由题意可知: △=82-16×3=16﹥0 => 双曲型 03d d 16d d 162 =+-?? ? ??x y x y => 43d d =x y 或 41 令 ? ??-=-=y x y x 443ηε 则 ??? ???--=??????? ?=4143 y x y x Q ηηεε => ??????--=??????--????????????--=?? ????=??????''''03232044133881641432212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε ∴ )4()43()()(064y x g y x f g f u u -+-=+=?=-ηεεη 习 题 2.5 2.试证明:若),,(τt x V 是定解问题 ? ?? ??====><<=-====),(,00,0,0,002ττττx f V V V V t L x V a V t t t L x x xx tt

第四章_导热问题的数值方法

5 热传导问题的数值方法 5.1一维稳态导热 一维稳态导热在直角坐标系下的控制方程可表示为: 0)(=+s dx dT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。 首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得: 0)()(=+-?dx s dx dT k dx dT k e w w e (5-2) 图5.1 控制体和网格 然后进行离散化。如果用分线段性分布来计算方程(5-2)中的微商dx dT ,那么最终的方程为: 0)() ()()(=?+---x s x T T k x T T k w W P w e P E e δδ (5-3) 假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为: b T a T a T a W W E E P P ++= (5-4) 式中 x s b x s a a a x k a x k a c P W E P w w W e e E ?=?-+=δ= δ= )()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。进行计算时,物理参数值存储在节点的位置上。为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。常用的方法由两种,即算术平均法与调和平均法。 1、算术平均法 假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:

4.2热传导第-导热基本方程 (1)

4.2 热传导(第一课时) 4.2.1 导热基本方程 年级:高一 科目:化工基础 课型:新课 主备人:佟长燕 时间: 教学目标 1.理解傅里叶定律、热导率的概念及影响因素;掌握热导率的影响因素。 2.通过自主学习,使学生理解傅立叶定律;通过引导和启发,使学生理解热导率的影响因素和分类。 3.练习过程中,培养学生实事求是的科学态度。 学习重、难点 重点:掌握传热的基本方式;理解工业生产上的换热方式。 难点:掌握传热的基本方式;理解工业生产上的换热方式。 学习方法:自主探究、合作交流、讲解等 教学过程: 一、温故互查 1.传热的基本方式有哪些? 2.热传到的概念,方式场合及特点? 二、设问导读 1.傅立叶定律的基本内容? 2.热导率的含义及影响因素? 3.单层平壁定常导热的公式? 三、自学检测(阅读课本87—89,完成下列问题) 1.导热基本方程 (1)傅立叶定律 实验证明,在定常导热时,导热速率与垂直于传热方向的导热面积和温度梯度成正比,其关系式为 (4—1), 式中Q — ;A — ; λ— ;dn dt — ,规定温度梯度的方向指向温度升高的方向为正,反之温度度降低的方向为负。 (2)热导率 ①热导率λ(或导热系数)在数值上等于单位温度梯度下通过 的传热热速率。热导率是表示物质 大小的一个参数,是物质的物理性质。物质的热导率越大,传道的热量 ,其导热能力也 。 ②不同物质的热导率差异很大,可以通过实验测定器热导率。各种物质的热导率的大小顺序为: > > > 。 ③物质的热导率与物质的 、 、 和温度有关。温度对热导率的影响较明显,金属的热导率随温度的升高而 ;除水、甘油外的多数液体,其热导率随温度的升

相关文档
最新文档