基于Hyperworks的客车建模及侧翻分析

基于Hyperworks的客车建模及侧翻分析
基于Hyperworks的客车建模及侧翻分析

基于Hyperworks的客车建模及侧翻分析

火进梁耕龙张国滨

北京汽车新能源汽车有限公司北京102606

摘要:首先通过HyperMesh建立了客车的有限元分析模型,然后应用OptiStruct进行了多工况下的强度和刚度分析;并在HyperWorks提供的模板下进行了侧翻模型设置;分析计算结果表明,该款大客车骨架及上部结构强度、刚度均满足国标要求;分析过程也充分体现HyperWorks在汽车设计中能够提供高效解决方案的功能。

关键词:HyperMesh,OptiStruct,客车,侧翻

0 概述

客车作为最主要的交通运输工具之一,其结构强度刚度是否满足安全需要一直是人们关注的焦点;客车由于制造成本高,价格昂贵,所以用实车做物理试验相比轿车需要更高的成本和更长的周期,从而,在客车设计过程中CAE技术的应用就优势更加凸现。

1 有限元建模

客车结构多采用异性钢管和薄壁板壳结构焊接而成,所以在建模过程中主体结构采用四边形网格,此外,部分底盘结构采用了带有不同截面属性的梁单元来模拟,以提高计算效率。共有单元674,056个,其中壳体单元640,545个;带有截面属性的梁单元192个;模型如图一所示。

图1:HyperMesh划分的大客车整车网格模型

2 模型设置

2.1 材料特性定义

HyperWorks具有非常友好的用户界面,从网格划分到模型设置均为用户提供了便利,可以很方便地直接选择材料类型并将参数输入。以普通弹性钢材料为例,输入格式如下:

2.2 属性定义

单元属性的定义也有着丰富的类型可供选择,以壳体单元为例:

可供选择的单元类型如下:其中客车板壳件模拟用壳体单元类型,选用2D即可。打开编辑选项后,定义板壳厚度即可。

2.3 连接方式

由于客车结构的特殊性,在建模过程中,焊接接头的处理和近似方法就显得很重要;通常采用节点匹配模拟接头连接、rigids单元模拟并管焊缝,用CBEAM单元模拟普通螺栓连接等。

图2:焊接接头简化方法

2.4 载荷工况定义

为校核客车骨架强度刚度,应用Optistruct进行了四工况下的静力分析;为考察客车上部结构强度,应用Hyperworks提供的强大接口和友好界面,设置了第三方求解器求解模型,以考察客车在发生侧翻时生存空间是否被侵入。

2.4.1静力分析工况设置

应用了四个载荷步模拟客车在静止或行使过程中可能遇到的工况:(1)制动工况用于模拟客车在满载行驶时紧急制动的工况;(2)转弯工况用于模拟客车在满载转弯时的工况;(3)弯曲工况用于模拟客车在满载匀速行驶或者停止时的工况;(4)扭转工况用于模拟满载客车在崎岖不平的道路行驶时的工况。其中扭转工况是比较恶劣的工况,模拟客车在行驶时左前轮陷入凹坑的工况。

2.4.2侧翻分析工况设置

2.4.2.1 客车侧翻试验方法

根据国标GB/T 17578规定的试验方法图(三)所示:被试客车可以未全部完工,但整车整备质量、质心位置和质量分布应符合该车技术要求的规定。客车停放在一个水平的翻转平台上,采取措施防止客车纵向滑移,试验装置采用侧向挡壁防止车轮侧向滑移,试验装置应确保客车各轴的同步侧倾,客车在没有摇晃和不受其他外力影响的情况下侧倾直至翻倒。侧倾角速度不应超过5°/s(0.087rad/s);采用高速摄影、变形规或其他适宜的装置来确认要求是否得到满足。

图3: 客车侧翻试验示意图

2.4.2.2 生存空间确定

汽车的上部结构应具有足够的强度,以确保在整车的侧翻试验过程中和试验后生存空间没有受到损害。这是指:(1)在测试开始时在生存空间之外的其他汽车的零件(如立柱、吊环、行李架等),在测试过程中不得侵占生存空间。在对生存空间被侵占进行评估时,任何原先位于生存空间中的结构部件均应不计入(如垂直扶手、隔板、小厨房和卫生间等)。(2)生存空间的零件不能突出到变形结构的轮廓外,变形结构的轮廓线应在相邻的窗户和(或)门立柱间依次确定。两个变形立柱之间的轮廓线理论上应是一个平面,由立柱内部相关点相连接的直线确定,侧翻试验前这些点应在地板上处于同一高度。生存空间的确定方法如图(四)所示:

图4: 座位客车生存空间示意图

2.4.2.3 侧翻模型设置

根据法规试验方法及对生存空间的要求,设置了侧翻分析模型;由于客车在触地之前对于上部结构强度没有任何损伤,为了节省计算成本,侧翻分析从触地瞬间开始计算;根据能量守恒定律换算出触地时的初始速度,在Hypermesh中定义该初速度,并将地面假定为刚性。

图5:客车侧翻模型设置

3 结果及后处理

3.1 客车骨架静力分析结果

计算结果用Hyperview进行处理,四工况下应力分别如表(一)所示,从表中可以看出前三个工况下应力都比较小,第四个工况及扭转工况下应力较大,因为扭转工况为极端恶劣工况,正常行驶中较为少见。

