汽 轮 机 驱 动 引 风 机 的 方 案

汽 轮 机 驱 动 引 风 机 的 方 案
汽 轮 机 驱 动 引 风 机 的 方 案

引风机与脱硫增压风机合并,取消脱硫旁路

烟道,锅炉烟气系统仅设置引风机

引风机选型的好坏并不唯一决定于选型设计点或风机最高效率点的高低,而是取决于在整个调节范围内都有较高的运行工作效率,并且还要考虑初投资、可靠性、耐磨性、维护费用等诸多重要因素。

从锅炉烟气流通的大系统来看,增压风机是串联在锅炉-脱硝-引风机-脱硫塔-烟囱的烟气流道上。因此从理论上讲完全可以取消增压风机,通过提升引风机压头来克服锅炉本体、脱硝装置、电袋除尘器、吸风机前烟道、脱硫系统阻力。

取消增压风机后,不会影响脱硫岛的调试和运行。对于脱硫岛本身,增压风机与引风机合并,引风机取代了增压风机的功能,克服脱硫系统烟气阻力,使烟气能够顺利通过吸收塔和脱硫烟道后进入烟道排放。

两种方案的技术特点比较

方案一:引风机和增压风机分别设置,引风机和增压风机的压头均较低,引风机全压比合并设置减少2000Pa。当脱硫事故时将停机。

方案二:引风机与脱硫增压风机合并设置,脱硫系统正常运行时对锅炉运行影响小,当脱硫事故时将停机。由于引风机与增压风机合并设置,减少故障点,同时节省初投资和减少厂用电率。

两种方案的运行比较

引风机与增压风机合并对炉膛防爆压力的影响

目前国内电力行业关于炉膛有以下规程:DL/T435-2004《电站煤粉锅炉炉膛防爆规程3.2.1》条:无论由于什么原因使引风机选型点的能力超过-8700Pa时,炉膛瞬态设计负压都应考虑予以增加。本次炉膛设计最大瞬时承受压力按±9800Pa考虑,对于本工程,合并风机的TB点全压升为9300Pa,即使引风机在环境温度下TB点能力较高,通过联锁控制等手段能够保护锅炉的安全运行。因此,本工程锅炉炉膛防爆压力能够满足引风机和增压风机合并的有关的防爆要求。

机组带脱硫装置运行时,烟气系统是一个整体。根据机组负荷变化,烟气系统阻力发生变化,引风机和增压风机需作相应调节。

方案一分设模式在机组负荷变化时,需同时调节串联的两种风机,调节比较复杂。

方案二合并调节对象单一,烟气系统响应负荷变化较分设模式迅速、准确。环保三同时要求脱硫系统和主机调试在安装、试运阶段一同完成引风机在较高效区运行。本工程脱硫系统不设旁路,故脱硫发生故障与主机同时停机,引风机调节比较简单。

两种方案的经济比较

方案一:按照原设计招标设备价格,两台炉引风机799.4万元(入口介质容积流量:1815012m3,风机全压:6600Pa,风量:497.76m3/s),两台炉增压风机698.4万元(入口介质容积流量:3473633m3,风机全压:4680Pa,风量:964.9m3/s),合计价格为1497.8万元(本期已招标价格)。

方案二:引风机与脱硫增压风机合并通过对国内外目前的风机市场的价格初步调查,(按照驱动电动机)两台炉引风机1200万元左右(风机全压:9300Pa,风量:964.9m3/s 待设计院最终确定),合计价格为1200万元。

方案二在初投资及年运行费用上具有一定优势。对于风机参数过高,可能造成炉膛瞬态压力急剧增大的事故,但通过炉膛负压自动控制系统可有效的防止此事故的发生,保证锅炉安全运行。

引风机型式选择

引风机输送的介质为含尘且温度较高的烟气,引风机的选用除考虑风机体积、重量、效率和调节性能外,还要求耐磨、对灰尘的适应性好,以便保证风机在周期之间能够安全稳定运行。

根据向成都风机厂和国电北仑厂及河南华能沁北电厂调研了解情况,采用引风机和增压风机合并时,动静可调轴流式风机和静叶可调轴流风机都能选出型号,从风机制造角度上不存在技术障碍,在关键部件进口的前提下可由国内风机厂制造,且在BMCR工况下风机的效率都很高。运行故障点少、经济效益好、减少了运行维护量,是电厂设计的必然趋势。

超超临界发电机组引风机小汽轮机驱动

当前,我国电力行业节能环保标准日趋提高,要求电厂的脱硫系统与机组同时建设同时投产,引风机与脱硫增压风机合并将成为必然的发展趋势。对于超临界及超超临界燃煤发电厂机组,引风机与脱硫增压风机合并后驱动功率将达到8000 ~ 10000kW。若采用常规的电动机驱动,电机容量增大后将带来厂用电的增加、启动电流过大导致厂用电电压短时过低等问题。

1.技术原理

采用小汽轮机代替电动机驱动引风机方案,通过对汽轮机驱动引风机方案的可行性、可靠性、工艺方案、控制方案、节能效益的研究,结合引风机的转速和功率要求,对凝汽式汽轮机配套技术特点进行研究,经过技术经济的分析比较,确定最佳替代电机驱动的方案。2.主要技术指标:

1) 厂用电率由联合风机前的4.22% 降低至3.10%;

2) 减少烟风道30米以上,烟道阻力明显降低,综合供电标煤耗降低0. 47~0.90g/ kWh。

3.技术应用情况:

该技术已于2010年12月在华能海门电厂3号机组投运,设备运行稳定可靠,运行参数达到设计要求,节能效果明显。目前,国内电力行业引风机汽轮机驱动技术已开始大量采用,北仑电厂7号机组(1000MW)于2011年5月改造后(电机驱动改为汽轮机驱动,背压)投运,6号机组计划于2012年l月进行改造;华能沁北电厂二期两台1000MW机组引风机汽轮机目前已安装完成已投运。

引风机采用小汽轮机驱动,可以大幅降低厂用电率,提高电厂的运行指标,增加发电量,节能效益显著;同时,能有效提高引风机在半负荷工况下运行的效率,使综合供电标煤耗降低0.47 ~ 0.90g/ kWh,并彻底消除大电机启动时启动电流对厂用电系统的影响。

4.典型用户及投资效益:

典型用户:华能海门电厂的机组

建设规模:火电1000MW机组。主要技改内容:引风机采用小汽轮机驱动,在系统上需要设置开式循环冷却水、凝汽器抽真空系统、小汽轮机进汽系统、凝结水回收系统、小汽轮机轴封系统、小汽轮机润滑油系统。相对应的设备有小汽轮机、凝汽器、凝结水泵、真空泵、汽封冷却器、润滑油供油装置等。节能技改投资额3350万元,建设期1年。每年可节能4829吨,节能经济效益年增加利润935万元,投资回收期3.6年。

5.结论

电动引风机与汽动引风机技术经济对比后各有优缺点,主要表现在以下几个方面:

