稀土有机配合物的应用1

稀土有机配合物的应用1
稀土有机配合物的应用1

稀土有机配合物的应用

摘要:我国是稀土资源大国,稀土资源占世界储量的80% ,在稀土研究方面占有得天独厚的优势。稀土离子以其独特的配位性质引起研究者的广泛关注,本文讨论了稀土及其金属配合物在现今社会的主要应用和研究方向,比如在医学中对肿瘤的抑制作用;具有特殊性能的发光材料在分析化学、生物、医药中的应用。最后展望一下稀土配合物的发展前景。

关键词:稀土配合物功能应用

一、稀土配合物的抗肿瘤活性

肿瘤是危害人类健康的重大因素,我国恶性肿瘤的发病率及死亡率均呈上升趋势,肿瘤的预防和治疗任务十分艰巨。尽管目前抗肿瘤药物数不胜数,但大多数存在着毒副作用大、价格昂贵等缺点,因此开发更加高效低毒廉价的抗肿瘤药物一直是国内外的研究热点。稀土元素具有抗炎杀菌和抗肿瘤活性,然大量研究证实许多稀土配合物的抗菌、抗肿瘤的生物活性较原配体会有不同程度的提高,而且毒作用降低,可以利用稀土与原配体的系统作用有助雨寻找更加高效、低毒的抗菌、消炎、防腐和抗肿瘤的新药。因此稀土配合物的抗菌、抗肿瘤活性引起了研究者的广泛关注。黄熠【1】等以硫代脯氨酸和笨甲酸为配体合成一种新的稀土配合无,用红外光谱、热重差热分析、元素分析和化学分析等方法确定其化学式为

Nd(C

7H

5

O

2

)

2

(C

4

H

6

NO

2

S)·2H2O,在体外活性表明其对Hela细胞的增值有较好的一直作用。同时

范小娜【2】等对稀土离子Eu3+、Dy3+与槲皮素配合物的合成及抗肿瘤活性进行了研究,利用元素分析、摩尔电导、红外光谱、紫外光谱等手段对配合物的组成和结构进行确定为

EuC15H8O7Cl10·H2O和DyC15H8O7Cl2·H2O,同时采用噻唑蓝(MTT)比色发对配体及配合物对HepG2肝癌细胞株的抗肿瘤活性进行了测定,结果表明槲皮素、Eu-槲皮素和Dy-槲皮素能依赖性地抑制HepG2细胞的增值,切槲皮素稀土离子配合物对细胞增值的抑制率显著高于槲皮素组。

二、稀土有机配合物的发光性

1 稀土配合物的发光机理及能量传递过程

稀土元素的显著特点是大多数稀土离子含有能级相近且未充满的4f电子,并且4f电子处于原子结构的内层,受到5 s2 5p6电子对外场的屏蔽,因此其配位场效应较小,其中,除La3+, Lu3+之外的镧系离子的4f电子可在7个4f轨道之间任意分布,从而产生各种光谱项和能级,而由于稀土元素位于内层的4f电子可以在不同能级之间进行跳跃,从而产生了大量的吸收和荧光光谱信息。它们的能级跳跃达20万余次,可以发射紫外到红外各种波长的电磁辐射。三价

镧系稀土离子的颜色呈明显的对称性,没有4f电子的La3+离子和4f层全满的Lu3+离子以及半充满的Gd3+离子为无色

2、稀土有机配合物发光研究

到目前为止,已研究过的稀土有机配合物的配体主要有【3】:各种类型的β - 二酮:环状的,直链的以及具有吡酮环的;芳香环化合物:芳香羧酸,稠环芳烃及其衍生物;杂环化合物中有联吡啶、邻菲罗啉及其衍生物、8 - 羟基喹啉和吲哚等衍生物;中性配体有三苯基氧膦、二烷基亚砜、吡啶氮氧化物;大环类有大环聚醚、大环多酮、卟啉类、酞菁类和多烯化合物、聚酰胺以及聚醚醚酮等。羧酸类的配体一般为芳香羧酸, 如邻苯二甲酸、水杨酸等。由于芳香环具有较大的共轭的刚性平面, 以及它可以通过羧基氧与稀土离子配位, 因而形成的稀土配合物具有较好的发光性及稳定性。羧酸类的配合物当加入其他不发光稀土离子时也有共荧光效应。

2. 1稀土有机羧酸配合物发光研究

这里的羧酸主要是指含芳香环的羧酸,如水杨酸,苯乙酸等。因为都是羧基与稀土的配合,所以这种配合物与稀土- 生物大分子配合物有很多相同之处, 也与稀土氨基酸配合物有相近之处。氨基酸与稀土配合时,主要是其中的羧基与稀土配位,这一点与其他有机羧酸相似,而且在众多氨基酸中仅三个含芳香环的(色氨酸,酪氨酸及苯丙氨酸)有荧光现象【4】。因此,研究这些氨基酸与稀土相互作用对于研究蛋白质氨基酸残基与稀土相互作用是相当重要的。