表1:静力分析结果

3.2 客车侧翻分析计算结果

分析计算表明,该客车发生侧翻后发生了变形,但变形较小,生存空间没有被侵入,也没有零部件发生撕裂出现尖角等现象,侧翻变形后的应力云图如图(六)所示。

图6:客车侧翻分析计算结果 4 结论

静力分析结果表明,该款客车车身及车架骨架具有足够的强度和刚度;侧翻分析结果表明,该客车上部结构强度也达到国标设计要求,乘员生存空间没有被

侵入,也未发生零部件撕裂等现象;并且强度和刚度均有较大的优化设计空间,

动载系数

最大许用应力(Mp) 计算最大应力(Mp) 出现位置

制动工况 1.5 223 166 车架后部 转弯工况 1.2 271 180 车架后部 弯曲工况 2.5 130 125 车架中部 扭转工况 1.3

250

234

车架前部

主要是这种全承载式客车具有承载能力强结构坚固的特点所确定,后续工作可通过Optistruct对其进行结构轻量化设计。将进一步体现CAE 分析在设计校核和优化中周期短、成本低、改进方案灵活、见效快的优势。也充分体现了Altair公司多元化的CAE产品库为车企提供了丰富的解决方案。

Bus Modeling and Side Turn Analysis Based on HyperWorks

Huo Jin Liang Genglong Zhang Guobin

Abstract:A bus FEA model was created by Hypermesh software, and strength and stiffness of the bus was analyzed by Optistruct; At the same time, the bus roll model was setup in the amity interface of Hyperworks and launched by collision software. The results show that the strength and stiffness of the bus is enough. Apparently, the analysis process also reflect fully that Hyperworks can provide more effective solution to vehicle design.

Key words:Hypermesh Optistruct Bus roll

hyperworks接触分析1

在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm,而单元的尺寸为3~4mm,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh划分网格后的模型。 图1 实体模型图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

汽车侧翻分析

汽车侧翻分析在汽车行驶中中,侧翻是其中一种最为严重并且威胁成员安全的事故。侧翻可以定义为能够使车辆绕其纵轴旋转90度或更多以至于车身同地面接触的任何一种操纵。侧翻可以由一个或一系列综合因素产生。它可以发生在平直的水平地面上,并且车辆的侧向加速度达到一定的数值,该数值要超过车辆侧面重量转移到车轮上所抵消的加速度值。 通过有坡度的路面(或无路情况)时由于不平路面的冲击,地面松软或其他障碍物会促使侧向压力提高从而使车辆“失足”。 侧翻过程是一个包括作用在车辆上和车辆里的力的相互作用的复杂过程。侧翻受操纵和高速公路的影响。人们已经通过理论分析以及包括一系列复杂设备的模型实验研究侧翻过程。这个过程很容易通过静态基本结构实验来理解(忽略惯性和滚动平面上的加速度),并且促进发展更加复杂的模型。 1、刚性汽车的准静态侧翻 汽车侧翻的最基本的机械特性可以通过考查转弯过程中稳定车身的受 力均衡性来了解。稳定的车辆是 指悬架和轮胎的偏置在分析中被 忽略掉。在转弯操纵中,侧向力 作用在地面上来平衡作用在汽车 重心上的侧向加速度,如图9-2 所示。侧向力作用在车辆上的位 置的不同产生一个力矩,该力矩

使车辆向如图所示的外侧侧翻. 为了分析转动情况,假定汽车在稳定状态以使汽车没有滚动加速度,并且使轮胎如图所示受力(前轮和后轮)。在很多公路环境中,它也适合考虑横向坡度。如大家所知的坡度和道路转弯处汽车外侧比内侧高出的程度。在分析中,将角度表示为”?”,想左下的 坡度表示正角。这个方向的坡度有助于 平衡侧向加速度。斜坡角度通常情况下很小,而且角度很小时约有()1cos ,sin ==???。以汽车接地点为中心的力矩关系为: 02=-+-t zi y Mg t F Mh h Ma ? (9-1) 从式(9-1)我们可以得出a y : h t Mg F h t g a zi y -+=?2 (9-2) 在水平路面上(0=?),没有侧向加速度,方程也成立。此时,内侧车轮载重,F zi ,是车总重的一半。另外通过正确选择坡面角度,可以使F zi 保持在具有侧向加速度的汽车重量的一半.,即通过公式: g a y =? (9-3) 在公路设计中,坡面被准确用在曲率设计中。在给定半径和预定行驶速度的情况下,恰当的选择坡面以产生一个侧向加速度,这个加速度在0~0.1的范围内。在道路外侧比内侧高的曲度下汽车具有加速度为零时的速度称为中间速度。 重新回到方程(9-2),随着侧向加速度的增大,内侧车轮上的负载必定减少。正是通过这个过程,汽车在转弯过程中能够去抵抗或抵消侧翻运动力矩。当内侧车轮负载为零时极限转弯情况就会发生(所有的负载转移到外侧车轮上)。在此极限位置侧翻将会开始发生,这是因为汽车不能继续维持在滚动平面上的平衡。侧翻开始时的侧向加速度是临界加速度,并由公式给出: h h g a t y ?+=2 (9-4) 没有坡度时,使侧翻发生的侧向加速度的临界值仅仅是??。这种简单的侧翻临界点的估算过去常常用在汽车抵抗侧翻运动的性能的估算中。该公式非常简便,应为它只需要两个汽车参数—轮距和重心高度。然而,这种估算却很保守(预测的侧翻临界值比精确值大很多),该公式主要用来比较汽车性能而不是预测绝对的性能水平(一些动力学专家利用这种侧翻临界点逆形式t h 2作为汽车侧翻

汽车操纵稳定性

第5章汽车的操纵稳定性 学习目标 通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。 汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。一辆操纵性能良好的汽车必须具备以下的能力: (1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。 (2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。 操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。 汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。 节汽车行驶的纵向和横向稳定性 5.1.1 汽车行驶的纵向稳定性 汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。当道路坡度大到一定程度时,前轮的地面法向反作用力为零。在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。这两种情况均使汽车的行驶稳定性遭到破坏。 图汽车上坡时的受力图 图为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力 w F可以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力0 = j F,加速阻力矩0 = j M,而车轮的滚动阻力矩 f M的数值相对来说比较小,可不计入。 分别对前轮着地点及后轮着地点取力矩,经整理后可得 ? ? ? ?? ? ? = + - = - - sin cos sin cos 2 1 L G h aG Z L G h bG Z g g α α α α () 当前轮的径向反作用力0 1 = Z时,即汽车上陡坡时发生绕后轴翻车的情况,由式可得