1)采用电动引风机

优点:相对于采用汽动引风机,每台机组只需要建设两台电动机的基础,系统简单,现场运行维护相对简单,初投资较小。

缺点:需要耗用大量的厂用电,且电机启动时启动电流对厂用电系统有影响。

2)采用汽动引风机

优点:可以大幅降低厂用电率约 1.116%,降低供电标煤耗(0.47-0.90g/kW.h)并彻底消除大电机启动时启动电流对厂用电系统的影响。在考虑电网统一调度的基础上,每年可以增加售电量约52021363kW.h,采用汽轮机驱动增加的投资在电厂商业运行2.2年即可收回,经济性较好。

缺点:相对于采用电动引风机,每台机组需要建设两台汽轮机基础,及配套的凝汽器,凝结水泵、真空泵、轴封冷却器、排污泵等,并且因为增加了小机进汽系统、凝结水回收系统、冷却水系统、凝汽器抽真空系统、轴封系统、润滑油系统,系统更加复杂,运行维护工作量大,初投资较大。

根据上述分析,在考虑目前节能减排和节能调度的条件下,采用汽动驱动引风机可以大幅度减少厂用电率指标,增加上网电量,也可以避免大功率电动机启动的安全问题,推荐采用汽动驱动合并后的引风机。

电气运行技术问答

绥电B厂电气运行技术问答 发电机正常运行时,励磁回路之间有一定的绝缘电阻和分布电容,它们的大小与发电机转子的结构、冷却方式等因素有关。当转子绝缘损坏时,就可能引起励磁回路接地故障,发电机转子绕组的接地故障包括一点接地和两点接地。接地是指励磁绕组绝缘损坏或击穿而使励磁绕组导体与转子铁芯相接触。发电机转子一点接地是一种较为常见的不正常的运行状态。发生一点接地后,无电流流过故障点,不形成电流通路,无电流流过故障点,励磁电流仍保持正常,对发电机并无直接危害,但转子绕组对地已产生电压,当系统发生各种扰动时,电压可能出现较大值,极易造成另外一点接地,从而形成两点接地短路,即发生两点接地故障时会形成部分线圈短路,这是一种非常严重的短路事故。其后果是:⑴转子绕组的一部分短路,另一部分绕组的电流增加,转子磁场发生畸变,力矩不平衡,这就破坏了发电机气隙磁场的对称性,引起发电机的剧烈振动,同时无功出力降低。⑵故障点流过很大的短路电流,接地电弧将烧坏励磁绕组和转子本体. 接地电流有时还造成转子和汽轮机叶片等部件被磁化。⑶转子本体局部通过转子电流,引起局部发热,使转子发生缓慢变形,而造成偏心加剧机体震动。 1、邹县电厂真空严密性试验实际如何操作?是否停止真空泵? 答:邹县电厂真空严密性试验在机组负荷800MW运行稳定的情况下进行试验,试验时首先解除所有备用真空泵的联锁,然后停止真空泵运行,检查真空泵入口门联关,当所有真空泵停止后30s开始计时,以后每分钟记录一次真空值,记录8分钟。取后5分钟的真空记录值计算出真空平均下降速度。合格标准:0.133kpa/min优秀;0.266kpa/min良好;0.399kpa/min 合格。 2、轴加出口至凝结水贮水箱管路作用?

凝汽器高压水洗过程说明

#1机凝汽器高压清洗过程说明 国电范坪热电有限公司 2012年11月30

#1机凝汽器高压清洗过程说明 国电范坪热电有限公司一期工程为两台330MW燃煤汽轮发电机组。本汽轮机为上海汽轮机厂N330-16.67/537/537型亚临界一次中间再热、单轴、双缸双排汽、抽汽凝汽式热电联产汽轮机,为新型的亚临界、单轴、一次中间再热、双缸双排汽、抽汽、凝汽式汽轮机。凝汽器流程型式为双流程,总有效传热面积20530M2。其中#1 、2机组分别于2011年1月12日及1月31日通过168小时试运正式投产。#1机组自从投产后,凝汽器真空就比#2机组差1KPa 左右,在正式投运后的机组停运及小修期间中曾多次对机组真空系统进行查漏,均没有发现明显漏点,真空严密性试验结果均为合格。在近期利用机组调峰期间对凝汽器进行单侧隔离进行了高压水冲洗,现对近期参数对比及其它运行情况说明如下: 一近期胶球清洗情况

二近期#1,2号机真空对比

三.#1机组真空严密性试验(负荷250MW)

三、高压水清洗过程及清洗前后真空对比情况 2012.10.28#1机组凝结器A侧隔离 1)降低汽轮机负荷至50% 2)确认运行侧凝汽器循环水进、出口及抽空气门全开 3)缓慢关闭要隔离侧凝汽器抽空气门,注意真空 4)关闭凝汽器隔离侧循环水进水门真空变化及循环水压力变化 5) 开启要隔离侧凝汽器水室上部放空气门及水侧放水门 6) 对隔离侧凝汽器循环水进、出口电动门停电 7) 确认要隔离侧凝汽器水室无水,方可打开人孔门,注意真空变 8) 联系检修进行凝汽器A侧钢管高压清洗 2012.10.29#1机组凝汽器A侧恢复运行正常后,进行凝汽器B侧隔离联系检修进行凝汽器B侧钢管高压清洗 2012.10.30#1机组凝汽器B侧钢管清洗工作结束,恢复B侧运行,现将#1机组凝汽器高压水清洗前后同一工况真空对比如下 经#1机组凝汽器高压水清洗前后对比,真空无明显变化、

汽轮机试题集2(答案)

汽轮机试题集2(答案) C、凝结泵电源中断。) A、凝结泵故障; B、凝结泵汽化; C、凝结泵电源中断。2汽轮机凝汽器真空变化将引起凝汽器端差变化,一般情况当凝汽器真空升高时,端差()。 A 、增大; B、不变; C、减小; D、先增大后减小。(C)3,转子热弯曲是由于 C 而产生的。 A、转子受热过快 B、汽流换热不均 C、上、下缸温差 D、内、外缸温差4 引起流体流动时能量损失的主要原因是____C_____、 A 流体的压缩性 B 流体的膨胀性 C 流体的粘滞性5 汽轮机运行中发现凝结水泵电流增加、凝结水母管压力下降、凝结水流量下降,应判断为 (1)凝结水母管泄漏;2)凝结水泵入口滤网堵塞;3)凝结水泵漏空气; (4)备用凝结水泵倒转。(4)6 汽轮机凝汽器铜管管内结垢可造成

(4)(1)传热增强,管壁温度升高;(2)传热减弱,管壁温度降低;;(3)传热增强,管壁温度降低;(4)传热减弱,管壁温度升高。 27, 机组真空严密性试验时,真空的平均下降速度不应超过(A)。? A、400Pa/min; B、300 Pa/min; C、350 Pa/min; D、500 Pa/min8 , 在电厂中,三相母线的相序是用固定颜色表示的,规定用红色、绿色、黄色分别表示(A)相。 A 、 C、 B、A; B、 B、 C、 A、; C、 A、 C、B; D、 A、

