锂离子模拟电池组装手册

锂离子模拟电池组装手册
锂离子模拟电池组装手册

锂电池项目规划设计方案

锂电池项目 规划设计方案 规划设计/投资方案/产业运营

锂电池项目规划设计方案说明 随着电池市场规模崛起,锂电池价格还将继续下降。12月3日,彭博新能源财经(BNEF)发布锂离子电池组价格调研报告。报告显示,今年全球锂离子电池组的平均价格为156美元/千瓦时,同比下降13%;较2010年则下降87%。其中,今年中国市场锂电池组平均价格低至147美元/千瓦时,为全球最低。 该锂电池项目计划总投资16251.34万元,其中:固定资产投资12110.90万元,占项目总投资的74.52%;流动资金4140.44万元,占项目总投资的25.48%。 达产年营业收入38938.00万元,总成本费用31092.86万元,税金及附加314.80万元,利润总额7845.14万元,利税总额9242.03万元,税后净利润5883.86万元,达产年纳税总额3358.18万元;达产年投资利润率48.27%,投资利税率56.87%,投资回报率36.21%,全部投资回收期4.26年,提供就业职位703个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。

...... 报告主要内容:项目概述、背景、必要性分析、市场调研预测、项目建设内容分析、选址评价、土建工程研究、项目工艺原则、项目环境影响分析、项目安全保护、风险评价分析、项目节能分析、实施安排、投资方案、经济收益、总结说明等。

第一章项目概述 一、项目概况 (一)项目名称 锂电池项目 随着电池市场规模崛起,锂电池价格还将继续下降。12月3日,彭博新能源财经(BNEF)发布锂离子电池组价格调研报告。报告显示,今年全球锂离子电池组的平均价格为156美元/千瓦时,同比下降13%;较2010年则下降87%。其中,今年中国市场锂电池组平均价格低至147美元/千瓦时,为全球最低。 (二)项目选址 某科技园 (三)项目用地规模 项目总用地面积46236.44平方米(折合约69.32亩)。 (四)项目用地控制指标 该工程规划建筑系数71.90%,建筑容积率1.52,建设区域绿化覆盖率5.55%,固定资产投资强度174.71万元/亩。 (五)土建工程指标

磷酸铁锂动力电池维护手册 整合版

沃特玛电池有限公司 磷酸铁锂动力电池使用手册 电子部 2013-3-15 [为了方面售后服务更好的对OPT管理系统进行维护,特此制定本手册,希望对售后服务有所帮助]

前言 为应对日益突出的燃油供求矛盾和环境污染问题,世界主要汽车生产国纷纷加快部署,将发展新能源汽车作为国家战略,加快推进技术研发和产业化,同时大力发展和推广应用汽车节能技术。节能与新能源汽车已成为国际汽车产业的发展方向。新能源客车,目前正在飞速发展。 当新能源客车穿行于街市,走进人们的生活时,对它的了解和认知也就成我们的必修课。然而,在这新能源之风势在必行之际,谈到动力电池,我们中大多数的人对其都知之甚少,这其中包括很多从事纯电动客车工作的相关从业人员,也正因为如此,才给你们的工作和和生活到来了诸多的困难和疑惑。 为解决这些问题,让从事纯电动客车工作的相关从业人员对动力电池有一些初步的了解和认识,本手册将通过重点介绍磷酸铁锂动力电池和管理系统的运用与维护来让大家了解动力电池的相关知识。为了更好服务客户,让相关从业人员熟悉和掌握我公司的纯电动客车动力电池,也为更好的发挥磷酸铁锂动力电池优越的性能,做好相关的维护保养工作,特制定本手册。希望此举能为大家避免在使用或维护我公司产品时造成不必要的困扰和预防产生一些不可挽回的损失。 烦请在使用或维护沃特玛公司纯电动客车动力电池之前,详细阅读本手册!

目录第一章 第二章

第一章为何选择磷酸铁锂电池作为动力电池 电池的概念 1.1.1什么是电池 化学电源俗称为电池,是一种利用物质的化学反应所释放出来的能量直接转化为电能的装置。顾名思义,电池是装电的池子,尤如水池,电池的电压及容量类似于水池的水位高低和蓄

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

储能电站总体技术方案设计

储能电站总体技术方案 2011-12-20

目录 1.概述 (3) 2.设计标准 (4) 3.储能电站(配合光伏并网发电)方案 (6) 3.1系统架构 (6) 3.2光伏发电子系统 (7) 3.3储能子系统 (7) 3.3.1储能电池组 (8) 3.3.2 电池管理系统(BMS) (9) 3.4并网控制子系统 (12) 3.5储能电站联合控制调度子系统 (14) 4.储能电站(系统)整体发展前景 (16)