基于Matlab的客车转向侧翻稳定性分析(精)

基于Matlab 的客车转向侧翻稳定性分析 摘要:本文主要对客车转向行驶时的侧翻情况进行了研究,建立了客车在行驶过程中转向时的数学模型,推导出了稳态转向时客车侧翻临界车速的计算公式,并结合某客车结构参数和路面附着条件进行了仿真,得出了通过提高客车的抗侧翻性能来提高客车的行驶稳定性的方法。 关键词:客车;转向侧翻;稳定性分析;Matlab 0 引言 侧翻是指汽车在行驶过程中绕其纵轴转动900 或更大的角度,以至车身与地面相接触的一种极其危险的侧向运动。汽车侧翻可分为两类:一是曲线运动引起的侧翻,二是绊倒侧翻。 曲线运动引起的侧翻是指汽车在道路(包括侧向坡道)上行驶时,由于汽车的侧向加速度超过一定限值,使得汽车内侧车轮的垂直反力为零而引起的侧翻[1]。 客车车身和质量比轿车等小型车大得多,而且其地板一般都比较高,在转向侧翻事故中,车体将向某一侧倾倒,与地面接触的侧围会产生变形,结构的变形可能侵入车厢内部,对乘客造成伤害[2]。而侧翻试验是较难实施的且成本较大,本文通过建立客车侧翻的数学模型,在Matlab 中进行仿真来分析影响客车转向行驶稳定性的因素,从而为提高客车的操纵稳定性,在设计阶段保证客车结构参数的合理性,避免车辆行驶发生翻车事故奠定理论基础。 1 车辆转向侧翻模型 客车的前后桥一般采用非独立悬架,在行驶过程中遇到弯道或避开障碍物时需要紧急转向。转向时车辆的质心绕转向瞬心C 作圆周运动。Rr 为转向瞬心C 到后内侧车轮的转向半径;Rf 为转向瞬心C 到前内侧车轮的转向半径;θ 为汽车转向轮转过的角度;L 为汽车的轴距;汽车质心到前桥距离为a;汽车质心到到后桥距离为b。 2 车辆转向时的受力分析 车辆在转向时,会使车身向外侧倾斜,Gs 为客车车身的悬挂质量受的重力;Gu1 为客车前桥的非悬挂质量受的重力;Gu2为客车后桥的非悬挂质量受的重力;Fyi1,Fyi2 分别为地面给转向内侧车轮的侧向附着力;Fyo1,Fyo2 分别为地面给转向外侧车轮的侧向附着力;Fzi1,Fzi2 分别为地面给转向内侧车轮的支撑反力;Fzo1,Fzo2 分别为地面给转向外侧车轮的支撑反力;Fsy 为客车车身的悬挂质量转向时产生的侧向力;Fuy1,Fuy2 为前后车桥非悬挂质量产生的侧向力。

螺栓预紧结构用Hypermesh做接触实例

螺栓预紧结构用Hypermesh 做接触实例 在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh 划分网格后的模型。 图1 实体模型 图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

翻车事故分析

HEBEI UNITED UNIVERSITY 安全系统工程论文 论文题目:翻车事故分析 学号: 学生姓名: 专业班级: 学院: 指导教师: 2012年05月20日

目录 一翻车事故树的构造 (2) 二事故树的定性分析 (4) 1.求最小径集 (5) 2.结构重要度分析 (5) 3.结论 (6) 4.建议 (6) 三翻车事故安全检查表 (6) 附:翻车事故图 (8)

翻车事故分析 摘要据统计,在道路交通事故中,因汽车翻车造成的事故占整个事故的42%以上。汽车翻车后不但造成经济损失,而且造成人员伤亡,结果是很难让人接受的。研究、探讨汽车发生翻车事故的愿因,采取预防措施,是十分必要的,也是非常有意义的。对其采用事故树分析的方法进行分析,寻找出可能导致该事故发生的中间事件和基本事件,计算出事故树的三个最小径集,并计算出各基本事件的结构重要度。车速过快的结构重要度最大,因此,限制车速是减少翻车事故最有效和最关键的手段。在此基础上,制作出安全检查表,为事故的预防和评价提供依据。 关键词翻车事故事故树安全检查表车辆失稳 一翻车事故树的构造 翻车是指部分或全部车轮悬空、车身着地的现象,通常指车辆没有发生其他事态而造成的翻车。翻车是一种复杂的事故,很大程度上受司机、道路状况以及车辆的设计的影响。”专家表示,在道路交通事故中,汽车翻车事故不仅会造成巨大经济损失,而且极易造成人员伤亡。那么,造成翻车的原因都有哪些?作为驾驶员又该如何尽量避免此类事故的发生呢? 车速过快导致翻车: 因车速过快,驾驶员在道路交叉口见到前方转盘时,猛打方向,容易导致车辆侧翻。车速过快,当对面过来车辆,两车会车时方向盘转动过多,容易导致了惨剧的发生。车辆飞速行驶,容易导致车辆失控导致翻车。有效控制车速,避免驾驶员对车辆控制的失控情况,对于防止翻车发生最为重要。 已知危险状态的翻车因素: 冰雪道路翻车:在冰雪道路上行驶时,由于轮胎与路面之间的附着力小,容易使车辆侧滑、摆头。如果车速较快,极易导致翻车 雨后路滑造成翻车:下雨后,由于路面不平造成积水,车辆与地面之间的摩擦系数变小,使得车辆在快速行驶和刹车过程中容易因侧滑而翻车。 山路高低不平导致翻车:山路行车是非常危险的。山路绕山而行,大多高低不平且较窄,易发生翻车事故。 标志标线不全导致翻车:在行车过程中看懂交通语言是至关重要的,比如什么是单行道、

