NACA6412翼型CFD分析

NACA6412翼型CFD分析
NACA6412翼型CFD分析

NACA6412翼型CFD分析

1.前言

轴流风机叶轮的气动性能是风机性能的主要决定因素,而叶轮的剖面形状(即翼型)又是决定风机性能的关键。在轴流风机设计中通常借鉴航空用翼型,但是由于使用条件的不同,特别是雷诺数差异太大,如果简单采用航空用翼型,效果不是很好,所以对航空翼型在低雷诺数下进行分析,在轴流风扇的设计中是很必要的。通过对翼型的气动分析,可以得到决定翼型性能的主要气动参数(升力、阻升比等)的变化规律,指导设计工作。本文根据低马赫数下翼型升力、阻力实验相关原理,采用CFD方法进行数值模拟,来分析翼型的气动特性。

2.翼型参数

本次模拟的是NACA6412翼型,主要参数如下。

表.1

翼型型号雷诺

数Re 相对来

流速度

v(m/s)

弦长

b(m)

来流冲角α°

NACA6412 10188 30 0.03-5-20246810121416

3.网格划分及边界条件

3.1网格划分

本文采用结构化网格,具体见图.1、图.2。

图.1整体网格分布

图.2翼型周围网格分布

3.2边界条件

在来流方向设置为速度进口边界条件,将来流速度分解为X 和Y 向速度,其中X 方向速度为cos x v v α=?,Y 方向速度为sin y v v α=?。出口为压力出口边界条件,设置出口压力为零。求解模型采用INVISCID 模型(无粘性模型),采用SIMPLE 算法,压力插值采用PRESTO !格式,动量方程插值方式采用二阶迎风格式。

4. 计算结果及分析

本文采用FLUENT 对NACA6412翼型进行了2D 数值模拟,得到了翼型各主要性能参数。 4.1计算数据及分析 表.2

升力Y R 阻力x R 阻升比μ 升力系数y C 阻力系数x C 4.852 0.116 0.024 0.293 0.007 13.545 0.105 0.008 0.819 0.006 19.076 0.175 0.009 1.153 0.011 25.432 0.220 0.009 1.538 0.013 31.349 0.307 0.010 1.896 0.019 38.029 0.328 0.009 2.300 0.020 43.949 0.348 0.008 2.658 0.021 48.674 0.469 0.010 2.943 0.028 52.606 0.588 0.011 3.181 0.036 55.457 0.698 0.013 3.353 0.042 57.352

0.924

0.016

3.468

0.056

图.3升力系数

图.4阻升比

由以上可知,在冲角为-5°~16°时,翼型升力系数

C随着冲角的增大而增

y

大,而阻升比在冲角为-5°~-2°时迅速降低;在冲角为-2°~8°是基本保持不变,此时翼型达到较好的阻升比,相应翼型效率也达到最大;当冲角大于为8°时,阻升比也逐渐增大,相应翼型效率降低。

4.2翼型表面压力及速度分布

图.5冲角为-5°时翼型表面压力分布

图.6冲角为8°时翼型表面压力分布

图.7冲角为14°时翼型表面压力分布

图.8冲角为8°时翼型表面压力分布云图

图.9冲角为8°时翼型表面速度矢量分布

4.3结论

从以上分析可以看出,NACA6412翼型在冲角为-2°~8°时,阻升比较小,所以采用该翼型进行轴流风扇设计时,当设计相对来流速度为30m/s时,应尽量使冲角在-2°~8°之间,这样可以获得较高的翼型效率从而提高风机的效率。

5.总结

从文中可以看出,采用CFD方法对翼型进行研究,可以获得翼型主要性能

参数的变化规律,来指导设计。

发电机并网模型建立与并网过程仿真分析doc

0前言 (3) 1设计任务及要求 (3) 1.1设计目的 (3) 1.2设计内容和基本要求 (3) 2发电机并网条件分析 (4) 2.1并网的理想条件 (4) 2.2相位差、频率差和电压差对滑差的影响 (4) 3发电机并网模型建立 (6) 3.1 仿真模型 (6) 3.2 系统仿真模型的建立 (7) 4发电机并网过程仿真分析 (8) 4.1 潮流计算和初始状态设置 (8) 4.2 发电机并网仿真 (8) 5仿真结果分析 (9) 6总结 (14) 参考文献 (14)