1.概述 大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。从2003年开始,日本在Hokkaido 30.6MW 风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。 总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

锂电池的知识手册

锂离子电池的电化学原理是什么 锂离子电池正极主要成分为LiCoO2,负极主要为C, 充电时 正极反应:LiCoO2Li1-xCoO2 + xLi+ + xe- 负极反应:C + xLi+ + xe- CLix 电池总反应:LiCoO2 + C Li1-xCoO2 + CLix 放电时发生上述反应的逆反应。 电池的主要结构组成是什么 电池的主要组成部分为:正极片、负极片、隔膜纸、盖帽、外壳、绝缘层。手机锂电池由哪些部分组成及各部分的功能是什么 手机锂电池主要由塑胶壳上下盖、锂电芯、保护线路板(PCB)和可恢复保险丝(polyswitch)组成。有的厂家还配置了NTC、识别电阻、震动马达或充电电路等元件。 各部分功能如下: (1) 锂电芯:提供可充放电源。 (2) 保护线路板(PCB):防止电池过充过放短路。 (3) 可恢复保险丝(PTC):正热敏电阻起到高温保护作用同时又是保护线路板失效后的二重保护。 (4) 可恢复保险丝(NTC):负热敏电阻,感应电池内部温度起到低温保护作用。 (5) 识别电阻:识别原装电池非原装电池不能使用。 电池的包装材料有哪些

(1) 不干介子纸(如纤维纸双面胶) (2) PVC膜商标管 (3) 连接片(不锈钢片、纯镍片、镀镍钢片) (4) 引出片(不锈钢片---易于焊锡、纯镍片---点焊牢) (5) 插头类 (6) 保护元器件类(如温控开关过流保护器限流电阻) (7) 纸箱纸盒 (8) 塑料壳类 电池包装组合及设计的目的是什么 (1) 美观品牌印字商标的设计 (2) 电池电压的限制(要获得较高电压需串联多只电池) (3) 保护电池,防止短路,延长电池使用寿命 (4) 尺寸的限制 (5) 便于运输(如纸箱.纸盒的设计等) (6) 特殊功能的设计(如防水、特殊外型设计等) 所谓锂离子电池就是使用能够吸藏?脱离锂离子的碳材料作为负极活性物质的电池,锂离子符号为Li-ion。大家知道作为电池一般都是由正极,负极,隔膜,电解液等基本的元素组成,那么锂离子电池所用的这些材料一般是以下一些物质: 正极:钴酸锂(LiCoO2)、镍酸锂(LiNiO2)锰酸锂LiMn 2 O 4 ) 等;

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

锂离子电池隔膜基础知识培训手册

锂离子电池隔膜基础知 识培训手册 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

本手册主要介绍锂离子电池用聚烯烃隔膜,从隔膜的生产原理、性能特性、应用等方面来介绍有关隔膜知识。 (二)电池隔膜的分类 制造隔膜的材料有天然或合成的高分子材料、无机材料等。根据原材料特点和加工方法不同,可将隔膜分成有机材料隔膜、编制隔膜、毡状膜、隔膜纸和陶瓷隔膜等。电池用隔膜的分类如下图: 图1 电池用隔膜分类 从上图可知,隔膜可分为半透膜与微孔膜两大类。半透膜的孔径一般小于1nm ,而微孔膜孔径在10nm以上,甚至到几微米。 (三)锂离子电池隔膜的功能及机理 1、隔膜在锂离子电池中的主要功能 ●在电池内部将正、负极分隔开来,防止接触造成短路; ●有良好的离子通过能力; ●有保持电解液的能力; ●有一定的保护电池安全的能力。 2、隔膜机理隔膜中具有大量曲折贯通的微孔,电解液中的离子载体可以在微孔中自由通过,在正负极之间迁移形成电池内部导电回路,而电子则通过外部回路在正负电极之间迁移形成电流,供用电设备利用。(四)锂离子电池隔膜的主要用途 各种液态锂离子电池,如手机电池、便携式DVD电池、笔记本电脑电池、电动工具电池、GPS电池、电动车和储能装置电池等。 聚烯烃隔膜原料和生产原理 (一)聚烯烃隔膜分类 分类方法按材料分类按工艺分类按结构分类 种类PP、PE、PP/PE 复合 干法、湿法 单层PP、PE 多 层PP、PE 三层 PP/PE/PP (二)聚烯烃隔膜的主要原料 隔膜使用的聚烯烃材料目前主要是聚丙烯(PP)、聚乙烯(PE )两类。聚烯烃材料具有强度高、耐酸碱腐蚀性好、防水、耐化学试剂、生物相容性好、无毒性等优点,在众多领域得到了广泛的应用。当前,商品化的液态锂离子电池大多使用微孔聚烯烃隔膜,因为聚烯烃化合物在合理的成本范围内可以提供良好的机械性能和化学稳定性,而且具有高温自闭性能,更加确保了锂离子二次电池在日常使用上的安全性。(三)聚烯烃隔膜的主要生产方法