汽车侧翻分析分析解析

汽车侧翻分析 在汽车行驶中中,侧翻是其中一种最为严重并且威胁成员安全的事故。侧翻可以定义为能够使车辆绕其纵轴旋转90度或更多以至于车身同地面接触的任何一种操纵。侧翻可以由一个或一系列综合因素产生。它可以发生在平直的水平地面上,并且车辆的侧向加速度达到一定的数值,该数值要超过车辆侧面重量转移到车轮上所抵消的加速度值。 通过有坡度的路面(或无路情况)时由于不平路面的冲击,地面松软或其他障碍物会促使侧向压力提高从而使车辆“失足”。 侧翻过程是一个包括作用在车辆上和车辆里的力的相互作用的复杂过程。侧翻受操纵和高速公路的影响。人们已经通过理论分析以及包括一系列复杂设备的模型实验研究侧翻过程。这个过程很容易通过静态基本结构实验来理解(忽略惯性和滚动平面上的加速度),并且促进发展更加复杂的模型。 1、 刚性汽车的准静态侧翻 汽车侧翻的最基本的机械特性可以通过考查转弯过程中稳定车身的受力均衡性来了解。稳定的车辆是指悬架和轮胎的偏置在分 析中被忽略掉。在转弯操纵中,侧向力作用 在地面上来平衡作用在汽车重心上的侧向 加速度,如图9-2所示。侧向力作用在车 辆上的位置的不同产生一个力矩,该力矩使 车辆向如图所示的外侧侧翻. 为了分析转动情况,假定汽车在稳定状 态以使汽车没有滚动加速度,并且使轮胎如 图所示受力(前轮和后轮)。在很多公路环 境中,它也适合考虑横向坡度。如大家所知 的坡度和道路转弯处汽车外侧比内侧高出 的程度。在分析中,将角度表示为”?”,想 左下的坡度表示正角。这个方向的坡度有助 于平衡侧向加速度。斜坡角度通常情况下很 小,而且角度很小时约有()1cos ,sin ==???。以汽 车接地点为中心的力矩关系为: 02=-+-t zi y Mg t F Mh h Ma ? (9-1) 从式(9-1)我们可以得出a y : h t Mg F h t g a zi y -+=?2 (9-2) 在水平路面上(0=?),没有侧向加速度,方程也成立。此时,内侧车轮载重,F zi ,是车总重的一半。另外通过正确选择坡面角度,可以使F zi 保持在具有侧向加速度的汽车重量的一半.,即通过公式:

大客车侧翻原因分析

大客车侧翻原因分析 侧翻事故作为所有道路交通事故中致命率极高的恶性交通事故,对国民经济与人身安全具有很大的危害。汽车侧倾稳定性在行車安全中的问题越来越突出,交通事故中侧翻事故所占的比例逐年递增。目前国内在防侧翻控制方面的研究还处于理论研究阶段,防侧翻控制技术还不成熟,没有成熟可靠的防侧翻控制产品装配车辆。即使是高端的客车车型,采用的也是国外公司匹配的产品,大部分营运车辆并没有装备防侧翻系统。此外,国内公路交通运输普遍的超载现象,更进一步恶化了车辆的侧翻稳定性。本文对大客车侧翻事故进行研究,对55起交通事故进行了调查以及对导致侧翻的原因进行分析,包括对侧翻阈值的分析来评价大客车的侧翻稳定性,从而为主动控制技术、安全驾驶方面、疲劳监测方面等对其预防进行研究分析打下基础。 标签:侧翻原因;交通事故 一、道路交通事故原因分析 道路交通事故的影响因素体系包含四个子系统,第一为用路者因素,第二为道路因素,第三为交通流与车辆因素,第四为环境因素。 (一)用路者因素 驾驶员是道路交通事故的主要因素,引起事故的原因可以分为直接因素和间接因素,直接因素有:感知不准、反应不当、判断失误;间接因素有:生理状况异常、心理状况异常、违章驾驶、驾驶经验不足等。 (二)车辆因素 根据对某高速公路连续三年事故统计资料的分析,由于汽车机械故障所致交通事故占所有事故占所有事故的12.63%。汽车的新旧、性能优劣、维修好坏等都会影响事故的多少。车辆种类的多样化使行驶在路上的车辆尺寸不一、载重相差悬殊,性能差别很大,而驾驶员并不完全熟悉各种车辆的性能与特点,这些都给交通安全造成隐患。 (三)道路因素 道路上交通事故的形成,其表象与直接的诱因多为驾车者的违章或过失,而潜在与间接的因素涉及到道路的线形设计。线形设计通过对驾车者行为的客观干扰,据事故调查显示,事故在道路上会出现明显的集中分布,这与道路因素有关,而道路因素分为道路等级、平面线形、纵断面线形、道路横断面构成和交叉口五个方面。 (四)交通流和车辆因素