B、C。9, 最易发生油膜振荡的轴承形式是 B 。 A、椭圆瓦轴承 B、圆柱瓦轴承 C、三油楔轴承 D、可倾瓦轴承10, 汽轮机热态起动时若出现负胀差主要原因是( B )。 A、冲转时蒸汽温度过高 B、冲转时主汽温度过低 C、暖机时间过长 D、暖机时间过短二 填空1 给水泵汽蚀的原因有 , (除氧器内部压力降低),( 除氧器水位过低); 给水泵长时间在(较小流量)或(空负荷下)运转;给水泵再循环门(误关或开得过小),给水泵打闷泵。2, 凝汽器水位升高,会使(凝结水过冷却)。影响凝汽器的(经济运行)。如果水位太高,将铜管(底部)浸没,将使整个凝汽器(冷却面积减少),严重时淹没空气管,使抽汽器抽水,(凝汽器真空下降)3, 油动机的两个重要技术指标是:( 提升力倍数) ;(油动机时间常数) 。对它们的要求分别是保证任何情况下(顺利开启调门)和(迅速关闭调门)、(防止超速) 。4, 如果转子惰走时间(急剧减小),则可能是 (轴瓦已磨损)或(发生动、静部分磨擦),如果转子(惰走时间增长),则可能是

火电厂锅炉引风机抢风的影响因素及解决措施探讨

火电厂锅炉引风机抢风的影响因素及解决措施探讨 引风机是锅炉烟风道系统中的重要组成部分,对于锅炉的高效运行具有重要的意义,进而影响到火电厂的经济效益。一旦引风机发生抢风现象,不仅会对系统内设备本身造成一定的损害,同时严重影响到锅炉的运行状态,甚至会引发安全事故,为火电厂的安全稳定运行带来巨大的威胁。文章对于影响火电厂锅炉引风机抢风的因素进行了分析,进而提出了解决的措施,对于提高锅炉引风机运行的稳定性具有重要的意义。 标签:火电厂;锅炉引风机;抢风;因素;解决措施 引风机是火电厂中的一种大型回转设备系统,其主要是依靠机械能提高气体压力并且排送气体,从而为烟风系统的高效运行提供充足的动力,对火电厂的高效生产创造了有利的条件。在引风机运行的过程中,由于烟囱的通风能力不佳、空气预热器堵塞、锅炉运行参数不达标以及其他设备的运行状态不正常等,都会导致引风机发生抢风现象,从而降低运行效率,并且对相关设备产生不利影响。经过调查分析,在大多数火电厂中的锅炉引风机都存在抢风现象,所以为了保证设备运行的稳定性和安全性,要对其影响因素进行分析,进而制定出完善的解决措施,降低引风机抢风现象的发生几率,为火电厂的高效运行创造有利的条件。 1 锅炉引风机发生抢风的常见因素 1.1 烟囱通风能力减弱 烟囱的通风能力对引风机的运行状态会有一定程度的影响,烟囱为竖向结构,所以通风能力由其自身产生,并且向上。在增压风机运行的过程中,所产生的压力会降低烟囱的通风能力,加之其自身也存在的一定的阻力,所以通风能力就会下降。在锅炉运行负荷以及排烟温度降低到一定程度时,整个管网的阻力会随之上升,而管网阻力的特性曲线受到破坏时,就会导致引风机发生抢风现象。 1.2 空气预热器出现阻塞 当引风机的出风管道偏离风机的工作区域时,其工作效率就会下降,进而影响到锅炉的出力状况,烟气在水平烟道中的流动速度会降低,长此以往,烟道中会积存大量的灰尘,从而造成空气预热器堵塞,导致引风机抢风。 1.3 锅炉运行参数与引风机设计参数不符 为了确保锅炉的正常运行,需要使用适宜的引风机,在各方面的参数一定要相符。如果引风机与锅炉运行的设计参数不匹配,引风机所选的型号越大,其所产生的风压以及风量就会越大,当供风量超出了锅炉所需的范围时,锅炉的烟风系统无法承受这种压力和风量,引风机的风速就会失控从而导致抢风现象。而在锅炉运行负荷较小时,处于并联状态的两台引风机和失速区的距离就会更接近,

凝汽器安装使用说明书

330MW汽轮机组 双流程凝汽器安装使用说明书 NC17A.80.01SY 2006年7月

一、设计数据 凝汽器压力: 5.2 KPa 凝汽量: 675 t/h 冷却水进口温度: 21℃ 冷却背率: 54 冷却水量: 36112 t/h 冷却水管内流速: 2.2 m/s 流程数: 2 清洁系数: 0.9 冷却面积: 螺旋管19000 m 2 冷却管数: 16112 根 冷却管长: 12410mm 二、对外接口规格 循环水入口管径: Φ1820 mm 循环水出口管径: Φ1820 mm 空气排出口管径: Φ273 mm 凝结水出口管径: Φ630 mm 三、凝汽器主要部件重量 凝汽器尺寸: 17338x8300x12960mm 无水凝汽器总重: 306 t 凝汽器运行时水重: 265 t 汽室中全部充水时水重: 700 t 管子重: 84.73 t 共 17 页 第 1 页 凝汽器安装使用说明书 N C 17A.80.01S Y 北 京 重型电机厂 实 施 批 准 编 制 校 对 审 核 标准化审查 图 样 标 记

水室比后水室高)。 管板与壳体通过一过渡段连接在一起,过渡段长为:300 mm(见图HR155.80.01.90-1、HR155.80.01.100-1)。 每块隔板下面用三根圆钢支撑,隔板与管子间用工字钢及一对斜铁连接,以便于调整隔板安装尺寸。隔板底部在同一平面上(见图NC17A.80.01-1)。隔板间用三根钢管连接,隔板边与壳体侧板相焊,每一列隔板用三根圆钢拉焊住,圆钢两端与管板过渡段相焊(见图HR155.80.01.01-1)。 壳体与热井通过垫板直接相连,热井分左右两半制造。在热井中有工字钢、支撑圆管加强,刚度很好。热井底板上开有三个方孔,与凝结水出口装置相连。 凝结水出口装置上部设有网格板,可防止杂物进入凝结水管道,也可防止人进入热井后从此掉下。 在空冷区上方设置挡板,阻止汽气混合物直接进入空冷区。空气挡板两边与隔板密封焊。每列管束在其中三块挡板上开有方孔,用三根方管拼联成抽气管,以抽出不凝结气体及空气(见图HR155.80.01.120-1)。 弧形半球形水室具有水流均匀、不易产生涡流、冷却水管充水合理、换热效果良好的特点。水室侧板用25mm厚的钢板,水室法兰用60 mm厚的16MnR,与管板和壳体螺栓连接,衬O型橡胶圈作密封垫,保证水室的密封性。前水室中设水室隔板及进出水管,其中进水管在下部,出水管在侧部。在水室上有人孔,以便检修。为防止检修时人不小心掉入循环水管,在进出水管加设了一道网板,网板由不锈钢组成,既可保证安全,又不增加水阻。水室上有放气口、排水孔、手孔以及温度、压力测点(见图HR155.80.01.15-1、HR155.80.01.95-1、HR155.80.01.105-1、HR155.80.01.200-1)。水室壁涂环氧保护层,并有牺牲阳极保护,牺牲阳极保护的安装位置参照(HR155.80.01.10-1)执行。 在凝汽器最上一排管子之上300 mm处设有8个真空测点,测量点是在两块间隔30 mm的板,从板中间的接头上引出φ14×3的管至接颈八个测真空处进行真空测量。 凝汽器热井位于汽机房下,装于弹簧和底板上(见图HR155.80.01.06-1)。弹簧根据汽机允许力进行设计,考虑到弹簧摩擦角产生的水平力,78个弹簧采用一半左旋一半右旋,以使力平衡。 为防止运行时凝汽器移动,造成凝汽器、低压缸不同心,对低压缸不利。热井底板上焊固定板,使底板与弹簧基础上埋入的钢板贴合,这样凝汽器只能上下移动(见图HR155.80.01.205-1)。 五、安装程序 (1)在底板(HR155.80.01.205-1序1 N17.80.01.416)定位后,在底板上安装弹簧支座板(HR68.80.01.39-1序1 N17.80.01.222)、弹簧,并调节弹簧位置,使处于标高之下。 (2)吊起凝汽器热井,安装热井底部的弹簧支座板(见图N17.80.01.111-1)