计算机仿真技术己成为电力系统研究、规划、设计和运行等各个方面的重要方法和手段。由于电力系统的特殊性, 很多研究无法采用实验的方法进行, 仿真分析显得尤为重要。发动机并网是电力系统中常见而重要的一项操作, 不恰当的并列操作将导致严重的后果。因此, 对同步发电机的并列操作进行研究, 提高并列操作的准确度和可靠性, 对于系统的可靠运行具有很大的现实意义。 MATlAB是高性能数值计算和可视化软件产品。它由主包、Simulink 及功能各异的工具箱组成。从版本开始增加了一个专用于电力系统分析的PSB(电力系统模块,Power system blockset )。PSB中主要有同步机、异步机、变压器、直流机、特殊电机的线性和非线性、有名的和标么值系统的、不同仿真精度的设备模型库单相\三相的分布和集中参数的传输线单相、三相断路器及各种电力系统的负荷模型、电力半导体器件库以及控制和测量环节。再借助其他模块库或工具箱,在Simulink环境下, 可以进行电力系统的仿真计算, 并可方便地对各种波形进行图形显示。本文以一单机一无穷大系统为模型, 在环境下使用GUI、Simulink、m语言等创建一发电机并网过程分析与仿真系统。该系统可以对多种情况下的发电机并网过程进行仿真分析, 并将仿真结果显示于GUI界面。 1设计任务及要求分析 1.1设计目的 通过发电机并网模型的建立与仿真分析,使学生掌握发电机并网方法和Matlab/Simulink中的电力系统模块(PSB),深化学生对发电机并网技术的理解,培养学生分析、解决问题的能力和Matlab软件的应用能力。 1.2设计内容和基本要求 设计内容主要包括发电机并网模型的建立和并网过程的Matlab仿真。 基本要求如下: 1、发电机并网条件分析; 2、发电机并网模型的建立; 3、分别对发电机端电压电压与电网电压幅值、频率和初相位在各种匹配情

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

数值模拟步骤

数值模拟 1、CFD方法简介 利用CFD方法,采用流体力学分析软件Fluent对三相分离器的流场进行了研究与分析,为实验研究提供理论支持。 CFD就是英文Computational Fluid Dynamics(计算流体动力学) 的缩写,就是一门用数值计算方法求解流动主控方程以发现各种流动现象规律的学科]。用CFD 技术进行数值求解的基本思想就是: 把原来在空间与时间坐标中连续的物理量的场, 用一系列有限个离散点上的值的集合来代替, 通过一定的原则来建立离散点上变量值之间关系的代数方程, 求解代数方程以获得所求解变量的近似值。其主要用途就是对流态进行数值仿真模拟计算,因此,CFD技术的用途十分广泛,可用于传质、传热、动量传递及燃烧等方面的研究。 流体机械的研究中多用CFD方法对分离器进行仿真模拟,其基本应用步骤如下: 1) 利用Gimbit进行前处理 a、根据分离的形状、结构及尺寸建立几何模型; b、对所建立的几何模型进行网格划分; 2) 利用Fluent进行求解 a、确定计算模型及材料属性; b、对研究模型设置边界条件; c、对前期设置进行初始化,选择监视器,进行迭代计算; 3)利用Fluent进行后续处理,实现计算结果可视化及动画处理。 上述迭代求解后的结果就是离散后的各网格节点上的数值,这样的结果不直观。因此需要将求解结果的速度场、温度场或浓度场等用计算机表示出来,这也就是CFD 技术应用的必要组成部分。 利用CFD方法进行仿真模拟可以对分离器的结构设计及参数选择作出指导,保证设计的准确度,也可以为分离器样机的试验提供理论参考。由于CFD仿真模拟的广泛使用及其重要性,国内外很多学者,如Mark D Turrell、M、Narasimha、师奇威等都对其进行了研究,尤其就是A、F、 Nowakowski及Daniel J、SUASNABAR等人]对CFD技术在旋流器模拟方面的应用做了详细的介绍,这些工作对CFD技术的发展起到了积极的促进作用。

DELMIA仿真操作流程

第一章软件设置 在进行仿真之前,建议完成培训阶段的DELMIA option设置(参考文件1-Option.pdf); 第二章仿真流程 2.12D布局图导入 1、AutoCAD布局图纸导入DELMIA:AutoCAD的零点坐标系与DELMIA一致,为保证导入的布局图在DELMIA原点附近,建议将CAD图纸导入之前进行偏移,选取某一点作为布局图的参考;如下图,选择布局图左下角为0,0位置; 2、偏移之后保存成较低版本dwg文件(如AutoCAD 2007),直接在DELMIA中打开,File->Open,然后保存成*.CATDrawing文件备用 3、选择进入DELMIA->AEC Plant->Plant Layout模块,如下图所示,建立一Area对象,保存;

4、切换至DELMIA->Resource Detailing->Resource Layout模块,创建Area对象的Foot Print; 勾选“show Footprint”选型,OK。 5、同时打开布局图,点击“Attach Drafting View”,按照图示顺序选择对象,布局图关联到 DELMIA环境;

将Product文件保存,然后插入到Resource节点; 备注:为了后续方便机器人和设备精确布局,可以结合CATIA草图模块,选取布局图机器人基座中心点,创建一组圆柱特征; 2.2机器人模型导入 根据布局图,切换至DELMIA->Resource Detailing->Device Task Definition模块,选择catalog方 式选择机器人型号并插入机器人模型,通过Snap命令将机器人精确定位;