汽车高等动力学分析

侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风、或者曲线行驶时的离心力等的作用,车轮中心沿Y轴方向将作用有侧向力F y,相应地在地面上产生地面侧向反作用力F Y,F Y即侧偏力。 侧偏现象:当车轮有侧向弹性时,即使F Y没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。 侧偏角:车轮与地面接触印迹的中心线与车轮平面错开一定距离,而且不再与车轮平面平行,车轮印迹中心线跟车轮平面的夹角即为侧偏角。 高宽比:以百分数表示的轮胎断面高H与轮胎断面宽B 之比 H/B×100% 叫高宽比. 附着椭圆:它确定了在一定附着条件下切向力与侧偏力合力的极限值。 转向灵敏度:汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。常用输出与输入的比值,如稳态的横摆角速度与前轮转角之比来评价稳态响应,这个比值称为稳态横摆角速度增益,也就是转向灵敏度。(即稳态的横摆角速度与前轮转角之比) 稳定性因数:稳定性因数单位为s2/m2,是表征汽车稳态响应的一个重要参数。 侧倾轴线:车厢相对于地面转动时的瞬时轴线称为车厢侧倾轴线。 侧倾中心:车厢侧倾轴线通过车厢在前,后轴处横断面上的瞬时转动中心,这两个瞬时中心称为侧倾中心。 悬架的侧倾角刚度:悬架的侧倾角刚度是指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢总的弹性恢复力偶矩。 转向盘力特性:转向盘力随汽车运动状况而变化的规律称为转向盘力特性。 切向反作用力控制的三种类型:总切向反作用力控制,前后轮间切向力分配比例的控制,内外侧车轮间切向力分配的控制。 侧翻阈值:汽车开始侧翻时所受的侧向加速度称为侧翻阈值。 汽车的平顺性:汽车的平顺性主要是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,主要根据乘员的主观感觉的舒适性来评价。 1.汽车的操纵稳定性:是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。 2.汽车的操纵稳定性是汽车主动安全性的重要评价指标。 3.时域响应与频域响应表征汽车的操纵稳定性能。 4.转向盘输入有两种形式:角位移输入和力矩输入。 5.外界干扰输入主要指侧向风和路面不平产生的侧向力。 6.操纵稳定性包含的内容:1)转向盘角阶跃输入下的响应;2)横摆角速度频率响应特性;3)转向盘中间位置操纵稳定性;4)转向半径; 5)转向轻便性;6)直线行驶性能;7)典型行驶工况性能;8)极限行驶能力(安全行驶的极限性能) 7.转向半径:评价汽车机动灵活性的物理量。 8.转向轻便性:评价转动转向盘轻便程度的特性。 9.时域响应:路面不平敏感性和侧向风敏感性。 10.汽车是由若干部件组成的一个物理系统。它是具有惯性、弹性、阻尼的等多动力学的特点,所以它是一个多自由度动力学系统。 11.车辆坐标系:x轴平行于地面指向前方(前进速度),y轴指向驾驶员的左侧(俯仰角速度),z轴通过质心指向上方(横摆角速度) 12.汽车时域响应可分为不随时间变化的稳态响应和随时间变化的瞬态响应。 13.汽车转向特性的分为:不足转向、中性转向、过多转向。

基于Hyperworks前处理轴承速度及应力分析

基于Hyperworks 前处理Ansysls-dyna 分析轴承速度及应力分析 1.轴承3D 模型的建立 轴承组成:外圈,保持架,滚动体,内圈 2.为了方便画网格用CATIA 把轴承切成小块得到下图结果 3.把文件保存为STP 格式,导入Hyperworks 中进行网格处理,得到如下图结果: 外圈(绿色) 保持架(蓝色) 滚动体(黄色) 内圈(浅蓝色)

3.1本例中网格要求为8节点六面体,所以为了方便画网格,先用3维软件对模型进行简单的处理,处理结果如下图所示: 3.1.1对滚动体网格的画分: 1).1/8滚动体模型如下图所示:

2).对粉红色部分画网格: 切换到one volume模块,选中粉红色实体,density设置为3,点mesh. 3).对绿色部分进行网格划分: 切换到one volume模块,选中绿色实体,elem size设置为0.2,点mesh

操作步骤: 1,TOOL------orgnize---我们要把body11和333合成一体,element选中body11(点击by collector-选中body11),dest component选中333,点击MOVE即可。 4).将绿色网格移到粉色网格部件里,合并网格,如下图: 5).对1/8网格镜像:

Based 点击duplicate---current comp---reflect,完成镜像,如下图:

按上述方法重复操作可得到整个滚动体的网格模型,如下图所示: 在tool---edges面板检查间隙,合并节点。 选择ELEMEN,先选绿色任务栏中第三个后选倒数第二个。消除缝隙