锂离子电池最新各种性能测试

锂离子电池最新各种性能测试 1 20℃放电性能测试 首先要进行预循环处理,在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V(GB/T18287-2000规定)后,搁置0.5h~1h,再以0.2CA电流放电到终止电压2. 75V(GB/T18287-2000规定)。在20℃放电性能之前进行预循环处理,能有效激活电池的内部组织结构,给以下各项试验做准备。 在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V后,改为恒压充电,直到充电电流小于或等于0.01CA,最长充电时间不大于8h,停止充电,这时,我们可以清晰的看到电脑仪器上显示出的充电示意图形。在充电过程中,一定要注意时间和充电电流的问题,充电电流达到或等于0.01CA即可,时间不易太长,一般都不超过8h。时间过长会造成过度充电,将会对锂离子电池中过多的锂离子硬塞进负极碳结构里去,这样其中一些锂离子再也无法释放出来,严重的会造成电池的损坏,会影响后面的试验数据结果。电池充电结束后,搁置0.5~1h在20±5℃的温度条件下,以0.2CA电流放电到终止电压2.75V,时间应不低于5小时。 上述充放电重复循环5次,当有一次循环符合GB/T18287-2000中4.2.1的规定放电到终止电压2.75V,时间应不低于5小时。该试验即可停止,有些电池在第一个循环放电时间和终止电压没有达到标准要求,这不意味着电池不合格,是因为电池中的一些聚合物质没被充分地激活,待到第二个循环后被激活,可能就会达到标准要求。 2 锂离子电池的高温性能试验(温度55±2℃) 高温性能试验是测试电池在高温的环境条件下的工作状态,由于在高温的条件下锂离子电池中的物质会发生很大变化,主要测试它的放电时间和安全性。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池放入55±2℃的高温箱中恒温2h,然后以1CA电流放电至终止电压,放电时间应符合标准4.3条规定,时间不小于51分钟,电池外观应无变形和爆炸现象,如有爆炸现象立即切断电源,把测试线从测试仪表上取下。此试验要严格控制好箱体温度,注意温度不易太高。 3 恒定湿热性能试验(温度40℃,相对湿度90%~95%,时间48h) 恒定湿热性能试验是测试电池在温度相对偏高,湿度较大的野外环境下的工作状态,电池按GB /T18287-2000中5.3.2.2条规定充电结束后,将电池放入40±2℃,相对湿度90%~95%的恒温恒湿箱中搁置48h后,将电池取出在环境温度20±5℃的条件下搁置2h,目测电池外观,应符合标准4.7.1的规定,再以1CA电流放电至终止电压,放电时间应符合标准4.7.1的规定不低于36mi n,电池外观应无明显变形、锈蚀、冒烟或爆炸。 4 振动试验 振动试验是测试电池在不平稳的有振幅的特殊条件下的工作状态。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池直接安装或通过夹具安装在振动台的台面上,按下面的振动频

基于单片机的锂离子电池充电系统设计方案

济南大学泉城学院毕业设计方案 题目基于单片机的锂离子电池 充电系统设计 专业电气工程及其自动化 班级1301班 学生姚良洁 学号2013010873 指导教师张兴达魏志轩 二〇一七年四月十日