汽机运行技术试题

汽机运行技术试题 135MW机组汽轮机运行考题 姓名得分 1. 填空题(每空格1分) 1.1 135MW机组高、中压缸内主蒸汽是逆向流动的,即高中压缸是对称式布置的,低压缸为对称流式布置。 1.2 135MW机组共装有4 个高压调节汽门,有2 个高压自动主汽门。 1.3 135MW机组共装有2 个中压联合汽门,每个中压联合汽门由1 个中压主汽门和1 个中压调节汽门同装在一个壳体内,其动作是分开的,阀门结构是紧凑的。 1.4 135MW机组高压缸为双层缸结构,汽轮机共有3 个转子,都是整体锻造。 1.5 高压缸与前轴承箱采用工字梁联接,推力轴承布置在#2 轴承箱内。 1.6 推力轴承中有工作瓦和非工作瓦两种瓦块型式,当汽轮机转子推力盘紧靠工作瓦块时,轴向位移定位为零位。 1.7 给水泵的前置泵作用是提高给水泵入口压头,增加汽蚀余量。. 1.8 给水泵备用时,常采用倒暖的暖泵方式。 1.9 凝汽设备主要由凝汽器、真空泵、循泵等组成。 1.10 为保证凝结水质,凝汽器常采用表面式换热方式。 1.11 凝汽器端差指的是排汽温度与循环水出水之差。 1.12 循环水流量与排汽量之比称为循环水冷却倍率。 1.13 凝汽器排汽压力随着排汽量、循环水量、循环水温度的变化而变化的特性叫凝汽器的热力特性。 1.14 超高压以上的机组,高压缸一般作成窄式,以减少汽缸的内外壁温差,从而加快开机速度和缩短带负荷时间。 1.15 双层缸启机时,必须在汽缸夹层通入加热蒸汽,以防止出现较大胀差。 1.16 为控制上、下缸温差,减小热应力,启机时应控制升温升压速度。 1.17 一级旁路系统的作用是高压缸不进汽时维持再热器蒸汽流量,避免干烧。 1.18 机组冷态启机暖管的目的是充分疏水和减少热应力。 1.19 冷态开机,胀差多为正值,热态开机,胀差多为负值。 1.20 真空严密性试验时,真空下降速度大于466pa/min 时为不合格。 1.21 凝汽器铜管结垢时,端差会增加,循环水温升将减少。 1.22 循环水漏入凝汽器汽侧时,凝结水水位增加,过冷度增加。 1.23 机组通流部分结垢时,会使反动度增加,轴向推力增加。 1.24 润滑油MPa压低至0.07MPa 时联动交流润滑泵,低至0.04 MPa 时联动直流润滑泵,低至0.04 时停机,润滑油压低至0.03MPa 时连跳盘车。 1.25 机组轴向位移达到0.8或-1.0mm 时报警,达到1.0或-1.2mm 时停机。 1.26 我公司13.5万机组汽机型式为超高压中间再热。 1.27 我公司13.5万机组汽机高中压转子临界转速是1664rpm ,低压转子临界转速是2325rpm ,发电机转子临界转速是1285rpm 。 1.28 我公司13.5万KW机组汽机共有7 级抽汽加热器,其中#1低加加热器布置在凝汽器中,为混合加热器。

凝汽器清洗技术协议

湛江晨鸣浆纸有限公司 #5汽轮机凝汽器 高压水清洗技术协议 甲方:湛江晨鸣浆纸有限公司乙方:

凝汽器清洗技术协议 建设单位:湛江晨鸣浆纸有限公司(以下简称甲方) 施工单位:(以下简称乙方) 热电厂#5汽轮机凝汽器水侧换热管内部有泥垢,造成机组真空降低,影响运行经济性,经协商双方达成以下协议如下: 一、工作范围及要求 1.具体工作量: ①#5汽轮机1台凝汽器水侧不锈钢换热管。 ②#5汽轮机2台二次滤网。 ③设备具体参数表: 二、施工时间: 1、甲方根据检修进度、设备具备清洗条件提前2天通知乙方进厂。 2、乙方清洗设备的总工期要求1天完成。 三、技术要求: 凝汽器钢管清洗使用带自动旋转枪头的软管逐根进行清洗。 1、换热器管清洗完后应去除表面附着层,显露金属本色。 2、清洗水压应调整适当,不得损坏换热器管壁。 3、被泥沙等杂质堵塞严重的管道不得拿坚硬管条强行戳捅,以免损坏换热 管。 4、清洗换热管时不得有遗漏。 5、滤水器清洗滤网网孔、滤水器内壁泥垢。 6、机组设备在检修过程中如因乙方检修操作不当造成的设备损坏事故,乙 方应负全责,并应立即予以解决。 7、乙方工作结束必须清理现场干净,甲方认可后方可离厂。 四、配合工作要求 1、甲方负责提供压缩空气源、380V或220V动力电源、照明电源、水源、

工具场地。 2、乙方负责对所清洗设备检修孔、端盖的拆装工作。 3、容器内工作所需要的安全行灯等作业辅助工具由乙方自备。 4、乙方需制定安全作业操作规范,准备工作人员安全防护用品。 五、双方责任 1、甲方在该项目具备开工条件前2天通知乙方到厂进行准备工作,接受安 全培训,乙方对安全技术措施和施工方案负责。 2、进行此项工作所需的环保措施由乙方执行。 3、乙方安排一名现场联络人员,负责清洗过程中的工作联系、安全、质量 监督。 4、乙方负责组织施工,并根据甲方要求按期按质完成清洗工作。 5、乙方在施工中要注意安全,加强人员安全教育,施工中如出现人身伤亡 事故,造成的后果一切由乙方承担。 6、乙方负责现场的安全文明生产工作,及时清理泥浆、垃圾和水,做到文 明施工,工完场地清。 六、罚则 1、凝汽器水侧不锈钢管清洗使用软管逐根进行清洗,否则不予验收。 2、清洗枪头水流须从进水端推进至出水端,管道内壁全周清洗,否则不予 验收。 3、凝汽器钢管漏洗、欠洗占总管数的1%,罚款合同款的1%,以此类推。 七、其他: 1、本协议为合同附件,与合同具有同等的法律效力。 2、本协议一式2份,甲方1分,乙方1份。 3、协议未尽事宜双方协商决定。 甲方:湛江晨鸣浆纸有限公司乙方:有限公司签字:签字: 电话:电话: 日期:日期:

引风机抢风原因分析

关于我厂#2炉引风机抢风原因分析及个人处理意见 引言:近期我厂#2炉频繁出现引风机抢风现象,运行人员都根据轴流式风机的工作特性经精心调整后恢复正常,未发生事故.我在夜班期间应姚主任令,进行了一下分析.由于本人水平有限且不是当事人分析如下,仅供参考 一. 我查了一下最近四次引风机抢风前后工况如下表 二. 抢风现象 当两台引风机进入抢风区域后,风机电流大幅波动最大可达几十安,在把引风机出力调平过程中,多次出现两引风机出力互换,电流互换,工作点互换的情况,并伴随负压的波动.区别于#1炉引风机出现过的喘震,负压的波动没有周期性,应不属于共振.虽然抢风可以引起喘震,就以上四次现象分析,并未发生喘震. 三. 原因分析 1. 两台风机并列运行,风机的实际运行状态不仅取决于其本体的性能,还取决于整个管路的特性,风机的工作点即是风机性能曲线与风道特性曲线的交点.当风道的特性曲线与两台风机的合成性能曲线交于驼峰点后时,可形成稳定工况,若与性能曲线交于驼峰前,则进入抢风区,两个风机的工作点受到扰动就会互换. 2. 造成风机进入抢风区的最常见的原因就是风道的阻力系数增加,管路特性曲线变陡我厂风机在低负荷时发生抢风就属于这个原因 3. 我厂#2炉的空预器堵灰严重是造成管道阻力增加而抢风的重要原因.但我认为这几次引风机抢风的主要原因在于引风机后的烟道受阻即脱硫问题.原因如下: A. 此几次抢风均发生于脱硫旁路烟气挡板全关或正在关的状态下, B. 在引风机出口烟气压力不低于-300PA(31日三值早班)我将引风机开至接近各个抢风情况下的开度,未发生抢风现象.切通过调历史曲线抢风均发生于引风机出口烟气压力较低值 C. 由于空预器堵造成的空预器两侧二次风差压增加在低负荷较#1机约大0.2KPA,而次几次抢风前引风机出口压力值较正常高出约0.3KPA. 四. 防范措施 1. 加强脱硫管理,当旁路挡板全关,且#2炉处于低负荷时其增压风机的出力应保证不得使引风机出口负压低于一定值 2. 加强GGH管理防堵 3. 加强空预器吹灰 4. 利用停炉时间清洗空预器 5. 有些电厂对烟道进行改造,省煤器下设灰斗,定期放灰.布置我厂是否适合 6. 在此段时间若脱硫,空预器都无法满足要求,可以在低负荷降低风箱差压,来减少烟道阻力 五.结束语,综上是我对我厂#2炉引风机抢风原因分析及个人处理意见,希望领导能够对我的分析进行批评与指教 时间 3月29日04:16 3月30日06:01 3月29日00:48 3月28日22:46 抢风前稳定后抢风前稳定后抢风前稳定后抢风前稳定后 A引风机电流(A) 90 89 96 103 90 90 93 90 B引风机电流

汽轮机安装方案全解

目录 一、概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 二、编制依据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 三、施工准备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 四、汽轮机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 五、调节保安系统安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 六、发电机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 七、质量保证措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 八、安全文明施工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 九、环境保护措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 十、环境因素、危险辨识评价记录表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 一、概述

1、汽轮机主要技术参数 本汽轮机由洛阳中重发电设备有限责任公司制造,单缸、低压冲动空气冷却式汽轮机发电机,用于中广核青海太阳能热发电技术试验项目汽轮发电机组土建、安装及调试项目,以提供电力供应。 1.1主汽门前蒸汽参数及其允许变化范围: 正常: 2.6MPa/ 375℃ 最高: 2.8MPa/ 380℃ 最低: 2.4MPa/375℃ 1.2汽轮机额定功率:1500KW 1.3汽轮机额定转速:5600r/min 1.4汽轮机临界转速:3359r/min 1.5汽轮机旋转方向:顺气流方向看,汽轮机的转向为顺时针方向。 1.6排汽压力:在额定负荷时:(绝)0.015Mpa 1.7汽机本体主要件重量: 汽轮机全量25.1 t 转子 1.122 t 汽轮机上半重量(即检修时最大起重量): 3.1 t 1.8汽轮机本体外形尺寸(mm): 长×宽×高4451×3770×2715 1.9汽轮机中心高(距运转平台):1050mm。 2、调节系统参数 2.1 汽轮机在稳定负荷及连续运转情况下,转速变化的不均匀度为4.5+0.5%。 2.2 汽轮机调整器调速范围,能将正常运行转速作-4%--6%的改变。 2.3汽轮机突然抛全负荷时,最大升速不超过危急遮断器的动作转速。 2.4调节系统的迟缓率小于0.5% 。 2.5危急遮断器的动作转速6104~6216r/min,危急遮断器动作至主汽门关闭。 2.6汽轮机转子轴向位移小于0.7mm。 2.7润滑系统油压力0.0588~0.0784MPa。 3、汽机结构说明

汽轮机技术问答基础知识

汽轮机技术问答基础知识 汽轮机技术问答顾名思义就是带大家了解一些汽轮机技术上的问题,例如常见的故障、常见问题等,下面就随变宝网小编一起了解下汽轮机遇问题后如果解决吧! 在汽轮机运行过程中,汽轮机渗漏和汽缸变形是最为常见的设备问题,汽缸结合面的严密性直接影响机组的安全经济运行,检修研刮汽缸的结合面,使其达到严密,是汽缸检修的重要工作,在处理结合面漏汽的过程中,要仔细分析形成的原因,根据变形的程度和间隙的大小,可以综合的运用各种方法,以达到结合面严密的要求。 汽缸漏气原因 1.汽缸是铸造而成的,汽缸出厂后都要经过时效处理,就是要存放一些时间,使汽缸在住铸造过程中所产生的内应力完全消除。如果时效时间短,那么加工好的汽缸在以后的运行中还会变形,这就是为什么有的汽缸在第一次泄漏处理后还会在以后的运行中还有漏汽发生。因为汽缸还在不断的变形。 2.汽缸在运行时受力的情况很复杂,除了受汽缸内外气体的压力差和装在其中的各零部件的重量等静载荷外,还要承受蒸汽流出静叶时对静止部分的反作用力,以及各种连接管道冷热状态下对汽缸的作用力,在这些力的相互作用下,汽缸发生塑性变形造成泄漏。 3.汽缸的负荷增减过快,特别是快速的启动、停机和工况变化时温度变化大、暖缸的方式不正确、停机检修时打开保温层过早等,在汽缸中和法兰上产生很大的热应力和热变形。 4.汽缸在机械加工的过程中或经过补焊后产生了应力,但没有对汽缸进行回火处理加以消除,致使汽缸存在较大的残余应力,在运行中产生永久的变形。