2. 2 稀土- 生物分子配合物的发光研究【5】

生物体内最为重要的金属离子钙、镁等, 由于具有闭壳层电子结构,没有了适当的光、磁性质, 使得对它们的研究受到了限制。但当使用具有荧光性质的稀土离子代替Ca2 + 、Mg2 +等金属离子之后, 利用稀土配合物发光原理, 稀土离子作为荧光探针,可以给出许多生物大分子的有关信息。关于稀土生物大分子配合物的发光研究主要有: ①金属离子在生物大分子中结合部位的结构及数目; ②与稀土结合的生物大分子对称性; ③金属离子之间的相对位置; ④金属离子结合水的数目等。总之, 由于稀土离子的荧光具有灵敏度高, 特异性强, 所有试剂有良好稳定性等优点, 所以稀土荧光探针技术在生命科学研究中有着十分重要的应用价值。

2. 3 稀土有机高(大)分子配合物的发光研究

稀土有机高(大)分子配合物主要是指能使稀土与高分子配位基团直接成键的配合物。这类配合物比较突出的特点是在较高稀土浓度下仍可制备成透明柔韧的薄膜。这类配合物与配体高分子链相联结的配基主要有β二酮基,吡啶基, 羧基等【6】。早在80年代初, Y. Okamoto 【7】就进行这方面的研究。其中的稀土离子,既可以是Eu3+或Tb3+等高价稀土离子,也可以是

Eu2+ ,Ce2+等低价稀土离子,它们的发光机理与其相应的有机小分子配合物发光机理相似。稀土有机高分子配合物的制备方法主要有以下途径【8】 : (1) 稀土与高分子链上含有配位基的高分子配体配位。此类配位基主要有β - 二酮、羧酸、磺酸、卟啉、吡啶、冠醚基及穴醚基等。配位基与稀土形成新配位体, 配位体再进行自聚合或加入另外的单体进行共聚合, 从而得到均聚高分子和共聚高分子; (2) 将均聚或共聚高分子溶于溶剂中, 加入相应的稀土

化合物, 利用稀土离子的配位能力和离子键合能力, 在一定条件下制得含稀土的均聚或共

聚物

3 发光稀土有机配合物的应用

由于稀土配合物荧光具有Stokes位移大、发射光谱、激发和发射波长理想、荧光寿命长、荧光稳定、受外界影响小等特性, 使其在实际应用中有重要而且广泛的价值, 尤其是具有优良发光特性的Eu3+, Tb3+。发光稀土配合物的应用主要有以下几个。

3. 1在分析化学方面的应用

基于荧光光谱的高灵敏度和高选择性,利用荧光进行分析可以使检测灵敏度接近或达到极限- 单原子或单分子的水平【9-10】如利用稀土有机配合物的发光性能进行矿发光分析,可以检测矿样中稀土含量;用稀土配合物作为分析试剂的荧光免疫分析等。Georges等【11】发表了关于镧系敏化发光在有机物测定中的应用的综述性文章。人们利用该法对生命物质核酸、核苷酸、脱氧核苷酸、蛋白质等进行了研究,在药物分析领域该法也有广泛应用。近年来,

为了适应生命科学的发展要求,荧光光谱仪在各方面不断的改善,特别是时间分辨荧光光谱

技术及其与免疫分析技术的结合,为对复杂的生物体系的研究开辟了广阔的应用前景。

3. 2稀土配位化合物的结构探针

稀土离子作为发光探针一般可获得配合物里中心离子的格位数、中心离子的局部对称性、配位体形式电荷之和、直接与金属离子键合水的树木及两个金属离子间的距离等结构信息。金属离子的格位数和局部对称性,随着高功率连续或脉冲式可调激光器的商品化,我们可以

得到荧光配合物的高分辨荧光光谱。由高分辨荧光光谱谱线分裂情况给出晶体中金属离子的格位数和局部对称性,此外,还可根据高分辨荧光光谱谱线分裂情况来确定中心离子的局部

对称性与其他结构信息。很多生物大分子本身含有金属离子如Ca2+,Mg2+等被稀土离子取代就能形成探测信号,利用这种信号可以研究生物大分子的结构及形态,称之为荧光探针技术。这种技术具有高灵敏度,不破坏大分子结构等优点,因此广泛用于生物大分子的研究。

3. 3稀土功能材料

稀土发光配合物广泛应用于各种材料方面. 由于具有有机配体的配合物有较好的油溶

性,因此可将稀土配合物溶于印刷油墨,印制各种仿伪商标、有价证券等,还可以制成发光涂料或与透明塑料混合制成各种显示材料;利用有机配体对紫外光的高效吸收及稀土离子的高效发光,可把稀土有机配合物分散到高分子中,再制成发光的功能农用薄膜,已获得农田增产达20%的效果。含稀土Ln3+ , Tb3+及Eu2+的高分子配合物在紫外光激发下可分别发出红、绿、蓝三色的荧光, 可把它们制成三基色复合高分子或塑料型荧光照明灯、彩色显示器件, 如可发射红、绿和蓝光的有机玻璃, 用作发光的广告牌等。另外, 稀土配合物也可用于太阳能荧光浓集器,提高太阳能电池的光电转换率;稀土螯合物的发光溶液可检测出机械构件中的裂纹或空洞等。

三、展望

稀土荧光材料虽然经历时间较短, 但是已经取得了世人瞩目的成就。如今, 稀土发光材料已被广泛应用于许多领域之中,而且在不断地深化、完善和发展。尽管稀土配合物发光材料的研究取得了很大进展, 但目前,在主客体材料的相容性、磷光自猝灭现象以及材料的稳定性方面尚需进一步改进和提高,载流子传输能力较差导致发光效率低的缺陷依然有待克服。同时,由于研究还不够系统,特别是对配体结构及稀土离子的电子结构与发光性能内在联系的规律性还缺少充分的了解,寻找高吸光系数的配体,合成新的合适的稀土金属配合物,提高和改善稀土配合物发光材料的性能, 仍是我们今后努力的方向。

Abstract:China's rare earth resources in the country, and rare earth resources accounted for 80 percent of the world's reserves and occupies a unique advantage in rare earth research. Rare earth ions cause extensive attention from researchers for its unique ligand nature, the article discusses the main application and research of rare earth and its metal complexes in modern society, such as in medicine, tumor inhibition; with a special performance of light-emitting material in the analysis of chemical, biological, pharmaceutical applications. Finally, the future prospects for the development of rare earth complexes.