学院工学院专业电气工程及其自动化 学生姚良洁学号2013010873 设计题目基于单片机的锂离子电池充电系统设计 一、选题背景与意义 1. 国内外研究现状 自90年代以来,中国正日趋成为世界上最大的电池生产国和最大的电池消耗国。随着科技的发展,人们对身边电子产品的数字化、自动化和效率的要求越来越高。便携式电池成为用户的首选,随着各式各样的电池出现,用户在选用电池时,在考虑到电池的环保、性价比的同时,更加注重电池的便携性。正因为锂离子电池具有高的体积比能量和环保性能,符合当前世界电池技术的发展趋势,逐渐成为市场的主流[1]。我国锂电池行业的年增长率已超过20%,2016年电池总体需求量达到50亿块左右。可见,在当前和今后相当一段时间,锂电池将成为我国电池工业的龙头。 虽然我国已是仅次于日本的锂离子电池生产大国,市场增长空间巨大,但并非强国,在全球锂离子电池产业仍处于低端。随着手机用户的日益增多,如何保养手机也成为了众多手机使用者面临的一个实际问题,而手机电池作为手机的一个重要组成部分,直接影响了使用寿命和性能。智能手机的屏幕越来越大,功能越来越多,现有的锂离子电池产品越来越难以满足需求,选择合适的充电器,可以延长我们的手机锂离子电池的使用寿命。 现阶段消费者除了通过原厂配备的充电器给便携式设备充电之外,普遍采用的是通过移动电源来补充电池的电量。根据日本矢野经济研究所的预测,锂离子电池正以53.33%的年增长率快速取代传统的镍铬镍氢电池市场。目前国内移动电源市场上主要的品牌有小米、爱国者、品胜、华为等,国外市场比较知名的品牌有BOOSTCASE、MALA 等。移动电源市场在近几年得到了很大的发展,市场中出现了各式各样的品牌。与此同时,在移动电源产品中也存在很多需要解决的问题。比如:自身充电所需时间过长,USB输出电压不稳定,电能转化效率不高,输出保护较为单一,输出大电流时散热性能不好等。相较于国外而言,国内的锂电池智能充电系统性能欠佳,还需要加大研究力度[2]。 2. 选题的目的及意义 近几年来,便携式电子产品的迅猛发展促进了电池技术的更新换代。其中锂离子电池以其重量轻、储能大、功率大、无记忆效应、无污染、自放电系数小、循环寿命长等优点,脱颖而出,迅速成为市场的主流。锂电池是20世纪末才出现的绿色高效能可充电电池,目前随着锂离子电池的推广及大量应用,锂离子电池深受社会和用户的欢迎[3]。目前已广泛应用于手机、笔记本电脑、数码相机及众多的便携式设备,其中笔记本电脑占23%,手机占50%,为最大领域。电子、

锂电池基础知识讲解

锂电池基础知识讲解 理想的锂离子电池,除了锂离子在正负极之间嵌入和脱出外,不发生其他副反应,不出现锂离子的不可逆消耗。实际的锂离子电池,每时每刻都有副反应存在,也有不可逆的消耗,如电解液分解,活性物质溶解,金属锂沉积等,只不过程度不同而己。实际电池系统,每次循环中,任何能够产生或消耗锂离子或电子的副反应,都可能导致电池容量平衡的改变。一旦电池的容量平衡发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 ⑴正极材料的溶解 尖晶石LiMn2O4中Mn的溶解是引起LiMn2O4可逆容量衰减的主要原因,对于Mn的溶解机理,一般有两种解释:氧化还原机制和离子交换机制。氧化还原机制是指放电末期Mn3+的浓度高,在LiMn2O4表面的Mn+会发生歧化反应: 2Mn3+(固)Mn4+(固)+Mn2+(液) 歧化反应生成的二价锰离子溶于电解液。离子交换机制是指Li+和H+在尖晶石表面进行交换,最终形成没有电化学活性的HMn2O4。 Xia等的研究表明,锰的溶解所引起的容量损失占整个电池容量损失的比例随着温度的升高而明显增大(由常温下的23%增大到55℃时的34%)[14]。 ⑵正极材料的相变化[15] 锂离子电池中的相变有两类:一是锂离子正常脱嵌时电极材料发生的相变;二是过充电或过放电时电极材料发生的相变。 对于第一类相变,一般认为锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,同时在材料内部产生应力,从而引起宿主晶格发生变化,这些变化减少了颗粒间以及颗粒与电极间的电化学接触。 第二类相变是Jahn-Teller效应。Jahn-Teller效应是指由于锂离子的反复嵌入与脱嵌引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。由于Jahn-Teller效应所导致的尖晶石结构不可逆转变,也是LiMn2O4容量衰减的主要原因之一。在深度放电时,Mn的平均化合价低于3.5V,尖晶石的结构由立方晶相向四方晶相转变。四方晶相对称性低且无序性强,使锂离子的脱嵌可逆程度降低,表现为正极材料可逆容量的衰减。 ⑶电解液的还原[15] 锂离子电池中常用的电解液主要包括由各种有机碳酸酯(如PC、EC、DMC、DEC 等)的混合物组成的溶剂以及由锂盐(如LiPF6 、LiClO4 、LiAsF6 等)组成的电解质。在充电的条件下,电解液对含碳电极具有不稳定性,故会发生还原反应。电解液还原消耗了电解质及其溶剂,对电池容量及循环寿命产生不良影响,由此产生的气体会增加电池的内部压力,对系统的安全造成威胁。 ⑷过充电造成的量损失[15] 负极锂的沉积:过充电时,发生锂离子在负极活性物质表面上的沉积。锂离子的沉积一方面造成可逆锂离子数目减少,另一方面沉积的锂金属极易与电解液中的溶剂或盐的分子发生反应,生成Li2CO3、LiF或其他物质,这些物质可以堵塞电极孔,最终导致容量损失和寿命下降。 电解液氧化:锂离子电池常用的电解液在过充电时容易分解形成不可溶的Li2CO3等产物,阻塞极孔并产生气体,这也会造成容量的损失,并产生安全隐患。 正极氧缺陷:高电压区正极LiMn2O4中有损失氧的趋势,这造成氧缺陷从而导致容量损失。 ⑸自放电 锂离子电池的自放电所导致的容量损失大部分是可逆的,只有一小部分是不可逆的。造成不可逆自放电的原因主要有:锂离子的损失(形成不可溶的Li2CO3等物质);电解液氧化产物堵塞电极微孔,造成内阻增大。