5.在安装或检修的过程中,由于检修工艺和检修技术的原因,使内缸、汽缸隔板、隔板套及汽封套的膨胀间隙不合适,或是挂耳压板的膨胀间隙不合适,运行后产生巨大的膨胀力使汽缸变形。 6.使用的汽缸密封剂质量不好、杂质过多或是型号不对;汽缸密封剂内若有坚硬的杂质颗粒就会使密封面难以紧密的结合。 7.汽缸螺栓的紧力不足或是螺栓的材质不合格。汽缸结合面的严密性主要靠螺栓的紧力来实现的。机组的起停或是增减负荷时产生的热应力和高温会造成螺栓的应力松弛,如果应力不足,螺栓的预紧力就会逐渐减小。如果汽缸的螺栓材质不好,螺栓在长时间的运行当中,在热应力和汽缸膨胀力的作用下被拉长,发生塑性变形或断裂,紧力就会不足,使汽缸发生泄漏的现象。 8.汽缸螺栓紧固的顺序不正确。一般的汽缸螺栓在紧固时是从中间向两边同时紧固,也就是从垂弧最大处或是受力变形最大的地方紧固,这样就会把变形最大的处的间隙向汽缸前后的自由端转移,最后间隙渐渐消失。如果是从两边向中间紧,间隙就会集中于中部,汽缸结合面形成弓型间隙,引起蒸汽泄漏。

凝汽器化学清洗高压水射流清洗施工技术方案及凝汽器清洗规程

凝汽器化学清洗高压水射流清洗施工技术方案及凝汽器 清洗规程 1

凝汽器化学清洗施工技术方案及凝汽器高压水射流清洗规程 摘要:凝汽器化学清洗(高压水射流清洗)技术方案编写内容从 凝汽器化学清洗(高压水射流清洗)编制的依据、凝汽器结垢成 因、凝汽器化学清洗(高压水射流清洗)的必要性、不锈钢凝汽器 化学清洗应该注意的有关问题、凝汽器化学清洗(高压水射流清洗) 系统的建立、凝汽器化学清洗(高压水射流清洗)安全文明施工管 理安全措施等八个方面展开。 目录 1、凝汽器化学清洗(高压水射流清洗)本方案编制的依据 (2) 2、结垢成因 (4) 3、化学清洗的必要性 (6) 4、不锈钢凝汽器清洗应该注意的有关问题 (7) 5、凝汽器化学清洗(高压水射流清洗)系统的建立 (8) 6、凝汽器化学清洗(高压水射流清洗)质量管理措施、目标 (9) 7、凝汽器化学清洗(高压水射流清洗)安全文明施工管理安全措施 (11) 8.凝汽器化学清洗(高压水射流清洗)资质 (12)

9、凝汽器化学清洗(高压水射流清洗)业绩展示 (11) 1、凝汽器化学清洗(高压水射流清洗)本方案编制的依据 1.1 DL/T957- 《火力发电厂凝汽器化学清洗(高压水射流清洗)及成膜导则》 1.2 GB/T25146- 《工业设备化学清洗质量验收标准》 1.3 HG/T2387- 《工业设备化学清洗质量标准》 1.4欣格瑞(山东)环境科技有限公司《工业设备高压水清洗施工方案制定方法》 1.5 GB8978-1996《污水综合排放标准》 1.6《火力发电厂基本建设工程启动及竣工验收规程实施办法》(1996年)

探讨电厂锅炉引风机抢风问题

探讨电厂锅炉引风机抢风问题 作为火电厂的重要设备之一,引风机影响着烟风系统的正常运行,也影响着整个火电厂的正 常运行。随着相关技术的发展,现阶段国内火电厂通常采用两台以及两台以上引风机并行工 作的方式保障火电厂的正常运行,这种方式可以确保在一台引风机出现故障时另一台引风机 可以维持火电厂的运行。在实际运行过程中,作为火电厂发电机组的重要辅助设备,引风机 的实际运行状况不但取决于自身的性能,还受到整个火电厂管路性能的影响。常见的火电厂 引风机抢风问题主要有:锅炉运行参数和引风机设计参数不符合、火电厂脱硫系统没有正常 运行、空气预热器堵塞、锅炉烟道漏风、锅炉负荷较大、烟囱排风能力较差,下文对这些问 题进行相应的分析和探讨。 1 电厂锅炉引风机抢风问题原因分析 1.1 锅炉运行参数和引风机设计参数有偏差 在火电厂实际运行过程中,如果锅炉配备的引风机选型太大,会产生较大的风量和风压,在 不能和锅炉烟风系统正常匹配的情况下,会发生风机失速、抢风故障。在采用并行工作的两 台引风机处于小负荷工作状态时,就会导致引风机的工作点接近于失速区,一旦工作情况发 生变化,就会出现引风机抢风故障。 1.2 火电厂脱硫系统出现不正常运行状况 在实际火电厂运行过程中,如果相应的脱硫系统可以正常运行,在增压风机运行的情况下可 以减缓脱硫系统运行增加的阻力,在这种状况下,增风压机和锅炉引风机会串联在一起运行,共同发挥相应的作用,但是当增风压机产生的力比整个脱硫系统产生阻力时,就会导致增压 风机作用于引风机。当增风压机产生的力比整个脱硫系统产生阻力小时,就会导致引风机作 用于增压风机。因此,在整个脱硫系统产生阻力和增压风机产生力存在一定偏差时,会形成 一定的作用力,尤其是在脱硫系统阻力大于增压风机产生力时,会导致相应的管网阻力增大 从而发生引风机抢风故障的发生。 1.3 空气预热器堵塞 在实际运行过程中,如果空气预热器发生堵塞状况,将会导致引风管道系统的出力特性和风 机工作区产生一定的偏差,就会导致引风机抢风状况的发生。在引风机由于空气预热器故障 发生抢风现象之后,锅炉引风机的处理工作就会发生一定的平衡失调,导致引风机工作效率 大大下降,致使锅炉出力受到严重的影响,从而致使水平烟道烟气流速降低,在长期的这种 运行状况下,就会导致烟道内发生飞灰沉积现象。 锅炉本体、尾部烟道出现漏风 在锅炉本体或者尾部烟道出现漏风情况时,会导致烟气体积发生增大现象,致使烟气流动速 度逐渐加快。随着运行,炉膛内部温度也会逐渐降低,导致相应的燃料无法充分燃烧,导致 烟道尾部的受热面出现堵灰故障,导致管网阻力会逐渐增大,引风机的运行工况点会逐渐进 入非稳定的工作区域,导致引风机抢风故障的发生。 1.4 锅炉负荷不稳定或煤种偏离 在处于低负荷运行状况时,锅炉内负荷会发生比较大的幅度波动,或者实际运行燃烧的煤种 与设计运行存在较大的偏差时,尤其是实际煤种存在较多灰分、硫分时,在实际燃烧过程中 就会导致烟气中含有过量的铁离子和硫酸盐,导致烟道系统中空气预热器和省煤器等设备出 现结渣堵灰情况,从而导致管网阻力逐渐增大,如果相应的设备长期处于这种状况,就会导 致管网阻力特性曲线发生破坏,导致引风机出现抢风故障。