Key words:Rare earth complexes Function Application

【3】胡继明, 陈观铨, 曾云鹗. 稀土配合物的发光机制和荧光分析特性研究[ J ]. 高等学校化学学报, 1990, 11 (8) : 817 – 821

【4】. 李文连. 稀土有机配合物发光研究的新进展,化学通报1991 (8)

【5】燕来等,稀土配合物发光材料的研究及应用,内蒙古石油化工,2002, 28..

【6】李文连. 稀土有机配合物发光研究的新进展[ J ]. 化学通报, 1991,1 (8) : 1 - 8.

【7】 Okamoto Y, Ueba YD, ZhanibekovN F, et al. Characterization of ion- containing polymer structures using rare earth metal fluorescence robes[ J ]. Macromolecules, 1980: 14 – 17 【8】刘力, 张立群, 金日光. 稀土高分子复合材料的研究进展[ J ]. 中国稀土学报, 2001, 19 (3) : 193 - 197.

【9】雷光东,卢志云,朱卫国,等. 有机荧光防伪材料的制备[ J ]. 化学研究与应用, 1999, 11 (3) : 208 – 311

【10】Auslander J D, Berson W. Ink composition for bar code printing and,scanning using wax - based I nvisible fluorescent inks[ P ]. US5693693,1998.

【11】J Georges. Analyst Lanthanide - sensitized luminescence and app lica2tions to the determination of Organic analyses [ J ]. 1993, 11 (12) : 1481- 1486.

稀土有机配合物的制备及性能测定实验报告

稀土有机配合物的制备及性能测定 北京化工大学 理学院 姓名: 班级: 学号: 时间:2014.5.8,2014.5.21

一、实验目的 1.了解稀土元素的基本知识。 2.理解光致发光的基本原理。 3.熟练掌握稀土盐和稀土有机配合物的制备方法。 4.熟悉荧光光谱仪、差热-热重分析仪和红外光谱的结构、原理和应用。 二、实验内容 1.稀土盐的制备和稀土配合物的制备。 2.稀土配合物的荧光光谱测定、紫外光谱测定和红外光谱测定。 三、实验原理 通常稀土离子与有机配体首先形成稀土配合物,然后在光照或者通电流的情况下,能量通过配体吸收,然后传递给稀土离子,稀土离子能级从激发态跃迁回基态的时候会产生发光现象。但并不是所有的稀土离子与有机配体配位形成配合物以后都能得到较好的光致发光,只有能级匹配的稀土配合物才能够发射出较强的可见光。能级匹配包含两方面的内容:(1)有机配体的三线态与稀土离子最低激发态能级的匹配程度;(2)稀土离子最低激发态与基态之间的能量差对应的光波波长是否在可见光范围。 对于稀土Tb的配合物来说,在受到紫外光激发时,一般都是发绿色光。稀土Tb配合物的发射峰一般可观察到4 个,分别在491nm,546nm,586nm和622nm附近。 四、实验仪器和药品 药品:氯化铕(EuCl3·6H2O)和氯化鋱(TbCl3·6H2O),乙酰水杨酸,1,10-邻菲啰啉,乙醇,三乙胺,二氯甲烷 仪器:荧光灯,电磁搅拌,水泵,干燥器,沙板漏斗、抽滤瓶,烧杯、玻璃棒,容量瓶,自封袋,角匙,PH试纸,红外光谱仪、荧光光谱仪和紫外光谱仪。 五、实验步骤 (1)称取1mmolTbCl3·6H2O的晶体+3mmol乙酰水杨酸+1mmol 1,10-邻菲啰啉,分别溶于10mL乙醇中。

稀土配体选择

(1)第一配体 目前为止,已经研究过的稀土有机配合物的配体主要有:各种类型的β-二酮,芳香环化合物,杂环化合物,中性配体有三苯基氧膦、吡啶氮氧化物,大环类有大环聚醚、聚酰胺和多烯化合物等。羧酸类的配体通常是芳香族羧酸,如水杨酸、邻苯二甲酸等。 ①β-二酮类配体 β-二酮类配体有直链的、环状的和具有吡酮环的。由于其所形成的配合物中存在配体到中心离子的高效能量转移,具有很高的发光效率,所以是人们研究稀土有机配合物发光和能量传递过程的重要对象。鉴于稀土-β-二酮配合物具有上述优点,且可在固、液态条件下形成,其在发光材料、新的显示器件和透明塑料显示材料方面都有着广泛的应用。 尹显洪等合成了双β-二酮配体,并与稀土离子Eu3+和 Tb3+形成了双β-二酮配合物体系,研究了该体系的荧光性能,该体系具有良好的荧光特性。刘兴旺等为了研究β-二酮对稀土配合物发光性能的影响,合成了一种新的β-二酮配体,然后将此配体分别与Eu3+和Tb3+反应,并以邻菲啰啉(Phen)为小分子配体,合成了两种新的三元稀土配合物,研究表明 β-二酮配体对配合物的荧光性能有较大的影响。邓崇海等合成了一种新型的双β-二酮配体并与Eu3+形成了配合物,实验表明该配合物是一种很好的发光材料。 ②大环配体 冠醚、穴醚等离子载体化合物是稀土-大环配合物中的主要有机配体,所形成的配合物是超分子配合物。超分子配合物指的是通过氢键、静电、分子间作用力等使配合物的配体之间形成一种特殊的大分子结构。目前,对于发光镧系超分子的研究,进展最快、成果最丰富的领域是镧系元素。另外,超分子大环配合物也能与异核配合物产生多核间的浓聚效应,从而发射出强的荧光。 ③有机羧酸类配体