锂离子电池材料测试

锂离子电池材料测试 最直观的结构观察:扫描电镜(SEM)和透射电镜(TEM) 1.扫描电镜(SEM) 由于电池材料的观察尺度在亚微米即几百纳米到几微米的范围,普通光学显微镜无法满足观察的需求,而更高放大倍数的电子显微镜则经常被用来观察电池材料。 扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。扫描电子显微镜可以观察到锂电材料的粒径大小和均匀程度,以及纳米材料自身的特殊形貌,甚至通过观察材料在循环过程中发生的形变我们可以判断其对应的循环保持能力好坏。如图1b所示,二氧化钛纤维具有的特殊网状结构能提供良好的电化学性能。

图1:(a)扫描电镜(SEM)的结构原理图;(b)SEM测试得到 的图片(TiO2的纳米线) 1.1 SEM扫描电镜原理: 如图1a所示,SEM是利用电子束轰击样品表面,引起二次电子等信号的发射,主要利用SE并放大、传递SE所携带的信息,按时间序列逐点成像,显像管上成像。 1.2 扫描电镜的特点: ⑴图象立体感强、可观察一定厚度的样 ⑵样品制备简单,可观察较大的样 ⑶分辨率较高,30~40? ⑷倍率连续可变,从4倍~~15万 ⑸可配附件,进行微区的定量、定性分析 1.3 观察对象: 粉末、颗粒、块状材料都可以测试,测试前除保持干燥外,不需要特殊处理。主要用于观察样品的表面形貌、割裂面结构、管腔内表面的结构等。可直观反应材料的粒径尺寸特殊结构及分布情况。2.TEM透射电子显微镜

锂电池铝塑膜项目规划设计方案 (1)

锂电池铝塑膜项目 规划设计方案 规划设计/投资分析/产业运营

锂电池铝塑膜项目规划设计方案说明 铝塑膜是软包装锂电池电芯封装的关键材料。铝塑膜即铝塑复合膜, 可以将组装后的单片电池密封形成一个电池,起保护内容物的作用,铝塑 膜对电池的性能有重要影响,因此用于锂电池电芯封装材料的铝塑膜必须 具有极高的阻隔性、良好的热封性、耐电解液与强酸、和延展性、柔韧性、高机械强度等特点。 该锂电池铝塑膜项目计划总投资18663.13万元,其中:固定资产投资14082.83万元,占项目总投资的75.46%;流动资金4580.30万元,占项目 总投资的24.54%。 达产年营业收入37057.00万元,总成本费用28454.74万元,税金及 附加341.71万元,利润总额8602.26万元,利税总额10130.49万元,税 后净利润6451.69万元,达产年纳税总额3678.80万元;达产年投资利润 率46.09%,投资利税率54.28%,投资回报率34.57%,全部投资回收期 4.39年,提供就业职位597个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价 方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和 对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与 未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬

请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后 续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供 报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关 后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳 权和取舍权,敬请本报告的所有读者给予谅解。 ...... 报告主要内容:概论、背景、必要性分析、项目市场前景分析、项目 建设方案、项目选址规划、土建工程设计、项目工艺先进性、环保和清洁 生产说明、安全经营规范、投资风险分析、项目节能评估、进度计划、项 目投资方案、项目经济效益、项目结论等。

锂电池基本知识

锂电池基本知识 Li-ion电池有哪些优点?哪些缺点? Li-ion具有以下优点: 1)单体电池的工作电压高达2.75-4.2V(标称电压3.6V或者3.7V) 2)比能量大,循环寿命长,一般均可达到500次以上,甚至1000次. 4)安全性能好,无公害,无记忆效应. 作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd 电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。 5)自放电小 室温下充满电的Li-ion储存1个月后的自放电率为10%左右, 2、什么充电限制电压?额定容量?额定电压?终止电压? A、充电限制电压 按生产厂家规定,电池由恒流充电转入恒压充电时的电压值。一般单节电池充电限制电压4.2V,多节就是N*4.2(n=1,2,3,4......) B、额定容量 生产厂家标明的电池容量,指电池在环境温度为20℃±5℃条件下,以5h率放电至终止电压时所应提供的电量,用C5表示,单位为Ah(安培小时)或mAh(毫安小时)。 C、标称电压 用以表示电池电压的近似值。 D、终止电压