业务流程建模仿真功能介绍

业务流程仿真功能说明 一、总述 业务流程仿真工具是由清华大学自动化系集成化企业制造实验室开发完成的,基于工作流理论的仿真系统。使用业务流程仿真系统可以针对实际物流、制造、生产等流程进行模型的构建及过程仿真,得到拟实仿真结果,通过分析资源利用率、活动排队、成本等数据,对实际排产、流程优化提供必要参考。 业务流程仿真工具与集成化企业建模工具直接集成,流程、资源、组织的建模和资源的配置工作在建模平台中完成,而业务流程仿真工具可以提供仿真场景配置、仿真运行展示以及仿真结果输出和展示的功能。以下各部分分别针对各部分功能进行简单介绍。 仿真配置功能 仿真配置是进行业务流程仿真的第一步骤,只有进行了正确的配置,业务流程仿真才能得到正确、有效、接近实际情况的结果。在仿真配置中,仿真者需要对业务流程、资源(组织)以及仿真场景等内容进行配置。以下分别对各部分的配置内容进行介绍。 1. 业务流程建模及配置 1)过程视图 业务流程配置在集成化建模工具的建模窗口中完成,通过对实际的业务流程进行抽 象,使用活动网络图的方式表现并建模。当前业务流程仿真工具中,可以提供开始节点、 结束节点、活动节点、过程节点、与节点、或节点、异或节点、决策节点等。在建模窗口中可以完成相应的业务流程图过程视图建模。 在完成业务流程过程视图建模后,可以针对不同的节点配置对应的仿真数据。比如对于活动节点,要设置活动完成时间的长度,这个长度可以是正态分布、常数、指数分布等,同时,还要将活动引用的资源和人员添加进活动的资源列表和人员列表,包括使用的资源和人员的类型以及数量。 2)资源、人员数目设置 在资源、组织视图中,添加相应的资源,并为其设置资源名、资源类型、资源数目等,同时在组织视图中添加相应的人员,并为人员分配职位、角色等。这些资源作为仿真所使用的资源库,与实际的情况相对应。 2. 仿真场景设置 相同的业务流程在不同的时间、工作班次等情况下,会得到不一样的仿真结果,因此,在完成

PSPICE仿真流程

PSPICE仿真流程 (2013-03-18 23:32:19) 采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。 在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时, 其电路规模仅取决于用户计算机的实际存储器容量。 二、新建设计工程 在对应的界面下打开新建工程: 2)在出现的页面中要注意对应的选择 3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录

中,在仿真电路的工程中放置对应的库文件。 这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library 中 的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。 4)放置对应的元件: 对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容, 电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件 就可以选中对应的器件,点击后进行放置。 对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m; 电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。 5)放置对应的激励源: 在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。然后在对应的 库中选中需要的激励源。 激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择: 另外一种是不需要自己进行编辑:

该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。 6)放置地符号: 地符号就是在对应的source里面选择0的对应的标号。 7)直流电源的放置: 电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。 8)放置探头: 点击对应的探头放置在感兴趣的位置处。

CFD模拟数值的收敛性评价

数值的收敛性评价 3.1判断收敛的方法 判断计算是否收敛,没有一个通用的方法。通过残差值判断的方法,对一些问题或许很有效,但在某些问题中往往会得出错误的结论。因此,正确的做法是,不仅要通过残差值,也要通过检测所有相关变量的完整数据,以及检查流入与流出的物质和能量是否守恒的方法来判断计算是否收敛。 1.监测残差值。在迭代计算过程中当各个物理变量的残差值都打到收敛标准是,计算就会发生收敛。 2.计算结果不再随着迭代的进行发生变化。有时候,因为收敛标准设置的不合适,物理量的残差值在迭代计算过程中始终无法满足收敛标准。但是,通过在迭代过程中检测某些代表性的流动变量,可能其值已经不再随着迭代的进行发生变化。此时也可以认为计算收敛。 3.整个系统的质量,动量,能量都守恒。检查流入和流出整个系统的质量,动量,能量是否守恒。守恒,则计算收敛。不平衡误差少于0.1%,也可以认为计算是收敛的。 3.2数值的事前和事后分析 数值解的数值分析主要包括两部分:解的事前和事后分析 解的事前分析一般是定性分析,格式精度和网络尺度选取的分析准则等,用以在开始计算前尽量保证计算条件的正确性,如网格质量和尺度建立的合理性等。 解的事后分析包括定性和定量的两方面。定性分析如旋涡和分离的结构等,用来分析数值解现象的合理性,从而判断数值解是否存在错误;定量分析如收敛性分析和离散误差误差带确定等数值分析方法,这是对数值解某些能够通过数值方法确定的误差进行分析的方法,用以分析数值解的渐进特性和收敛特性。 数值解的事后分析中的定量分析对判断解的收敛性有明确的意义,目前主要通过网格收敛性和格式收敛性分析来研究数值解的特性,通过减小截断误差,数值解应该更接近于偏微分方程的解。 3.2.1网格收敛性分析 相同计算方法在不同网格上的解在收敛的情况下应该是相互接近的,否则表明在此网络系统下计算并没有收敛,如果计算结果是相互接近的,则可以通过不同网络截断误差之间的差别获取收敛解的数值误差带和数值截断误差的大小,这里的“网格”包括笛卡尔网络、非正交网络、傅里叶级数的模拟等。 首先,判断不同网络尺度上解是否已经收敛,因为分析没有收敛的解是没有意义的;再由不同网络尺度上的数值解定量化的给出离散误差的大小。 网格收敛性分析基于Richardson外差的方法,即网格上了离散解u认为是对解析解u exact的近似,由泰勒展开可以表示为:u=u exact+g1h+g2h3+g3h3+… 式中,h表示网格间距。假设给定的计算方法具有p阶精度,则上式可以表示为:u=u exact+O(h p) 设细网格上的解为u1,粗网格上的解为u2,可以通过两个网格的计算值采用外推的方法估计精确解,以精细网格上的解为参照有: 对于细网格上的误差和粗网格的离散误差,不难推导具有下面的形式:

cfd数字计算方法

有限差分法/有限元方法/有限体积法 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。 对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N 个配置点上严格满足微分方程,即在配置点上令方程余量为0。 插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义

仿真分析步骤

例2:以P214例3.2.1说明仿真过程。 仿真分析步骤(P214例3.2.1) 1、选择菜单:放置(Place)\元件(Component)… 数据库(Database):主数据库(Master Database)组(Group):电源(Sources) 系列(Family):电源(POWER_SOURCES) 元件(Component):直流电压源(DC_POWER),单击OK按钮。 Ctrl+M设置属性后放置(或放置后,双击该元件设置属性): 在参数(value)属性页中V oltage(V)选2V,单击OK(确定)按钮。 同法放置接地:GROUND, 同法放置直流电压源:DC_POWER为4V。 在value属性页中V oltage(RMS)选4V。 同法放置直流电流源:系列(Family):电源(SIGNAL_CURRENT_SOURCES) 元件(Component):DC_CURRENT为3A。 双击该元件,在参数(value)属性页中Current(A)选2V,单击OK(确定)按钮。 同法放置直流电流源:DC_CURRENT为2A。 2、选择菜单:放置(Place)\元件(Component)… 数据库(Database):主数据库(Master Database)组(Group):Basic 系列(Family):RESISTOR 元件(Component):1Ω,单击OK按钮。 Ctrl+M设置属性后放置(或放置后,双击该元件设置属性): 在参数(value)属性页中Resistance选2Ω(Ohm),单击OK(确定)按钮。 按Ctrl+R旋转900。 同法放置其余电阻。 3、选择菜单:放置(Place)\导线(Wire) 连线如图所示,在需要的地方放置节点:放置(Place)\节点(Join)。 4、选择菜单“仿真(Simulate)/分析(Analyses)/ 直流工作点分析(DC Operation Point Analysis)”,弹出图3.2.5 所示分析参数设置对话框,“输出(Output variables)”用于选择所 要分析的结点、电源和电感支路。“电路变量(Variables in circuit)”栏中列出了电路中可以

基于matlab的MPSK的仿真流程

MPSK 的仿真分析 一、MPSK 简介 在数字相位调制中,M 进制信号波形可表示为 : 式中,就是信号脉冲形状,就是载波的M 个可能的相位,用于传送发 送信息。 信息与承载信号之间存在的对应关系称为“映射”,不同的调制技术就在于它们所采用的映射方式不同。在MPSK 中,M 个信号对应的M 中映射点均匀分布在0~2π的相位上。 MPSK 信号可以用两个正交的载波信号实现相干解调。正交路与同相路分别设置两个相关器,得到I(t)与Q(t),经电平判决与并串转换即可恢复原始信息。 MPSK 信号可等效为两个正交载波进行多电平双边带调幅所得已调波之与,因此其带宽与MASK 信号带宽相同,理论上没有码间串扰的最大频谱效率为l (bit/s/Hz)。 二、仿真流程 三、仿真过程 1、 生成信号源 首先生成一串二进制随机序列,通过串并转换,分成k*N/k 的序列,并转换成M 进制序列。 信号源 串并转换 相位映射 成型滤波 载波信号 成型滤波 I 路 Q 路 s(t) 匹配滤波 同步载波 90°移相 匹配滤波 I 路 Q 路 高斯信道 判决 并串转换

2、建立符号与载波相位之间的映射关系 就是载波的M个可能的相位,用于映射M个符号,以8PSK为例, (0, π/4,π/2,3π/4, π,5π/4,3π/2,7π/4)共8个相位分别映射了0~7八个符号,其8个星座点分布在 复平面的单位圆上。下图就是得到的8个相位点。 3、分成两路正交信号 将映射后的信号分别投影到两坐标轴上,形成两路相互正交的信号,记为I路与Q路。

4、成型滤波 若就是在此处直接加载波,会造成信号的突变,带宽无穷大。信号在经过带限信号后,码间干扰会非常严重。为了解决这一问题,可以使用一种平滑的成型滤波器,使其不仅可以较为平滑,而且其拖尾在其她码元的位置拖尾为0,这样就可以有效解决码间干扰。此处使用的一种滤波器就就是升余弦滤波器。 过采样的数字信号处理起来对低通滤波器的要求相对较低,如果不过采样,滤波的时候滤波器需要很陡峭,指标会很严格。