有机稀土配合物的合成及其荧光特z征

有机稀土配合物的合成及荧光特征 王彦飞刘宇韬胡婧 (中南大学化学化工院应化1302班1502130220) 摘要:稀土光致发光配合物是一类具有独特性能的发光材料,具有荧光单色性好,发光强度高等优点。本实验采用络合法,在常温条件下,EuCl3与C6H5COOH按1:3的比例反应生成Eu(C6H5COO)3二元配合物,按n(Eu3+):n(苯甲酸):n(phen)=1:3:1摩尔比例反应生成苯甲酸-邻菲咯啉-铕三元配合物。在260nm的紫外光激发下测定其荧光光谱。通过分析两配合物的荧光光谱知:三元配合物的荧光强度大于二元配合物的荧光强度,可用引入第二配体的方法来提高Eu3+的发光强度。 关键词:苯甲酸铕;邻菲啰啉;荧光光谱;发光强度;稀土配合物; 前言:聚稀土元素是指周期表中ⅢB族,21号元素钪(Sc)、39号元素钇(Y)和57~71的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素。由于稀土离子具有独特的结构和性质,使其与适当的有机配体配合后发出的荧光兼有稀土离子发光强度高,颜色纯和激发能量低,荧光效率高等优点。 稀土光致发光配合物是一类具有独特性能的发光材料,它的荧光单色性好,发光强度高,因此受到了人们的重视。早在20世纪80年代中期,前苏联地Golodkova LN等人已经研制出了保温大棚膜的稀土光转换剂。它能吸收97%的200-450nm的紫外光,并能将其转换为500-750nm的红橙光。稀土离子Sm(Ⅲ)、Eu(Ⅲ)、Tb(Ⅲ)和Dy(Ⅲ)发射线状光谱,属于4f 层电子跃迁发射,但都较微弱。但是当它们与含芳环的有机配位体形成二元或三元配合物时,受激发的配位体的能量可能转移给金属离子,然后由激发态的金属离子返回基态而发出强的荧光,例如稀土芳香族有机羧酸配合物就是一类性能良好的发光材料。近代以来,稀土有机配合物由于具有发光强度高和稳定性较好的优点,越来越引起人们的广泛关注。本试验以苯甲酸、邻菲啰啉为配体,研究了铕的二元、三元配合物的合成和荧光性能。 1实验材料 主要仪器:DF-101S集热试恒温加热磁力搅拌器(郑州长盛公司);SHB-ⅢA循环水式多用真空泵(郑州长盛实验仪器有限公司);F-2500荧光分光光度计;烘箱。 主要试剂:邻菲罗啉(天津市大茂化学试剂厂),36%-38%的盐酸,氢氧化钠,苯甲酸钠,邻菲啰啉(phen),pH试纸,无水乙醇。 2实验方案 2.1实验原理 (1)Eu(Ⅲ)配合物的制备

稀土配合物发光的类型概述

稀土配合物发光的类型概述 稀土配位化合物的研究是稀土化学中最活跃的前沿领域之一。稀土发光配合物是一类具有独特性能的发光材料。 发光现象 当某种物质受到诸如光的照射、外加电场或电子束轰击等的激发后,只要该物质不会因此而发生化学变化,它总要回复到原来的平衡状态。在这个过程中,一部分能量会通过光或热的形式释放出来。如果这部分能量是以可见光或近可见光的电磁波形式发射出来的,就称为发光现象。这种能量的发射过程具有一定的持续时间。 对于发光现象的研究,从对它的光谱的研究(斯托克斯定则,1852年)开始,直到“发光”这一概念的提出(C H.魏德曼,1888年),人们只注意到了发光同热辐射之间的区别。1936年,CH.瓦维洛夫引入了发光期间这一概念(即余辉),并以此作为发元现象的另一个王要的判据,至此发光才有了确切的定义。 发光现象的两个主要的特征是:任何物体在一定温度下都有热辐射,发光是物体吸收外来能量后所发出的总辐射中超出热辐射的部分。当外界激发源对物体的作用停止后,发光现象还会持续一定的时间,称为余辉。 历史上人们曾以发光持续时间的长短把发光分为两个过程:把物质在受激发时的发光称为荧光,而把激发停止后的发光称为磷光。一般常以持续时间10-8s为分界,持续时间短于10—8s的发光被称为荧光,而把持续时间长于10—8s的发光称为磷光。现在,除了习惯上还保留和沿用这两个名词外,已不再用荧光和磷光来区分发光过程。因为任何形式的发光都以余辉的形式来显现其衰减过程,而衰减时间可以极短(<10—8s),也可能很长(十几小时或更长)。发光现象有着持续时间的事实,说明物质在接受激发能量和产生发光的过程中,存在着一系列的中间状态。 发光类型 1.对于各种发光现象,可按其被激发的方式进行分类:光致发光、电致发光、阴极射线发 光、x射线及高能粒子发光、化学发光和生物发光等。 (1)光致发光。光致发光是用光激发发光体引起的发光现象。它大致经过吸收、能量传递及光发射三个阶段。光的吸收及发射都发生于能级之间的跃迁,都经过激发态。而能量传递则是由于激发态的运动。 (2)电致发光。可将电能直接转换成光能的现象是电致发光(eIectroIuminescence)。过去又因这是在电场作用下产生的发光,还曾使用过“场致发光”的术语。 (3)阴极射线发光。发光物质在电子束激发下所产生的发光,被称做阴极射线发光(cathodeluminescenee)。通常电子束激发时,电子所具有的能量是很大的,都在几千电子伏以上,甚至达几万电子伏。和光致发光的情况相比,这个能量是巨大的。因此,阴极射线发光的激发过程和光致发光不一样,这是一个很复杂的过程。在光致发光的过程中,一个激发光于被发光物质吸收后,通常最多只能产生一个发光辐射的光子。但是,单从能量的观点来