规定放电终止时电池的负载电压,其值为n*2.75V(锂离子单体电池的串联只数用“n”表示)。 10、为什么恒压充电电流为逐渐减少? 因为恒流过程终止时,电池内部的电化学极化然后保持在整个恒流中相同的水平,恒压过程,再恒定电场作用下,内部Li+的浓差极化在逐渐消除,离子的迁移数和速度表现为电流逐渐减少。 11、什么是电池的容量? 电池的容量有额定容量和实际容量之分。电池的额定量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。Li-ion规定电池在常温、恒流(1C)恒压(4.2V)控制的充电条件下充电3h,电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响(故严格来讲,电池容量应指明充放电条件)。容量常见单位有:mAh、Ah=1000mAh) 12、什么是电池内阻? 是指电池在工作时,电流流过电池内部所受到的阻力。有欧姆内阻与极化内阻两部分组成。电池内阻大,会导致电池放电工作电压降低,放电时间缩短。内阻大小主要受电池的材料、制造工艺、电池结构等因素的影响。是衡量电池性能的一个重要参数。注:一般以充电态内阻为标准。测量电池的内阻需用专用内阻仪测量,而不能用万用表欧姆档测量。 13、什么是开路电压? 是指电池在非工作状态下即电路无电流流过时,电池正负极之间的电势差。一般情况下,Li-ion充满电后开路电压为4.1-4.2V左右,放电后开压为3.0V左

串联式锂电池组的锂电池保护板实现方案

郑州正方科技: 如今资源紧缺以及环境污染对人类造成的困扰越来越大,新能源的开发成了国家乃至全球发展的重点对象,众所周知,新型的锂电池组也逐步取代老式的铅酸电池组用于电动自行车以及电动汽车上,锂电池的轻便,高性能等等的一系列的优点,也使得电动工具更加的方便,高效。目前,各个生产商也针对不同的类型的锂电池组生产相对应的锂电池保护板以保证电池组的安全性,以及对电池组的一系列的保护措施。这类型的锂电池保护芯片也主要对应的是1~4串的锂电池组,当然也有对应5~10串电池组的保护板,如BQ77PL900芯片,这种芯片的功能更加全面,应用度也很广泛。这也完全避免了目前市场上集成电路芯片保护板的一些弊端,例如保护失效以及复杂等等缺点! 此外,锂电池组在充电的时候如果不能保证每个单节电池的均衡充电,那么就会极大的影响了电池组的性能以及使用寿命,目前最常见的均衡充电有这么几类:(1)恒定电流分阻均衡充电(2)电感均衡充电(3)降压型变换器均衡充电(4)开关电容均衡充电等等,所以有一点大家可想而知,单单节电池不存在多个电池组合的问题,所以不需要均衡充电控制功能;下面我们就讲的是锂电池保护板的一些实现方案。 根据锂电池保护板的保护原理,我们做了实验,在实际的应用中,某厂要求2组并联、10节串联的36V8A·h锰酸锂动力电池组保护板的设计,考虑到外部干扰可能会引起电池电压不稳定的情况,这样

会造成电压极短时间的过压或欠压,从而导致电池保护电路错误判断,因此在保护芯片配有相应的延时逻辑,必要时可在保护板上添加延时电路,这样将有效降低外部干扰造成保护电路误动作的可能性。由于电池组不工作时,保护板上各开关器件处于断开状态,故静态损耗几乎为0。当系统工作时,主要损耗为主电路中2个MOS管上的通态损耗,当充电状态下均衡电路工作时,分流支路中电阻热损耗较大,但时间较短,整体动态损耗在电池组正常工作的周期内处于可以接受的水平。经测试,该保护电路的设计能够满足串联锂电池组保护的需要,保护功能齐全,能可靠地进行过充电、过放电的保护,同时实现均衡充电功能。 本文采用单节锂电池保护芯片设计实现了多节锂电池串联的锂电池保护板,除可完成必要的过电压、欠电压、过电流和短路保护功能外,还可以实现均衡充电功能。这一串联式锂电池组的锂电池保护板实现方案的实验结果验证了该方案的可行性,市场使用情况检验了该设计的稳定性。