汽轮机运行复习思考题答案

汽轮机运行部分复习思考题 一、填空题 1.冷态启动过程中,汽缸内壁受到 热压 应力,外壁受到 热拉 应力,且内壁的热应力为外壁的热应力的 两倍 2.由于法兰内外壁温差使法兰在水平面上产生热弯曲,从而使汽缸中部形成。 立 椭圆形,其法兰结合面出现 内张口 3.按启动时新蒸汽参数不同汽轮机启动方式可分为。 额定参数启动 和4.冷态启动汽轮机转子的外表面受到 滑参数启动 热压 应力作用,转子的中心孔受到 热拉 应力作用,稳定工况时热应力 为零 5.汽轮机启动过程中,按冲转时进汽方式不同可以分为。 高中压缸 启动和 中压缸 6.启动。 在第一调节汽门全开而第二调节汽门尚未开启的工况,此时调节级焓降达到了最大,流经第一喷嘴组的流量也达到了最大。此时位于第一喷嘴组后的调节级动叶的应力达到了最大7.当转子轴向膨胀量大于汽缸轴向膨胀量时,胀差为是调节级的危险工况。 正 ,汽轮机在启动及加负荷时,胀差为 正 8.如果惰走时间过长,则可能是; 有外界蒸汽漏入汽轮机,比如蒸汽或再热蒸汽管道阀门或抽汽逆止门不严,致使有压力蒸汽漏入汽缸等 9.在启停过程中上下汽缸存在温差,引起汽缸。 向上拱起 。称为 拱背 变形,汽缸的最大拱起也出现在 调节级区域内 10.影响汽轮机寿命的因素有。 高温蠕变损耗 和 低频疲劳损伤 11.通常汽轮机在启动和加负荷过程中,转子温升比汽缸温升; 快 ,因而胀差值为 正 12.汽轮机启动过程中,蒸汽热量以; 对流方式传给汽缸内壁,热量从汽缸内壁以 导热 13.若凝汽器真空降低且凝结水过冷度增大,说明方式传给外壁; 真空不严密、存在漏气 ,若仅凝汽器真空降低而凝结水过冷度不变,则说明 循环水量可能不足、或管道脏污等 14.当汽轮机受到 。 热冲击 时;对汽缸壁的加热急剧,汽缸壁内温度分布为 双曲线 15.“拱背”变形指的是型,温差大部分集中在内壁一侧, 在启停过程中上下汽缸存在温差,上缸温度高于下缸温度。上汽缸温度高、热膨胀大,下汽缸温度低、热膨胀小,引起汽缸向上拱起 二、选择题 。 1.启动时转子表面产生( A )应力。 (A)热压 (B)热拉 (C)/ (D)/ 2.汽轮机转子的最大弯曲部位在( A )附近。 (A)调节级 (B)中间段 (C)低压段 (D)/ 3.汽轮机启动过程中,汽缸和法兰内壁温度( B )外壁温度,热变形使得汽缸中部截面形成( )。 (A)高于、横椭圆 (B)高于、立椭圆 (C)低于、横椭圆 (D)低于、立椭圆 4.额定参数启动通过节流阀的节流损失( B ),调节级后蒸汽温度变化( )。 (A)大、小 (B)大、大 (C)小、大 (D)小、小 5.转子冲转前,真空过低会增大( B ),真空过高使得( )不易控制。

电厂凝汽器清洗的方法

电厂凝汽器清洗的方法凝汽器是热力发电厂生产中的主要辅机之一,它既可以在排汽部分建立和保持背压,提高机组的出力和效率,又可回收大量的凝结水供给锅炉。机组运行时间较长,凝汽器铜管内积结了大量的碳酸盐水垢,垢厚达1~2mm,严重影响了传热效果。为了保障机组的运行效率,需要定期清洗凝汽器铜管内表面的沉积物,其方法大多采用机械清洗和化学清洗。采用胶球清洗的方法,但因胶球的回收率不高而未被继续采用。目前采用的机械清洗法,只能清除黏结力不强的泥沙和部分水垢,不仅劳动强度大、对铜管的机械损伤较严重,而且没有除尽的老垢又作为晶核,加快了结垢速度;多数化学清洗法使用的清洗剂对铜管有明显地腐蚀,使凝汽器清洗后产生了大量的漏管现象。为此,针对凝汽器用材特点及上述问题,我公司研制开发了火电厂汽轮机凝汽器清洗剂,具有清洗速

度快,除垢彻底、腐蚀率低等特点。经现场使用证明:该产品对凝汽器具有优良的清洗和缓蚀效果,使用十年以上的旧设备经清洗后没有出现大量漏管现象,且各项性能均优于目前采用的盐酸和硝酸清洗工艺。 二理化指标 项目指标项目指标 状态固体粉沫可燃性不燃不爆 颜色白色或浅红色清洗性能优良 气味无味缓蚀性能良好 密度>1.5 毒性无毒 三技术特点 本品有除垢剂、缓蚀剂、促进剂、掩蔽剂、抑雾剂、表面活性剂等多种物质组成的有机酸系列清洗剂。实践证明,本技术具有除垢效率高、清洗速度快,对金属基体腐蚀小,在清洗过程中对金属有钝化作用,因此没有脱锌和过洗现象出现,清洗完成后钝化膜致密完整。本产品不含有毒有害物质,因此使用安全、废液无污染、安全环保,使用方法简便

易于掌握。该产品的推广应用为凝汽器安全高效运行提供了保证。 四使用方法 1、化学清洗前的准备工作: 断开与凝汽器无关的其它系统,开启凝汽器水侧高点放空阀和蒸汽侧低点导淋阀,以保证清洗过程中反应产生的大量气体能够及时排放和清洗液的充满度;同时通过导淋阀监测清洗过程中凝汽器铜管的泄漏情况;为了监测系统的清洗效果及清洗过程中设备的腐蚀情况,在清洗施工前,将相当于设备材质的标准腐蚀试片、监测管段分别悬挂于凝汽器内和清洗槽中。 2、化学清洗流程: 试压→水冲洗→酸洗除垢→水冲洗→钝化预膜 2.1 试压 试压的目的是为了在模拟状态下对清洗系统的泄漏情况进行检查。 2.2 水冲洗 水冲洗的目的是清除设备内松散的污

引风机抢风预防措施及处理

引风机抢风预防措施及处理 一、针对近期频繁发生引风机抢风,分析有以下原因: 1、风机挡板开度落入风机特性曲线造成风机进入不稳定区域。 引风机在档板35%~70%范围内较稳定; 2、引风机叶轮磨损严重使风机特性曲线改变造成抢风; 3、引风机入口两侧压力偏差大(包括除尘器、空预器阻力偏差大),造成风机出力不均匀而抢风; 4、当除尘器差压大时,除尘器喷吹突然加快时或烟道负压突然发生变化,容易发生抢风; 5、当炉膛负压较小、除尘器差压大时,空预器吹灰、炉膛吹灰时,极易发生引风机抢风; 二、根据以上原因,制定防范措施如下: 1、 加强引风机控制 1) 引风机操作要缓慢进行,保持两台引风机电流同步。