CFD数值模拟原理课程总结

CFD 数值模拟原理课程总结 随着近代科学技术的进步,在绝大部分的研究领域内,人们对常见现象的理论研究已达到了一个崭新的境界,如力学、新材料设计的超分子建筑学、统计物理学、流体力学、传热学、化学反应流等。与此同时,这些数学物理方程、理论模型或经验模型,在大量的实验研究及工程应用中得到证实。为了在实际工程运用中能更加直观简洁的描述流体在流场中的流动情况,CFX 软件系列中的CFD ,PRO-E 等软件就能系统的解决流体的数值模拟问题。 CFD 的基本理论基础与流体力学理论基础相似,质量守恒方程,动量守恒方程(牛顿运动定律)和能量守恒方程(热力学第一定律)是CFD 理论的基石和核心。以下为粘性流体流动的基本方程组: (1)连续性方程: (2)动量方程: (3)能量方程: (4)质量组分分数方程: 在粘性流体流动的系统中,以上四个方程构成的方程组是叩开理论流体力学实际问题的基础,同时在CFD 软件运用开发过程中起着理论核心的作用。 二、网格计算中的对流——扩散方程的差分格式分析 网格计算中的基本物理概念(1)节点:需要求解未知物理量的空间几何位置; (2)控制容积:空间实体的面积或体积;(3)界面:控制容积之间的分界面;(4)网格线:连接各节点之间的连线。对于均匀网格,内节点与外节点在区域内的分布趋于一致,仅在坐标轴方向错位半个网格空间;对于不均匀网格计算,内节点永远在控制容积中心,而外节点的界面永远位于两相邻点的中间位置。在实际工程运算中,内节点网格计算处理特变物理现象比较容易,外节点状态。由能量守恒微分方程可以推出差分方程,根据工程应用数学所学知识,运用Taylor 展开得到差分方程。在均匀的网格中,对一维方程,采用不同的离散形式,可以得到相同的差分方程。但是,这不是普遍现象。一般情况下,有差别,计算结果的准确度也不有差别。运用Taylor 展开易于进行数学分析,其缺点是物理概念不清,计算()()0=??+i i i i i t u ρε?ρε?()()()i g s i i i i i i i i i Sc P t +-+?-=??+u u u u u βερε?ρε?()()()i g s i i i i i i i i i Sc P t +-+?-=??+u u u u u βερε?ρε?()()()()∑∑==-+-=?Γ-??+Np j ik ji jk ij Np j ik i jk j k ij ik i ik ik i i i ik i i Y m Y m Y Y Y Y t Y 11ρρβαρα?ρα?u

工业仿真软件模拟流程图

流程图可以给我们清楚的展现出一些复杂的数据,让我们分析或观看起来更加清楚明了。一个工场的生产流程,一个公司的运营模式都只需要用一张流程图就可以简单的概括出来。一款好的流程图制作软件可以让你绘制流程图更加得心应手。 在很多日常用到Linux,Mac系统的人们开始烦恼,似乎就没有一款软件类似Visio,一款软件就能可以解决所有问题。这时,亿图图示出现了。当下受很多人欢迎的绘图软件亿图绘图专家,这款神奇之处在哪里,在这里我给大家介绍一下。 下面是出自设计师们绘制的智能选择颜色模板

绘图小白可以访问亿图软件的动态帮助,点开它,你能找到亿图的产品研发团队准备的软件说明介绍,以及详细的图文、视频教程,让你可以更轻松、更快的熟悉软件,开始绘制你的业务流程图。

不少用户使用亿图绘制一份业务流程图时发现,亿图的功能是符合办公工具在用户心中位置的,可以用来做很多演示要用的图,可以添加很多很难画的图形:

专业的形状是必不可少的,基本流程图形状里具备了所有绘制流程图时需要用的形状: 业务流程图用到的符号很多,能够满足用户这个需求的软件很少。 符号库里的图形是根据模拟真实场景设计的:

这款软件厉害之处是去掉了操作中的“繁文缛节”,简单直接的配合用户画图,但用户依然可以使用工具绘制自己想要的图,最大程度的贴合用户体验。 所有符号的颜色都具备商务、美观、整洁的视觉效果:

亿图图示,即亿图图示专家(EDraw Max),是一款基于矢量的绘图工具,包含大量的事例库和模板库。可以很方便的绘制各种专业的业务流程图、组织结构图、商业图表、程序流程图、数据流程图、工程管理图、软件设计图、网络拓扑图等等。它帮助您更方便,更快捷的阐述设计思想,创作灵感。