锂电池的知识手册范本

锂离子电池的电化学原理是什么? 锂离子电池正极主要成分为LiCoO2,负极主要为C, 充电时 正极反应:LiCoO2?Li1-xCoO2 + xLi+ + xe- 负极反应:C + xLi+ + xe-? CLix 电池总反应:LiCoO2 + C ? Li1-xCoO2 + CLix 放电时发生上述反应的逆反应。 电池的主要结构组成是什么? 电池的主要组成部分为:正极片、负极片、隔膜纸、盖帽、外壳、绝缘层。手机锂电池由哪些部分组成及各部分的功能是什么? 手机锂电池主要由塑胶壳上下盖、锂电芯、保护线路板(PCB)和可恢复保险丝(polyswitch)组成。有的厂家还配置了NTC、识别电阻、震动马达或充电电路等元件。 各部分功能如下: (1) 锂电芯:提供可充放电源。 (2) 保护线路板(PCB):防止电池过充过放短路。 (3) 可恢复保险丝(PTC):正热敏电阻起到高温保护作用同时又是保护线路板失效后的二重保护。 (4) 可恢复保险丝(NTC):负热敏电阻,感应电池部温度起到低温保护作用。 (5) 识别电阻:识别原装电池非原装电池不能使用。 电池的包装材料有哪些?

(1) 不干介子纸(如纤维纸双面胶) (2) PVC膜商标管 (3) 连接片(不锈钢片、纯镍片、镀镍钢片) (4) 引出片(不锈钢片---易于焊锡、纯镍片---点焊牢) (5) 插头类 (6) 保护元器件类(如温控开关过流保护器限流电阻) (7) 纸箱纸盒 (8) 塑料壳类 电池包装组合及设计的目的是什么? (1) 美观品牌印字商标的设计 (2) 电池电压的限制(要获得较高电压需串联多只电池) (3) 保护电池,防止短路,延长电池使用寿命 (4) 尺寸的限制 (5) 便于运输(如纸箱.纸盒的设计等) (6) 特殊功能的设计(如防水、特殊外型设计等) 所谓锂离子电池就是使用能够吸藏?脱离锂离子的碳材料作为负极活性物质的电池,锂离子符号为Li-ion。大家知道作为电池一般都是由正极,负极,隔膜,电解液等基本的元素组成,那么锂离子电池所用的这些材料一般是以下一些物质: 正极:钴酸锂(LiCoO2)、镍酸锂(LiNiO2)锰酸锂LiMn 2 O 4 )等;

电动工具锂离子电池的几个安全测试方法(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电动工具锂离子电池的几个安全测试方法(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7963-68 电动工具锂离子电池的几个安全测 试方法(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 现在电动工具的市场正慢慢变得庞大,电动工具用的环保型锂电池各国也在致力开发。这类环保的锂离子电池具有比功率大、自放电小,比能量高、充电效率高、无环境污染、工作温度宽等特点,比起因污染问题逐渐退出市场的镍镉电池,逐渐占领了主导的地位。 这类电池可通过过充、短路、针刺、挤压、重物撞击等安全测试,电池不起火,不爆炸。可以再电动工具中得到使用。 锂离子电池的安全测试 锂离子电池在电动工具中使用时都采用保护板对电池进行安全保护,但在实际使用时保护板不可能达到100%的可靠性。且还有可能碰到充电器故障或其他

种种意外。这就要求锂离子电池必须具有良好的滥用及意外情况的承受能力。我们在电动工具用磷酸亚铁锂锂离子电池开发过程中需对电池进行过充、短路、针刺、挤压、重物等项目的测试。 挤压测试:BE-6045 将充满电的电池放在一个平面上,由油压缸施与13+1KN的挤压力,由直径为32mm的钢棒平面挤压电池,一旦挤压压力到达最大停止挤压,电池不起火,不爆炸即可。 重物撞击测试:BE-5066 电池充满电后,放置在一个平面上,将直径15.8mm的钢柱垂直置于电池中心,将重量9.1kg的重物从610mm的高度自由落到电池上方的钢柱上。电池不起火、不爆炸即可。 过充测试: 将电池用1C充满电,按照3C过充10V进行过充试验,当电池过充时电压上升到一定电压时稳定一段时间,接近一定时间时电池电压快速上升,当上升至