汽车稳定性分析及对策研究

86 研究与探索Research and Exploration ·监测与诊断 中国设备工程 2018.02 (上) 近年来,随着社会经济的发展和科学技术的进步,汽车工业和道路建设质量都有了很大程度的改善,因此,汽车的运行速度和制动性能等动力学性能都有了很大的提升。从而使汽车逐渐成为了人们出行过程中使用的普通、快捷、方便的交通工具。但也应该认识到汽车对人类社会的生命财产所造成的伤害和损失。本文将重点研究汽车失稳的原因以及汽车稳定性应对策略。 1?汽车失稳原因分析 区分不同转向特性的车辆,如果某一汽车是转向过度特性的汽车,当车度过高,达到一定的限度时,即便其是处于线性区域内也非常可能会出现失去稳定的情况。而对于转向不足特性的车辆来说,相比转向过度的汽车,在较高的车速时其仍然具有较好的稳定性,从而确保车辆在线性区域内能够得到较好的操控稳定性。具体来说,在非线性区域内由于侧偏角的增大,轮胎的侧向力会逐渐地趋于饱和,从而导致在非线性区域内车辆失去稳定性的概率较大。车辆后轴的侧向力达到一定极限时,这时车辆的后轴会出现横向移动,引发车辆甩尾等其他十分严重事故;在车辆前轴侧向力达到一定极限时,前轴就会出现横向运动,从而导致汽车的驾驶方向出现偏差,方向失控。与此同时,导致车辆失稳的因素还有很多,比如不同路面u 值的摩擦系数,自然界的侧向风,不同的驾驶操纵等。下面列举了一些致使汽车失稳的一些主要因素。 (1)在驾驶员进行紧急刹车或者突然加速等紧急操纵而致使车辆进入非线性区内,这时质心侧偏角会增大,车辆会失去稳定性,驾驶员不能通过操纵方向盘来控制汽车的行驶方向。 (2)转向不足的汽车在不同的驾驶模式下运行时,车辆的轴荷会因为过度的速度变化而转移,在某些情况 下会导致车辆由转向不足转变为转向过度,车辆也会因此失稳。 (3)由于不同的路面其附着系数u 值是不同的,它对汽车行驶特性影响较大。另外,自然界等产生的横向力,道路的纵横曲线同样会对汽车的运行产生影响,进而引发质心侧偏角的增大使车辆失稳。 (4)当汽车突然要变更车道时,往往会产生较高的质心侧偏角。汽车实际的横摆角速度总是滞后于驾驶员对汽车的操作,汽车转向时这种滞后会导致汽车出现相对较高的横摆力矩,在横摆力矩的影响下车辆往往会失去稳定性。 上述主要分析了4条影响汽车稳定性的因素,从上述分析来看,影响车辆稳定性的变量主要包括车辆的横摆角速度和质心的侧偏,在目前国内外的研究中也主要用这两个参数作为理想变量来描述车辆的运行情况。 2?汽车稳定性控制策略分析 汽车稳定性控制技术包括汽车动力学建模、行驶状态观测、失稳控制策略和控制技术产业化。动力学建模则包括面向控制和面向仿真的建模。面向仿真的建模通常采用Carsim、ADAMS 等仿真软件建立仿真模型,面向控制的建模可采用两轮、四轮模型。状态观测通常是指对汽车运行过程中的状态参数的观测,包括对轮缸压力、摩擦系数、轮胎侧向力、纵横向车速等进行的实时观测。在产业化方面通过不断的探索和研究,在国内汽车的生产线中,稳定性控制技术的产业化在逐步实现。控制车辆稳定性的策略主要有以下几个方面。 (1)汽车制动防抱死系统(ABS)。由于车轮在边滚变化状态下与地面的附着力大于车轮处于抱死状态下的附着力,这样不仅可以防止车辆发生侧滑,还可以最大限度缩小制动距离,从而控制车轮的滑移率在20%,制动达到最安全的效果。 汽车稳定性分析及对策研究 杨昌伟,王志荣,冯迪 (长安大学工程机械学院,陕西?西安?710034) 摘要:汽车动力学稳定性是汽车驾驶过程中保持汽车安全的一项十分重要的性能,一直以来都是汽车安全行业研究的热点,其主要是指汽车在行驶过程中不发生侧滑、偏移和侧翻的性能。因此,深入分析汽车在实际运行工况中发生侧滑、偏移、侧翻等危险状况的内在机理,积极研究解决汽车在运行过程中尤其是极限工况下的稳定性的有效应对策略对汽车驾驶安全是十分重要的。 关键词:汽车动力学;稳定性;汽车安全;控制策略 中图分类号:U461.3 文献标识码:A 文章编号:1671-0711(2018)02(上)-0086-02

初学hyperworks的注意事项和应用技巧

入门篇 其实各种CAE前处理的一个共同之处就是通过拆分把一个复杂体拆成简单体。这个思路一定要记住,不要上来就想在原结构上分网,初学者往往是这个问题。刚开始学,day1,day2,advanced training 和HELP先做一遍吧。另外用熟24 个快捷键。(快捷键用法见tutuma 版主的精华贴《Hyperworks FAQ》) 做一下HELP里面的教程,多了解一些基本的概念和操作。这样会快点入门。论坛更多的是方法。 划分的方法要灵活使用,再有就是耐心。 1、如何将.igs文件或.stl文件导入hypermesh进行分网? files\import\切换选项至iges格式,然后点击import...按钮去寻找你的iges 文件吧。划分网格前别忘了清理几何 2、导入的为一整体,如何分成不同的comps?两物体相交,交线如何做?怎样从面的轮廓产生线(line)? 都用surface edit Surface edit的详细用法见HELP,点索引,输入surface edit 3、老大,有没有划分3D实体的详细例子? 打开hm,屏幕右下角help,帮助目录下hyperworks/tutorials/hyermesh tutorials/3D element,有4个例子。 4、如何在hypermesh里建实体? hm的几何建模能力不太强,而且其中没有体的概念,但它的曲面功能很强的.在2d面板中可以通过许多方式构建面或者曲面,在3D面板中也可以建造标准的3D曲面,但是对于曲面间的操作,由于没有"体"的概念,布尔运算就少了,分割面作就可以了 5、请问怎么在hypermesh中将两个相交平面到圆角啊? defeature/surf fillets 6、使用reflect命令的话,得到了映射的另一半,原先的却不见了,怎么办呢?法1、在选择reflect后选择duplicate复制一个就可以 法2、先把已建单元organize〉copy到一个辅助collector中, 再对它进行reflect, 将得到的新单元organize〉move到原collector中, 最后将两部分equivalence, 就ok拉。 7、请问在hypermesh中如何划分装配体?比如铸造中的沙型和铸件以及冷铁,他们为不同材质,要求界面单元共用,但必须能分别开? 你可以先划分其中一个部件,在装配面上的单元进行投影拷贝到被装配面上 8、我现在有这样一个问题,曲线是一条线,我想把它分成四段,这样可以对每一段指定density,网格质量会比直接用一条封闭的线好。 可用F12里的cleanup_add point,那里面还有很多内容,能解决很多问题9、我在一个hm文件中创建了一组组装件的有限元模型,建模过程很麻烦,由于失误我把一个很重要的部件建在了另一个hm文件中,请问有没有什么方法把这个部件的有限单元信息转移到组装件的hm文件中呢? 如果可以,装配关系可以满足吗?