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

稀土配合物研究进展总结

稀土元素 稀土配合物研究进展稀土元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)这15种镧系元素以及与镧系元素密切相关的钪(Sc)和钇(Y),共17种元素。根据稀土元素物理化学性质的相似性和差异性,除钪之外划分为三组:La-Nd为轻稀土,Sm-Ho为中稀土,Er-Lu加上Y为 重稀土。稀土离子发光具有线性、不重叠的和可辨认的发射谱带,更特殊的是它们比有机荧光团和半导体荧光纳米晶体(NCS)的谱带宽度更窄。这是由于发射激发态和基态具有相同的fn电子结构,并且f轨道被外层的s和p层电子所屏蔽。同样的原因,稀土离子的发射波长不受环境影响,不像有机荧光团,它们会随溶液性质[3]或pH值而改变发射波长。镧系稀土离子在可见和紫外光谱范围内具有很小的吸收系数,故无机稀土发光材料的发光强度低。有些有机配体吸光系数比较高,与稀土离子配位后,配体分子(天线) 在靠近稀土离子的位置使其敏化,通过天线效应提高了稀土离子的发光强度,这种有机稀土发光材料成为人们研究的重点。羧酸是合成稀土配合物的一类常用配体。羧基可以多种方式与稀土离子络合,同时具有芳香环的羧酸类配体,它们在结构上具有刚性和稳定性,已被广泛用于稀土离子配位聚合物的研究稀土配合物的配位特性 稀土配合物的配位特性 配体中含有负电荷的氧原子时,一般可以形成较稳定的稀土配合物。N-酰化氨基酸 一般以阴离子形式通过羧基氧与稀土离子配位,而氨基中氮与酰基中氧都不参与配位[4]。对于稀土离子来说,H2O也是一种很强的配体,与稀土离子的络合能力比较强。在选择配体时,不能选择比水配位能力弱的配体,因为水会与配体竞争配位,因此要选择在极性比较弱的溶剂中反应。而含有羧基的配体与稀土离子配位后可以在水溶液中析出相应的稀土配合物,但是这种稀土配合物往往会含有配位水分子,而含配位水的稀土配合物的脱水是非常困难的[5]。 稀土配合物中稀土离子的配位数一般比较高,主要是由稀土离子较大的半径和以离 子型为主的键型特点决定的。当稀土离子与配体的相对大小合适的情况下,形成的稀土 配合物中的稀土离子一般都是八或者八以上配位的。配合物中稀土离子的价态一般为正三价,含有的正电荷较高,如果从电中性的角度看,为了满足电中性,稀土离子也容易形成较高配位数的比较稳定的稀土配合物。弱碱性的配位原子如含N原子的联吡啶和邻菲啰啉等中性配体,它们作为第二配体时,也可以与稀土离子配位[5]。。 稀土有机配合物在光伏器件中的应用