2) 引风机尽可能在35%~70%区间运行,如果负荷高,#1炉引风机开度70%不能满足炉膛负压需要时,#2炉引风机电流达到248A不能满足炉膛负压需要时,要汇报值长要求降低负荷运行; 3) 在负荷低限时,一次风压保持到#1炉8.7Kpa左右,#2炉维持密封风压在15KPa以上,尽可能降低一次风压,#1、2炉都要保证磨组风量在40T/h以上,在推力瓦温度小于70℃前提下, 出口温度尽力在75~85℃,不得发生堵磨现象。 2、 AGC指令升负荷20MW以上时,集控监盘人员要第一时间通知除尘运行人员,将布袋除尘器差压降低,防止除尘值班员在没有准备的情况下负荷突涨,不能及时增加喷吹频率使除尘器差压升高和输灰不及时造成灰位高形成布袋除尘器二次扬尘; 3、 每班必须对空预器进行两次吹灰。#1炉空预器差压达到850Pa,#2炉空预器差压达到750Pa增加空预器吹灰次数,如果无法降低空预器差压,汇报值长通知专工。 4、 炉膛吹灰要求负荷在220MW以上并且在300MW以下必须在早班完

汽轮机安装施工方案

汽轮机工艺安装施工方案 姓名: 班级: 指导老师:

目录 一、编制说明..................................................................... 错误!未定义书签。 二、工程概况..................................................................... 错误!未定义书签。 三、汽轮机的基本工作原理 (9) 四、汽轮机安装施工工序 (10) 五、施工进度计划 (29) 六、主要劳动力和机具计划 (29) 七、质量保障措施 (30) 八、安全措施 (30) 九、质量管理目标 (32)

一、编制说明: 本施工方案主要针对汽轮机组的安装而编制,编制依据如下: 1.制造厂提供的本体图纸及说明书; 2.<电力建设施工及验收技术规范—汽轮机组篇>(DL5011-92)3.<机械设备安装工程施工及验收通用规范> (CB 50231-98)。 二、工程概况: 1.工程简介: 建设单位青岛金海热电有限公司位于山东省青岛市城阳区,为区内唯一一家热电联产企业。锅炉制造厂家为无锡华光锅炉股份有限公司,一期工程的第一阶段主要由两台UG—75/5.3—M26型循环硫化床锅炉及C12—4.90/0.98-13型抽汽式汽轮机组构成. 2.主要工程量:

3.汽轮机结构、性能及主要参数: C12—4.90/0.981-13型汽轮机为抽汽式,功率12MW,与QF—J6—2型发电机组成汽轮机发电机组。 1).结构及性能: 汽轮机转子由一级复速级和十三级压力级组成,除末两级叶片为扭叶片外,其余压力级叶片均为新型直叶片。其中第四级压力级采用可调通流面积的旋转隔板结构。 转向导叶环在顶部和底部与汽缸之间采用“工”形键固定,在拆导叶环体时必须先拆去“工”形键后方可起吊。 装于前汽缸上端蒸气室内的配汽机构是提板式调节汽阀,借助机械杠杆与调速器油动机相连,调节汽阀的结构为群阀提板式,由六只汽门组成。在汽轮机前轴承座的前端装有测速装置,在座内有油泵组,危急遮断装置,轴向位移发送器,推力轴承前轴承及调节系统的一些有关部套。前轴承座与前汽缸用“猫爪”相连,在横向和垂直方向均有定位的膨胀滑键,以保证轴承座在膨胀时中心不致变动。在前座架上装有热胀传感器,以反映汽轮机静子部分的热膨胀情况。 汽轮机通过一副刚性联轴器与发电机相连,转子盘车装置装于后轴承盖上,由电动机驱动,通过涡轮蜗杆副及齿轮减速达到所需要的盘车速度。当转子的转速高于盘车速度时,盘车装置能自动退出工作位置。在无电源

[全]汽轮机运行-技术问答(论述题)

汽轮机运行-技术问答(论述题) 1.在什么情况下应紧急故障停机? 在下列况下应紧急故障停机: (1)汽轮发电机组任一轴承振动达紧急停机值。 (2)汽轮发电机组内部有明显的金属摩擦声和撞击声。 (3)汽轮机发生水冲击,或主、再热蒸汽温度10min内急剧下降50℃。 (4)汽轮发电机组任一轴承断油、冒烟或轴承回油温度突然上升至紧急停机值。 (5)轴封内冒火花。 (6)汽轮机油系统着火,不能很快扑灭,严重威胁机组安全运行。 (7)发电机或励磁机冒烟着火或氢系统发生爆炸。 (8)汽轮机转速升高到危急保安器动作转速(3330r/min)而危急保安器未动作。 (9)汽轮机任一轴承金属温度升高至紧急停机值。 (10)润滑油压力下降至紧急停机值,虽经启动交直流润滑油泵仍无效。 (11)汽轮机主油箱油位突降至紧急停机值,虽加油仍无法恢复。 (12)汽轮机轴向位移达紧急停机值。 (13)汽轮机胀差达紧急停机值。 2.叙述紧急停机的主要操作步骤。 破环真空、紧急停机的主要操作步骤是: (1)手打“危急遮断器”或按“紧急停机”按钮,确认高、中压自动主汽门、调速门、高排逆止门、各级抽汽逆止门关闭,负荷到零。 (2)发电机逆功率保护动作,机组解列。注意机组转速应下降。 (3)启动交流润滑油泵、检查润滑油压力正常。 (4)解除真空泵连锁,停真空泵,开凝汽器真空破坏阀。 (5)检查高、低压旁路是否动作,若已打开应立即手动关闭。 (6)手动关闭主、再热蒸汽管道上的疏水阀。检查并启动电泵运行正常。

(7)检查小汽轮机A、B应跳闸。 (8)检查并调整凝汽器、除氧器水位维持在正常范围。 (9)检查低压缸喷水阀自动打开。 (10)开启汽机中、低压疏水。 (11)根据凝汽器真空情况及时调整轴封压力。 (12)在转速下降的同时,进行全面检查,仔细倾听机内声音。 (13)启动顶轴油泵,待转速到零,投入连续盘车,记录惰走时间及转子偏心度。 (14)完成正常停机的其它有关操作。 3.叙述汽轮机发生水冲击的现象及运行处理原则。 现象: (1)主蒸汽或再热蒸汽温度直线下降。 (2)蒸汽管道有强烈的水冲击声或振动 (3)主汽门、调速汽门的门杆、法兰、轴封处冒白汽或溅出水滴。 (4)负荷下降,机组声音异常,振动加大。 (5)轴向位移增大,推力轴承金属温度升高,胀差减小。 (6)汽机上、下缸金属温差增大或报警。 处理原则: (1)机组发生水冲击,应按破坏真空紧急停机处理。 (2)注意汽机本体及有关蒸汽管道疏水门应开启。 (3)注意监视轴向位移、胀差、推力轴承金属温度、振动等参数。 (4)仔细倾听汽轮发电机内部声音,准确记录惰走时间。 (5)如因加热器、除氧器满水引起汽机进水,应立即关闭其抽汽电动门,解列故障加热器并加强放水。 (6)若汽轮机进水,使高、中压缸各上、下金属温差超标时,应立即破坏真空,紧急停机。 (7)汽机转速到零后,立即投入连续盘车。

相关文档
最新文档