汽车侧翻稳定性与预警综述分解

汽车侧翻稳定性与预警综述 摘要:近年来,汽车侧翻事故作为重要的安全问题,受到越来越多的关注。美国高 速公路交通安全管理局统计数据表明,在汽车事故中,侧翻的危害程度仅次于碰 撞事故居第二位。然而,我国目前针对高速急转弯时汽车侧翻动态稳定性及预警方面 的研究还很少。因此,本文总结归纳了目前主流侧翻稳定性模型,侧翻预警的硬件系统与算法。通过仿真来计算侧倾角,来得测算汽车侧翻稳定性。以及时下最为新颖的通过DPS来获得汽车的侧倾角,横向加速度等数据来预警。本文比较了各种方案的利弊,对目前汽车的侧翻稳定性分析及预警研究做了一定程度的综述。 关键字:侧翻模型,侧翻控制器,预警算法,侧翻仿真,GPS侧翻控制系统 Abstract: in recent years, the most important safety problems as vehicle rollover accident, has attracted more and more attention. High U.S.Highway traffic safety administration statistics show that, in a car accident, harm degree rollover after touchHit the house second. However, China's current high speed sharp turning vehicle dynamic rollover stability and rollover warningThe study is also very little. Therefore, this paper summarizes the current mainstream rollover stability model, hardware system and rollover warning algorithm. Through the simulation to calculate the roll angle measurement, more automobile side tumbling stability. And nowadays the most novel through the DPS to get the car's side angle, lateral acceleration and other data to alert. In this paper, based on the comparison of the advantages and disadvantages of the various schemes on the current car rollover stability analysis and early warning research made a certain degree of review. Keywords:rollover model, rollover warning algorithm, controller, rollover simulation, GPS rollover control system 1.汽车侧翻模型及动态稳定性分析 1.1简明汽车模型 建立模型为研究汽车侧翻提供了很大的便利。合适的模型可以直观反应汽车的运动状态。成光华在分析国内外有关汽车侧翻预警的研究基础上,建立了由“自行车模型”或侧倾平面模型组成的线性三自由度汽车侧翻模型。该模型不仅包含了汽车静态因数,也包含轮胎、悬架等造成的动态因数,是汽车侧翻预警算法和硬件在环仿真的基础。汽车侧翻预警算法中选用汽车的横向载荷转移率作为汽车是否发生侧翻的判断标准,根据汽车左右车轮的载荷LTR(Lateral-load Transfer Rate)的变化,计算汽车模型当前状态距离侧翻的时间值TTR (Time-To-Rollover),对汽车侧翻状态及时地预警。

汽车侧翻预警系统(精)

汽车侧翻预警系统 本课题考虑到汽车侧翻事故的频发和其对生命财产损害巨大的现状,尤其针对长途货运车辆由于驾驶员疲劳以及稳定性受载荷量影响所导致的侧翻事故,设计了一款经济实用的汽车侧翻报警系统。该汽车侧翻报警系统不断检测汽车的水平和竖直方向的加速度,实时与由汽车参数确定的汽车侧翻阈值比较。当检测到潜在的侧翻危险时,依据危险程度发出相应的声光报警信号。本文建立了汽车的刚体模型作为分析汽车侧翻阈值的物理模型,该模型结构简单并且由其得出的阈值表达式易于处理。针对货车每次载重量和所载货物装配高度各异的特点,该模型包含了利用货物质量和高度确定质心位置的公式。该模型计算的侧翻阈值与实际侧翻阈值比较,阈值误差小于0.07,完全可以满足汽车侧翻预警的要求。本课题的硬件设计包括:微处理器模块、传感器模块、显示模块、信息录入模块、电源模块和报警模块。用以实现参数录入和显示、加速度信息的采集和 远距离传输、侧翻危险的判断和依据危险程度发出相应声光报警信号的功能。 为保证汽车侧翻预警系统的实时性,程序基于μC/OS-Ⅱ编写。本设计建立键值 输入显示任务,实现相应汽车参数的赋值和该值在显示模块上的显示。建立读取传感器任务,实现加速度值的读取。建立了报警任务,该任务将录入参数带入模 型公式,计算出阈值,并根据加速度值和阈值的比较结果判断报警方式并报警。 同主题文章 [1]. 李晓娟,王敏. 智能汽车行驶记录仪的研究与实现' [J]. 科技信息. 2009.(29) [2]. 陈勇,黄席樾,杨尚罡. 汽车防撞预警系统的研究与发展' [J]. 计算机仿真. 2006.(12) [3]. 项雷军,郑力新. 基于ARM的万能材料试验机控制器' [J]. 机械与电子. 2007.(02) [4]. 北京研成汽车行驶记录仪' [J]. 中国科技产业. 1996.(06) [5]. 王兴亮,任雅祥,陈岁生. 光纤溶解氧在线测量仪表的设计' [J]. 机电工程. 2009.(01) [6]. 吉国光. 汽车行驶途中渗漏故障应急经验' [J]. 世界汽车. 2003.(01) [7]. 沈阳工业大学专家、学者简介──李荣德教授' [J]. 沈阳工业大学学报. 1998.(02)

场厂内机动车事故案例及分析

场(厂)内机动车事故 案例及分析 (初稿) 目录 一、叉车事故举例 ...................................... 叉车事故举例一 ........................................ 事故举例二 ............................................ 事故举例三 ............................................ 事故举例四 ............................................ 事故举例五 ............................................ 二、叉车事故相关案例 .................................. 案例一叉车撞人事故之一 ............................... 案例一叉车撞人事故之二 ............................... 案例三造纸公司叉车左转弯碾人事故...................... 案例三叉车侧翻事故之一 ............................... 案例四叉车侧翻事故之二 ...............................