稀土聚合物发光材料

稀土聚合物发光材料 李建宇 (北京工商大学化工学院 北京 100037) 摘 要 近年来稀土聚合物发光材料显现出广泛的应用前景,它主要包括两类材料:稀土配合物-聚合物发光材料和长余辉发光塑料。本文介绍掺杂型稀土配合物-聚合物材料用于有机电致发光和荧光塑料的研究状况;评述键合型稀土配合物-聚合物发光材料的几种合成方法;并对长余辉发光塑料作简要概述。 关键词 稀土 聚合物 复合材料 发光材料 由于稀土元素具有独特的电子层结构,稀土化合物表现出许多优异的光、电、磁功能,尤其是稀土元素具有一般元素所无法比拟的光谱学性质,稀土发光材料格外引人注目。稀土发光材料广泛应用于照明、显示和检测三大领域,形成了工业生产和消费市场规模,并正在向其他新兴技术领域拓展,因而稀土聚合物发光材料应运而生,目前它主要分为两类:稀土配合物-聚合物发光材料和长余辉发光塑料。 1 稀土配合物-聚合物发光材料 稀土配合物在发光与显示领域表现出独特的荧光性能,但是往往又因其自身固有的在材料性能方面的缺陷限制了它的应用。制成发光稀土配合物-聚合物复合材料,可以改善它的应用性能,拓宽它的应用范围。制备方法分为两种:掺杂法和键合法。前者实用、简便,但稀土配合物与高分子基质之间相容性差,不可避免地出现相分离和荧光猝灭等现象;后者克服了掺杂型材料中稀土配合物与高分子基质亲和性小、材料透明性和力学性能差等缺点,为获得宽稀土含量、高透光率的稀土高分子功能材料提供了可能,但制备工艺比较复杂。 111 掺杂型稀土配合物-聚合物发光材料 掺杂型稀土配合物-聚合物发光材料,即是直接将发光稀土配合物作为添加成分掺杂于高分子基质中,大多数稀土聚合物发光材料都是这样制备的,在许多领域得到应用。 11111 有机电致发光材料 有机电致发光(organic electroluminescence,OE L) 是目前国际上的一个研究热点,它具有高亮度、高效率,低压直流驱动,可与集成电路匹配,易实现彩色平板大面积显示等优点。人们预言,不久的将来,OE L 将取代无机电致发光和液晶显示的地位,使平板显示技术发生革命。稀土配合物的发射光谱谱带尖锐,半高宽度不超过10nm,色纯度高,这一独特优点是其他发光材料所无法比拟的,因而有可能用以制作高色纯度的彩色OE L显示器。然而,以小分子稀土配合物作为OE L器件的发光层材料存在一个显著缺陷:真空蒸镀成膜困难,器件制备工艺复杂,在成膜和使用过程中易出现结晶,使层间的接触变差,从而影响器件的发光性能和缩短器件的使用寿命。因此,经常将配合物与导电高分子(如聚乙烯咔唑,PVK)掺杂后采用旋涂的方法来制备发光层。为了保证掺杂均匀,须将稀土配合物和PVK共溶于易挥发的有机溶剂(如氯仿)。Zhang等以氯仿为溶剂,将Tb(AH BA)3 (AH BA为邻氨基24十六烷基苯甲酸)掺杂于PVK制备发光层,获得了良好的成膜性能和较为理想的发光亮度。董金凤等将红色荧光配合物Eu(TT A) m (TT A 为α2噻吩甲酰三氟丙酮)与PVK共混,制备单层器件,发光层成膜性能得到改善,器件的稳定性得到提 高。如果直接用Eu(TT A) m制成单层器件,则不能产生电致发光,这是由于配合物的成膜性能差,无法形成均匀致密的薄膜,施加电压后存在很大的漏电流。 陶栋梁等报道了将Tb(aspirin) 3 Phen(aspirin为乙酰水 11 2005年第5期 中国照明电器 CHI NA LIG HT&LIG HTI NG

稀土配合物抑菌作用探究进展

稀土配合物抑菌作用的研究进展 潘洁明 广西玉林师范学院 摘要:稀土元素是21世纪具有战略地位的元素、凭借其独特的光、电、磁等物理化学特性,广泛应用于国民经济和国防工业的各个领域。[1] 最近几年,新型稀土抗菌材料,由于其具有毒副作用小、低毒、热性能好以及广谱抗菌活性,越来越受到人们的关注。我国稀土含量丰富,约占世界稀土资源总量的80%。[2] 近年来,因为稀土元素及其配合物具有独特的生理生化特性,同时还有很好的抗菌、消炎、抗肿瘤的功效,稀土配合物不断被合成并应用于生物、医药领域中。稀土的作用机理倍受关注。现在,人们已逐渐认识和证实稀土离子具有抑菌作用,但是,稀土离子的抑菌作用不强,较常用的抗生素、消毒剂、化学杀菌剂弱,而且低浓度的稀土对有些菌的生长没有抑制作用。人们从稀土元素和配合物对细胞壁、生物膜、蛋白质、遗传物质的影响等方面,对其抑菌机理和研究方法进行了总结,综述了稀土离子及其配合物对微生物生长产生的抑制作用。 关键词:稀土元素,配合物,抑菌作用,机理,研究方法 稀土元素(Rare-Earth),其特征是内层的4f电子轨道里一个一个的往里填充电子,元素包含处于化学元素周期表里IIIB族的原子序数为57—71的15个稀土元素(La镧、Ce饰、Pr镨、Nd钱、Pm钷、Sm衫、Eu铕、Gd礼、Tb斌、Dy镝、Ho钬、Er辑、Tm链、Yb镱、Lu镥),用Ln代表;另外,III B族的钪(^'Sc)和紀(39Y),由于这两种金属元素的化学性质与镧系元素的化学性质类似,因此,人们常常将Y和Sc与镧系元素归于在一类,统一称之为稀土元素,一般公认稀土元素一共有17种。.因其性质上的微小差异,又划分为轻稀土(铈组元素)和重稀土(钇组元素)两个部分。[3] 20世纪以来,稀土在生物领域的应用研究日益受到关注,取得了显著的成绩,其包括用于抗炎、抗菌和抗凝血等医药及植物抗病等领域。[4] 概述有机稀土抑菌方面的研