Saber中文使用教程之软件仿真流程

Saber中文使用教程之软件仿真流程(1) 今天来简单谈谈 Saber 软件的仿真流程问题。利用 Saber 软件进行仿真分析主要有两种途径,一种是基于原理图进行仿真分析,另一种是基于网表进行仿真分析。前一种方法的基本过程如下: a. 在 SaberSketch 中完成原理图录入工作; b. 然后使用 netlist 命令为原理图产生相应的网表; c. 在使用 simulate 命令将原理图所对应的网表文件加载到仿真器中,同时在Sketch 中启动 SaberGuide 界面; d. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; e. 仿真结束以后利用 CosmosScope 工具对仿真结果进行分析处理。 在这种方法中,需要使用 SaberSketch 和 CosmosScope 两个工具,但从原理图开始,比较直观。所以,多数 Saber 的使用者都采用这种方法进行仿真分析。但它有一个不好的地方就是仿真分析设置和结果观察在两个工具中进行,在需要反复修改测试的情况下,需要在两个窗口间来回切换,比较麻烦。而另一种方法则正好能弥补它的不足。基于网表的分析基本过程如下: a. 启动 SaberGuide 环境,即平时大家所看到的 Saber Simulator 图标,并利用 load design 命令加载需要仿真的网表文件 ; b. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; c. 仿真结束以后直接在 SaberGuide 环境下观察和分析仿真结果。 这种方法要比前一种少很多步骤,并可以在单一环境下实现对目标系统的仿真分析,使用效率很高。但它由于使用网表为基础,很不直观,因此多用于电路系统结构已经稳定,只需要反复调试各种参数的情况;同时还需要使用者对 Saber 软件网表语法结构非常了解,以便在需要修改电路参数和结构的情况下,能够直接对网表文件进行编辑

CFD仿真

3.1气体泄漏扩散的模拟方法 目前在研究气体扩散领域应用较多的模拟方法主要有三种,即:物理模拟方法、数学模拟方法和CFD 数值模拟方法。当然在实际的模拟仿真过程中,经常是两种或是三种方法同时使用,以此来验证模拟的准确性。 3.1.1物理模拟方法 物理模拟是模拟的基础方法,[31]指在不同与实体的规模上将某一过程再现,并分析其物理特性和线性尺度对实体的影响,进而对所研究实体或过程进行直接实验。将实际地形物理按比例的缩小模型置于实验体(如风洞、水槽等)内,在满足基本相似条件(主要包括几何、运动、热力、动力和边界条件相似)的基础上,模拟真实过程的主要特征,如空气动力规律和扩散规律。 物理模型建立的理论基础是相似理论。进行进行物理模拟研究,必须解决如何设计和制作模型以及将模型实验的结论在实体上应用等问题。相似原理是研究、支配力学相似系统的性质及如何用模型实验解决实际问题的一门科学,是进行模型实验研究的依据。 根据相似理论,物理模型若能与原型保持相似,则由物理模型经过实验得到的规律,原型也同样适用。建立物理模型要遵循很多相似条件,如几何相似、运动相似、动力相似及热相似等。在建立模型时,由于所有相似条件不可能完全满足,所以针对研究的具体要求,要适当做出取舍,恰当选取相似参数是实现物理模拟的关键。物理模拟主要用于数值计算模式难于处理的复杂地形以及受到建筑物影响时的扩散研究。与现场实验相比,特别是复杂条件下的现场试验相比,物理模拟实验条件易控制、可重复,且可节省人力、物力,可进行较全面和规律性实验,是大气扩散研究的重要手段。 3.1.2数学模拟方法 数学模拟方法是解决简单扩散问题的常用方法,此方法是[31]通过用数学模型、在一定条件下来研究一个物理或化学过程,或通过模型描述一个复杂的物理或化学过程的某些特点。此种方法所借助的数学模型的方式没有固定限制,可以是一系列代数式或微分、积分方程,也可以简化为一个关系式。 其中常见的数学模型:高斯模型、箱及相似模型、浅层模型、Sutton 模型以及唯象模型。 3.1.3CFD 数值模拟方法 CFD 模拟是一种数值模拟方法,用此方法解决流体运动问题于数学方法的研究思路不同,此种方法对扩散的研究不必依赖偏微分方程的求解,在解决问题时,根据具体研究的要求,不是去求解析解,而是运用有限元的思想对具体问题建模,并通过相应的软件技术对模型进行模拟仿真计算,使对具体的流动过程的分析和研模拟。 采用这种数值模拟方法进行模拟有一定的程序。第一步,根据泄漏介质的特点和泄漏条件建立基本守恒方程,包括质量方程、动量方程、能量方程以及组分方程等;第二步,判断和选择初始和边界条件,对扩散中的各种场函数进行模拟,这些场主要有流场、温度场、浓度场等。第三步,对各种描述结果进行分析,完成模拟目的。[40]此种方法是在借助计算机的基础上完成的,模拟过程中不需要对