案例七、奉贤仓库3.21叉车侧翻事故...................... 案例八、奉贤5.11叉车事故。 ........................... 案例九、5号库备货员工摔伤事故......................... 案例十二广州公司“8.16”叉车撞人致死事故.............. 案例十三叉车转弯引发的事故 ........................... 案例十四叉车倒车时引发的事故 ......................... 案例十五货车误启动造成叉车倾翻事故.................... 案例十六叉车违规作业挤压操作人员事故................. 案例十七小青矿“”场内机动车事故...................... 案例十八、载物高度遮挡视线引发的事故................... 案例十九叉车侧翻事故之三 ............................. 案例二十观光车转弯处车厢侧翻事故...................... 一、叉车事故举例 叉车事故举例一 驾驶前移式叉车在倒退行驶时,脚被夹在叉车和货架中间造成受伤。 图1.1 叉车事故示意图 事故状况

汽车侧翻分析

图9-2 侧翻汽车的受力 汽车侧翻分析 在汽车行驶中中,侧翻就是其中一种最为严重并且威胁成员安全的事故。侧翻可以定义为能够使车辆绕其纵轴旋转90度或更多以至于车身同地面接触的任何一种操纵。侧翻可以由一个或一系列综合因素产生。它可以发生在平直的水平地面上,并且车辆的侧向加速度达到一定的数值,该数值要超过车辆侧面重量转移到车轮上所抵消的加速度值。 通过有坡度的路面(或无路情况)时由于不平路面的冲击,地面松软或其她障碍物会促使侧向压力提高从而使车辆“失足”。 侧翻过程就是一个包括作用在车辆上与车辆里的力的相互作用的复杂过程。侧翻受操纵与高速公路的影响。人们已经通过理论分析以及包括一系列复杂设备的模型实验研究侧翻过程。这个过程很容易通过静态基本结构实验来理解(忽略惯性与滚动平面上的加速度),并且促进发展更加复杂的模型。 1、 刚性汽车的准静态侧翻 汽车侧翻的最基本的机械特性可以通过考查转弯过程中稳定车身的受力均衡性来了解。稳定的车辆就是指悬架与轮胎的偏置在 分析中被忽略掉。在转弯操纵中,侧向力作用 在地面上来平衡作用在汽车重心上的侧向 加速度,如图9-2所示。侧向力作用在车辆 上的位置的不同产生一个力矩,该力矩使车 辆向如图所示的外侧侧翻、 为了分析转动情况,假定汽车在稳定状 态以使汽车没有滚动加速度,并且使轮胎如 图所示受力(前轮与后轮)。在很多公路环境 中,它也适合考虑横向坡度。如大家所知的坡 度与道路转弯处汽车外侧比内侧高出的程 度。在分析中,将角度表示为”?”,想左下的 坡度表示正角。这个方向的坡度有助于平衡 侧向加速度。斜坡角度通常情况下很小,而且 角度很小时约有()1cos ,sin ==???。以汽车接地点 为中心的力矩关系为: 02=-+-t zi y Mg t F Mh h Ma ? (9-1) 从式(9-1)我们可以得出a y : h t Mg F h t g a zi y -+=?2 (9-2) 在水平路面上(0=?),没有侧向加速度,方程也成立。此时,内侧车轮载重,F zi ,就是车总重的一半。另外通过正确选择坡面角度,可以使F zi 保持在具有侧向加速度的汽车重量的一半、,即通过公式:

hyperworks弹簧受力分析

弹簧受力分析 摘要:新一代飞机的设计对性能有更高的要求,需要有新的性能设计平台来应对这些挑战。Altair公司的HyperWorks在飞机结构有限元建模,结构优化及减重,碰撞安全性分析,复合材料零部件设计和运动机构仿真及优化等领域的技术已经被世界各大飞机制造商广泛采用,成为事实上的现代飞机性能设计新平台。 关键字:HyperWorks HyperMesh OptiStruct Radioss MotionView HyperStudy 飞机性能设计 近年来,以A380,A350,A400M,B787,F35为代表的新一代飞机,外形更大,重量更轻,飞得更远,载重量更大,机动性更好,突发情况下更安全,燃油经济性更好,确立了飞机性能设计的新标准,对现代飞机设计技术提出了一系列新的要求和挑战,需要有新的技术来应对。 λ结构减重技术:能够清楚给出在给定设计空间内的最佳材料分布和确定零部件尺寸、外形和位置,从而工程师有足够的设计提示信息和依据,而不仅仅依靠经验来进行结构的轻量化设计。 λ复合材料设计技术:能够对复合材料零部件进行建模、仿真和优化,预估复合材料零部件的强度、刚度、破坏和疲惫特性,优化复合材料的展层角度、展层外形、展层数目和展层叠加次序。 λ系统优化技术:能够在概念设计阶段优化结构传力路径和布局,减少设计后期风险;能够对飞机的性能参数进行优化,满足各种设计指标;能够进行多学科考虑,做到各子系统最优,总体系统也最优。 λ碰撞安全性分析技术:能够对鸟撞、坠撞、水上迫降等工况进行仿真,评估并改进突发危险情况下的飞机安全性。 λ缩短设计周期:能够快速进行CAE建模、求解和结果评估,特别是把CAE前后处理的时间降下来,并且通过优化技术和流程减少人工的反复设计迭代。 Altair公司是世界领先的工程设计技术开发者,旗舰产品HyperWorks软件包含了HyperMesh,OptiStruct,Radioss,MotionView,HyperStudy等著名模块,是全球领先的企业级产品创新解决方案,目前全球客户超过4000家,分布于汽车、航空航天、机械、电子、船舶、国防等各个行业。近十年来,HyperWorks 专注于应对航空产业的最新发展趋势和挑战,以其创新平台设计技术帮助波音、空客、欧洲宇航防务、洛克西德马丁、欧洲直升机等公司设计新一代的飞机,取得了大量前所未有的工程成果,成为现代飞机性能设计的新平台,提供了一系列高效、优化、创新的新技术。 一.有限元建模技术 随着计算机硬件技术的发展,现代飞机的有限元模型规模越来越大,网格越来越精细,模型治理越来越复杂,特别是复合材料在飞机上的大规模应用使得单元属

相关文档
最新文档