化学专业英语之有机金属化合物——金属配合物

化学专业英语之有机金属化合物——金属配合物 ORGANOMETALLICS—METAL π COMPLEXES Metal π complexes are characterized by a type of direct carbon-to-metal bonding that is not a classical ionic, σ, or πbond . Numerous molecules and ions, e.g., mono- and diolefins, polyenes, arenes, cyclopentadienyl ions, tropylium ions, andπ-allylic ions, can form metal πcomplexes with transition-metal atoms or ions. These are classified as organ metallic complexes, because of their direct carbon-metal bond, and as coordination complexes, because the nature and characteristics of the TT ligands are similar to those in coordination complexes. In 1827, Zeise reported that ethylene reacts with platinum (II ) chloride to form a salt K (C 2H 4 )PtCl 3 (l), but it was not until after the elucidation of the structure of ferrocene (2) in 1953 that attention was redirected to Ziese's salt, which was the first reported metal π complex. Generally, metal TT complexes can be classified into three main groups; olefin-, cyclopentadienyl-, and arene-metal π complexes; mixed complexes are categorized according to structural or chemical analogies within these groups. Allyl π complexes are designated as olefin πcomplexes in this review. Study of metal πcomplexes has contributed to the elucidation of the mechanisms of Ziegler-Natta polymerization, the oxo reaction, and catalytic hydrogenation, and to the development of the Wacker process which is used for the oxidation of olefins1.

稀土发光配合物

稀土发光配合物的研究进展 稀土元素是指周期表中IIIB族元素,包括原子序数57的镧至71的镥十五个镧系元素以及原子序数21的钪与39的钇共十七个元素。稀土具有独特的物理和化学性能,特别是具有特异的光、电、磁和催化性能,己在能源、信息、环保、农业和国防等各方面获得了重要的应用,因此,在国际上稀土被称为21世纪的新材料[1]。深入开展稀土化学研究对稀土资源的开发和利用有着重要意义[2]。各国纷纷投入大量的人力、物力和经费进行研究与开发,预期在近年内将不断出现新的稀土功能材料,并取得突破。我国具有世界上最丰富的稀土资源,并具有中国特有的以钇族稀土为主的离子吸附型矿[3]。目前,我国己成为国际上生产和出口稀土的大国,量大而价廉,具备了比其他国家更优越的物质条件来从事稀土的研究和开发应用。稀土元素的特异性能来自于它们具有的特异电子构型[4-6]。从镧到镥随着原子序数从57到71的增大,在内层的4f轨道中逐一填充电子。这些4f轨道被外层完全充满的5s5p电子所屏蔽,故受外界的电场、磁场和配位场等影响较小。稀土离子的定域化和4f电子的不完全填充都将反映在稀土化合物的性质中。 稀土发光材料具有许多优点:吸收能量的能力强,转换效率高;可发射从紫外光到红外光的光谱,特别是在可见光区有很强的发射能力;荧光寿命从纳秒到毫秒,跨越6个数量级;它们的物理化学性能稳定,能承受大功率的电子束、高能射线和强紫外光子的作用等。今天,稀土发光材料已广泛应用于显示现像、新光源、X射线增感屏、核物理核辐射长的探测和记录、医学放射学图像的各种摄像技术中,并向其他高科技领域扩展。 另外稀土有机配合物发光是无机发光与有机发光、生物发光研究的交叉科学,有着重要的理论意义和应用研究价值[1]。这类配合物越来越被广泛地应用于工业、农业、医药学及其他高技术产业,而这些应用研究又促进了有机化学及生命科学研究。我国稀土资源丰富、分布广泛。为了使其在国民经济中得到更广泛的应用,深入开展稀土有机配合物发光的研究就显得很重要了。 稀土有机配合物是众多金属有机配合物的重要的一大类,配合物(又叫络合物)是指由配位键结合的化合物。稀土有机配合物发光体中的金属称之为中心金属离子很类似于无机发光体中的激活剂离子。有机部分称之为配体,与发光有关的稀土有机配合物有以下划分方法[1]: (1)从有机配体种类上划分,可有二元及多元配合物; (2)从中心稀土离子数目上划分,可有单核、双核及多核配合物;