Cloudsim3_0仿真流程分析_王燕妮

63软件2014年第35卷 第4期 软件杂志欢迎推荐投稿:cosoft@https://www.360docs.net/doc/cd5008580.html, 0 引言 随着硬件条件的更新发展以及网络技术的成熟演进,云计算应运而生。云计算的主要任务是为基于互联网的应用服务提供可靠、安全、容错、可持续、可扩展的基础设施,然而不同的应用具有不同的组成、配置和部署需求,云端基础设施上的应用及服务模型的负载、能源性能和系统规模都在不断发生变化,因此量化与比较这些应用和服务模型的性能,从而控制使用云计算资源,提高云资源的使用效率就成为业界研究的一大热点。 1 Cloudsim 简介 Cloudsim 是澳大利亚墨尔本大学开发的云计算仿真软件。文献 [1]指出,仿真软件,用户可以反复测试自己的服务,在组成、配置和部署软件前评估模拟软件,调节性能瓶颈,减少资金耗费。Cloudsim 具有多个版本,本文研究的是Cloudsim3.0。Cloudsim3.0采用分层的体系结构。Cloudsim3.0提供虚拟化引擎,可在数据中心节点上建立和管理多重的虚拟化任务,并在虚拟化服务分配时在时间共享及空间共享策略之间灵活切换。Cloudsim3.0是开源的,用户可以通过扩展接口扩展开源代码,实现自己的调度策略。 2 Cloudsim3.0仿真流程及事件响应机制分析 2.1 Cloudsim 3.0仿真流程 如图1所示,CIS 是CloudInformatinoService ,提供实体资源注册的功能;future 队列是未来事件队列,维护着所有新产生的事件队列;deferred 队列是延时事件队列,所有事件必须经过从future 队列移除,加入到deferred 队列中,才能被各个实体进行处理来完成相应的任务。如图1所示,仿真过程分为三个阶段:初始化仿真环境,执行仿真,结束仿真。第一阶段初始化仿真环境主要完成初始化cloudsim 核心仿真引擎,创建数据中心、 Cloudsim3.0仿真流程分析 * 王燕妮,吴文辉 (国防信息学院 信息管理中心,武汉,430010) 摘要:文章研究了Cloudsim3.0仿真软件的仿真流程,并结合实例进行说明。关键词:Cloudsim3.0;仿真流程 中图分类号:TP301.2 文献标识码:A DOI:10.3969/j.issn.1003-6970.2014.04.015本文著录格式:[1] 王燕妮,吴文辉. Cloudsim3.0仿真流程分析[J].软件,2014.35(4):63-64 The Analysis of Simulation Process of Cloudsim3.0 WANG Yan-ni, Wu Wen-hui (Information Management Center, Academy of National Defense Information, Wuhan 430010) 【Abstract 】The paper studies the simulation process of Cloudsim3.0. And the process is illustrated by one example.【Keywords 】Cloudsim3.0; simulation process 基金项目:中国博士后科学基金(2012M521838)。 作者简介:王燕妮(1983-),女,陕西宝鸡人,国防信息学院信息管理中心讲师,硕士,主要研究方向为计算机网络;吴文辉(1978-),男,湖北红安人,国防信息学院信息管理中心讲师,硕士,主要研究方向为计算机网络。 图1 Cloudsim3.0仿真流程 Fig.1 The simulation process of Cloudsim3.0

利用Cadence软件进行高速仿真分析的流程详解

引言: 随着现代设计技术的逐渐深入,所采用的信号时钟频率的提高以及上升或下降时间的缩短,设计意图也变得较难以实现。如通过一般的传统设计流程,设计出产品后的效果通常难以达到当初的设计目标,这正是将高速仿真分析加入传统设计流程的契机。对单板或系统进行高速分析不仅有利于在设计初期发现和解决潜在问题、缩短产品上市时间、降低产品成本、提高产品质量,更是实现设计即正确(Correct by Design:简称CBD)这一终极目标的有力保证。 Cadence公司的设计软件Allegro(或者SpecctraQUEST)就是可以实现高速信号仿真分析的软件。本文对利用Allegro(或者SpecctraQUEST)进行高速信号仿真分析的过程和每一步操作进行了详细的说明,有助于设计人员对高速信号仿真分析的理解和普及,进一步提高公司的设计水平。

Cadence仿真步骤

第一步进行SI仿真的PCB板图的准备 仿真前的准备工作主要包括以下几点: 1、仿真板的准备 ●原理图设计; ● PCB封装设计; ● PCB板外型边框(Outline)设计,PCB板禁止布线区划分(Keepouts); ●输出网表(如果是用CADENCE的Concept HDL设计的原理图,可将网表直接Export 到brd文件中;如果是用PowerPCB设计的板图,要将其转换到allegro中的板图,其操作见附录一的说明); ●器件预布局(Placement):将其中的关键器件进行合理的预布局,主要涉及相对距离、抗干扰、散热、高频电路与低频电路、数字电路与模拟电路等方面; ● PCB板布线分区(Rooms):主要用来区分高频电路与低频电路、数字电路与模拟电路以及相对独立的电路。元器件的布局以及电源和地线的处理将直接影响到电路性能和电磁兼容性能; 2、关键器件资料及模型的准备 ●收集器件的IBIS模型(网上下载、向代理申请、修改同类型器件的IBIS模型等) ●收集器件的关键参数,如Tco、Tsetup、Tholdup等及系统有关的时间参数Tclock、Tskew、Tjitter ●对IBIS模型进行整理、检查、纠错和验证(该步骤可通过使用一些独立的小软件进行,也可利用整合到Cadence 中的模块进行,具体步骤见下面第二步)。 3、确定需要仿真的电路部分,一般包括频率较高,负载较多,拓扑结构比较复杂(点到多点、多点到多点),时钟电路等关键信号线 第二步IBIS模型的转化和加载 CADENCE中的信号完整性仿真是建立在器件IBIS模型的基础上的,但又不是直接应用IBIS模型,CADECE的软件自带一个将IBIS模型转换为自己可用的DML(Device Model Library)模型的功能模块,本章主要就IBIS模型的转换及加载进行讲解。 1、IBIS模型到DML模型的转换 在Allegro窗口中选择Analyse\SI/EMI SIM\Library,打开“signal analyze library browser”窗口,在该窗口的右下方点击“Translate →”按钮,在出现的下拉菜单中选择“ibis2signois”项,出现“Select IBIS Source File”窗口(图1),选择想要进行转换的源IBIS文件,按下“打开”按钮,出现转换后文件名及路径设置窗口(缺省设置为和源IBIS文件同名并同路径放置,但此处文件名后缀为dml),设置后按下“保存”按钮,出现保存确定窗口(图2),点击OK按钮即可,随后会出现一个“messages”窗口,该窗口中的报告文件说明在模型转换过程中出现的问题,对其中的“warning”可不用在意,但如果出现“error”则必须进行修改后重新进行模型格式转化直到没有“error”出现为止,此时转换得到的dml文件才是有