电动车锂电池组设计方案

基于单片机控制的电动车锂电池组设计方案 摘要:针对目前电动车锂电池组所用的保护电路大多都由分立原件构成,存在控制精度不够高、技术指标低、不能有效保护锂电池组等特点,提出一种基于单片机的电动车36 V锂电池组保护电路设计方案。利用高性能、低功耗的ATmega16L 单片机作为检测和控制核心,用由MC34063构成的DC /DC变换控制电路为整个保护电路提供稳压电源,辅以LM60测温、MOS管IRF530N作充放电控制开关,实现对整个电池组和单个电池的状态监控和保护功能,达到延长电池使用寿命的目的。 随着电动自行车的逐渐普及,电动自行车的主要能源---锂电池也成为众人关心的焦点。锂电池与镍镉、镍氢电池不太一样,因其能量密度高,对充放电要求很高。当过充、过放、过流及短路保护等情况发生时,锂电池内的压力与热量大量增加,容易产生爆炸,因此通常都会在电池包内加保护电路,用以提高锂电池的使用寿命。针对目前电动车锂电池组所用的保护电路大多都由分立原件构成,存在控制精度不够高、技术指标低、不能有效保护锂电池组等特点,本文中提出一种基于单片机的电动车36 V锂电池组(由10节3. 6 V锂电池串联而成)保护电路设计方案,利用高性能、低功耗的ATmega16L 单片机作为检测和控制核心,用由MC34063构成的DC /DC变换控制电路为整个保护电路提供稳压电源,辅以LM60 测温、MOS管IRF530N作充放电控制开关,实现对整个电池组和单个电池的状态监控和保护功能,达到延长电池使用寿命的目的。 1 保护电路硬件设计 本系统以单片机为数据处理和控制的核心,将任务设计分解为电压测量、电流测量、温度测量、开关控制、电源、均衡充电等功能模块。系统的总体框图如图1所示。

最全面的锂电池知识

最全面的锂电池知识 锂电池基础 锂电池是可充电电池,一般的锂电池充满电是4.2V也有其它电压的电池。锂电池容量是xxxmAh ,比如1000mAh ,即1000mA的供电电流可以用1小时。500mA 供电能用2小时。依此类推。 锂电池的寿命和充电方式 是指完全充满放光的次数限制。 充电方式:快充,慢充,涓流充电,恒流充电等。 锂电池电路设计的注意问题: 锂电池过充,过放电都会影响电池的寿命。 注意锂电池的充电电压,充电电流。然后选取合适的充电芯片。 注意要防止锂电池的过充,过放,短路保护等问题。 设计过后要经过大量的测试。 锂电池充电电路的设计 这里选择了芯片TP4056为例子。根据所接电阻不同可以控制充电最大电流。可以设计充电指示灯,可以设计充电温度即多少到多少度之间进行充电。

充电保护电路,选择芯片DW01 和GTT8205的组合,可以做到短路保护,过充过 放电的保护。 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。

锂离子电池充放电安全检测设计

锂离子电池充放电安全检测设计 手机的锂离子电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成的危险。 随着科技进步、生活质量提升,电子产品的踪迹到处可见,其中又以手机为人类生活中不可或缺的必需品。不论是早期黑金刚手机或现今功能强大的智能手机,皆需要电源才能运作。 早期手机的电池主要有二种,一是镍氢、镍镉电池,二是锂离子电池,但现在使用镍氢、镍镉电池来做为电源的手机,已经是非常的少见,绝大部分都是使用锂离子电池,尤其消费者希望手机待机时间更长,且体积要更小,所以镍氢、镍镉电池已经慢慢不能符合消费者的期望而被淘汰。虽然镍氢、镍镉电池在价格以及替代电池取得的便利性优于锂离子电池,在其他电子产品上仍旧可看到镍氢、镍镉电池的踪迹;但是,在体积、重量及容量方面,镍氢、镍镉电池皆不如锂离子电池,所以现今标榜着轻薄短小的电子产品,几乎都是使用锂离子电池。 智能型手机因其功能强大、屏幕耗电量大,更是需要电池容量大及电力更耐久的锂离子电池。当手机电池电量不足时,使用者通常会以充电器或搭配一组移动电源随时对电池进行充电。 体积/容量兼具锂离子电池为电子产品首选 充电电池依其材质的不同可分为四类:铅酸电池、镍镉电池、镍氢电池和锂离子电池。

表1 充电电池比较表 由表1优缺点看来,镍镉、镍氢及锂离子电池较适合使用在电子产品上;而锂离子电池无论是在体积、重量及容量(电子产品的使用时间)较优于镍镉、镍氢电池,也无记忆效应的问题,所以锂离子电池在电子产品使用上似乎方便许多。 延长使用寿命锂离子电池充/放电压成关键 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低设定电压以下便要停止放电,避免因过放电而降低使用寿命。 此外,为确保电池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险;即使大多数的锂离子电池都有加装保护电路,然而在选择优质的充电器或移动电源时,这仍然是一项重要的考量因素。

相关文档
最新文档