“工作流程很重要”——说说ANSYS CFD的仿真分析步骤

文章来源:安世亚太官方订阅号(搜索:peraglobal) 计算流体力学(Computational Fluid Dynamics简称CFD)是利用数值方法通过计算机求解描述流体运动的数学方程,揭示流体运动的物理规律,研究定常流体运动的空间物理特性和非定常流体运动的时空物理特征的学科。其基本思想可以归纳为:把原来在时间域和空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关十这些离散点上场变量之间的关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD 也可以称之为流体仿真,是从属于CAE(计算机辅助工程)的一个重要组成部分,从这个角度来讲,CFD 的本质仍旧是工程,所以必须要遵循通常意义上工程的一些原则。 ANSYS CFD 的基本工作流程可以认为分成三个主要的部分: ?提出问题 ?化简问题 ?解决问题 (一)提出问题 提出问题,就是要明确仿真目的;这一点其实是最为重要的,但是对于一些仿真工程师来讲却是最容易被忽略的。好多流体仿真工程师在仿真之前难以讲清楚自己的目的是什么、希望通过仿真得到什么,甚至一部分人还希望先做一个流体仿真“看一看情况”,这都是不正确的仿真起点。 任何的流体仿真都必须要有明确的目的,只有在明确的目的引导下,才能够忽略目的之外的

次要因素,我们的仿真才能够顺利的进行;否则,如果我们的目的越多、想要得到(或考虑)的内容越多、我们的仿真规模就会过大,从而导致工作效率降低,无法满足工程上的需求。常见的CFD流体仿真目的有以下几个方面: ?得到温度的分布、温度最值的位置等(如电子散热行业等) ?得到力、力矩或压力系数分布等(如航空航天、汽车行业等) ?得到多相流中某一相(或多相)的分布情况(如石油行业、化工行业等) ?得到管路中的压降(能量损失)和流量分布情况(如流体机械行业等) ?得到流场分布来配合其他的需求 ?…… 当然,不同的行业仿真目的和需求通常是不一样的,因此我们忽略的次要因素也是不尽相同的。图中所示的问题就是一个典型的三通管问题仿真,冷水和热水分别从各自的入口流进三通管,混合后从出口流出,该问题的仿真目的有两个: ?流体流经三通管的压降(能量损失)情况 ?冷水与热水在管内的混合(温度分布)情况 (二)化简问题 有了明确的仿真目的,我们接下来的任务就是化简问题。当然,仿真的问题该如何围绕这明确的目的进行化简,这些工作(思考)通常也应该是在仿真之前就完成的。对于问题的简化,大致上可以分为以下四个方面: ?仿真区域选取 ?边界条件给定 ?几何模型化简 ?物理模型选择 1.仿真区域选取 在流体力学中的守恒方程中,通常大家第一个讨论的就是连续性方程,这个方程从某种意义上来讲,也可以认为是流体区别于固体(就是我们常说的结构仿真)的主要区别。农夫山泉有一句著名的广告词叫“我们不生产水,我们是大自然的搬运工”也是很形象的说明了流体力学中连续性方程的含义:对于一个给定的观测体(仿真区域)流体不会凭空的生成和消失,流体流入多少就会对应的流出多少;同时,流体流出观测体(仿真区域)后也不会消失,而是继续的流动,一直到无穷远的地方(或循环)。 因此,对于流体永久存在(循环)的流体区域,取其中一部分进行仿真分析,本身也是对问题的一个简化。当然,仿真的区域如何选取,不同的情况应该如何应对,由于篇幅的关系,本文就不做详细介绍了。 对于三通管的问题,我们选取了接头的部分作为仿真区域,当然,这并不代表流体从三通管接头直接流到大气之中,而是表示在出口的位置,还有等径圆直管在无限延伸,流体从出口

相关文档
最新文档