稀土有机配合物的制备和性能研究实验报告

稀土有机配合物的制备及性能测定 一、实验目的 1.了解稀土元素的基本知识。 2.理解光致发光的基本原理。 3.熟练掌握稀土盐和稀土有机配合物的制备方法。 4.熟悉荧光光谱仪、差热-热重分析仪和红外光谱的结构、原理和应用。 二、实验原理 1.基本知识简介 由于稀土元素具有优异的物理和化学性能,特别是具有优异的光电磁和催化性能,已经在国民经济和现代科学技术的各个领域得到了重要的应用,所以稀土元素被誉为新材料的宝库。我国是稀土资源大国,仅目前发现的包头稀土储量就占世界稀土含量的90%以上,对稀土资源进行深度加工制成高附加值的新型功能材料具有重要的意义。尤其是徐光宪院士稀土分离技术的工业化使得稀土的价格大大下降,这更为稀土的发展创造了优越条件。 ☆稀土元素的发光 稀土元素在元素周期表中主要包括从57-71号的15种元素(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu),也包括21号Sc和39号Y元素。对于前面15种元素来说,都含有4f轨道,具有镧系收缩现象。稀土离子因为存在着4f轨道,所以能级结构非常复杂,有些能级之间的跃迁就会产生发光现象。单独的稀土离子一般来说很难发出较强的光,通常都是稀土离子与有机配体首先形成稀土配合物。然后在光照或者通电流的情况下,能量通过配体吸收,然后传递给稀土离子,稀土离子能级从激发态跃迁回基态的时候会产生发光现象。 因为稀土离子各自都有不同的能级结构,所以并不是所有的稀土离子与有机配体配位形成配合物以后都能得到较好的光致发光。只有能级匹配的稀土配合物才能够发射出较强的可见光。能级匹配包含两方面的内容:(1)有机配体的三线态与稀土离子最低激发态能级的匹配程度;(2)稀土离子最低激发态与基态之间的能量差对应的光波波长是否在可见光范围。 ☆基态和激发态 基态是指分子的稳定态,即能量最低状态,当一个分子中的所有电子的排布完全遵从构造原理(能量最低原理、泡利不相容原理、洪特规则)时,分子处于基态(ground state)。如果一个分子受到光的辐射使其能量达到一个更高的值时,这个分子被激发,分子中的电子排布不完全遵从构造原理,这时的分子处于激发态(excited state)。激发态是分子的一种不稳定状态,其能量相对较高。一个态的性质可以用光谱项2S+1L J来表示。2S+1称为多重性或者多重态,表示态的自旋状态,L和J分别为角动量量子数和总量子数。绝大多数有机化合物为闭壳层分子,总自旋S=0,2S+1=1,也就是说绝大多数有机分子的基态是单重态(singlet state)。氧分子的基态是三重态,是一个例外。单重态一般用S来表示,基态单重态一般用S0表示。分子受到激发后,其中一个电子从低能量轨道被激发到高能量轨道上,这个过程称为“跃迁”。电子跃迁到高能量轨道后,激发态的自旋状态有可能出现不同于基态的情况。如果此时的有机分子被激发时电子自旋没有改变,则激发态分子的总自旋仍为零,分子仍然为单重态,这时称之为激发单重态。依据能量的高低,分别用S1,S2,S3 等来表示。如果有机分子被激发时跃迁的电子自旋发生了翻转,则分子中电子的总自旋S=1,这是分子的多重性为2S+1=3,此时的分子为激发三重态(triplet state)。依据能 量的高低,分别用T1,T2,T3等来表示。

发光稀土配合物mine

发光稀土配合物Eu(phen)2 (NO3)3 的制备 一、实验要求 (一)学习Ln(phen)2(NO3)3的制备原理和方法 (二)观察配合物的发光现象 (三)了解Eu(Ⅲ)配合物发光的基本原理 二、实验原理 (一)发光配合物Eu(phen)2·(NO3)3的制备原理 稀土离子为典型的硬酸,根据硬软酸碱理论硬-硬相亲原则,它们易跟含氧或氮等配位原子的硬碱配位体络合。 稀土配合物的合成可采用的方法有: 1、稀土盐(REX3)在溶剂(S)中与配体(L)直接反应或氧化物与酸直接反应: REX3+nL+mS——REX3.nL.mS REX3+nL——REX3.nL RE2O3+2H n L——2H n-3REL.+3H2O 2、交换反应:利用配位能力强的配体L’或螯合剂Ch’取代配位能力弱的L、X或螯合剂Ch。 REX3+M n L—REL-(n-3)+M n X n-3 REX3.nL +mL’—REX3.mL’+nL 也可利用稀土离子取代铵、碱金属或碱土金属离子。 MCh2-+RE3+――RECh+M+ 其中M+=Li+、Na+、K+、NH4+等。 3、模板反应:配体原料在与金属形成配合物的过程中形成配体。如,稀土酞菁配合物 的合成。 稀土的硝酸盐、硫氰酸盐、醋酸盐或氯化物与邻菲咯啉按方法1作用时,都可得到RE:phen=1:2的化合物。 本实验中,起始原料Eu2O3、Tb3O4与HNO3反应完全蒸干后得到Ln(NO3)3.nH2O(Ln=Eu、Tb,n=5或6)后,使其在乙醇溶剂中与配体phen直接反应,生成产物。反应方程式为:Ln(NO3)3·nH2O+2phen→Ln(phen)2·(NO3)3+nH2O 产物为白色,紫外灯下发出红色荧光。 (二)配合物Ln(phen)2·(NO3)3的发光机理 首先,配位体phen有效地以吸收紫外光的能量,电子从其基态跃迁到激发态(过程1);由于三价稀土离子Ln(Ⅲ)以配位键与phen相连,三价稀土离子的激发态与phen的激发态能量相匹配,处于激发态的phen通过非辐射跃迁的方式将能量传递给Ln(Ⅲ)离子激发态(过程2);最后电子从Ln(Ⅲ)离子激发态回到基态,将能量以光子的形式放出(过程3),这就是我们所能看到的发光。在整个过程中,配体phen能有效地吸收能量并有效地将能量传递给中心Ln(Ⅲ)离子,这对于增强Ln(Ⅲ)离子的发光是十分重要的,人们把发光配合物中配体的这种作用比喻为―天线效应‖。 三、实验仪器和试剂 1、仪器:分析天平、蒸发皿、烧杯(50ml、10ml)、恒温水浴锅、小漏斗、表面皿、玻璃

中南大学有机稀土配合物的合成及荧光特性

中南大学 有机稀土配合物的合成及 其荧光特性 学院名称:化学化工学院 、

有机稀土配合物的合成及其荧光特性 一、实验目的 1.掌握苯甲酸铕、苯甲酸-邻菲咯啉-铕三元配合物的制备方法; 2.了解苯甲酸铕、苯甲酸-邻菲咯啉-铕的荧光性质; 3.了解三元配合物第二配体的协同效应。 二、背景知识及实验原理 稀土有机配合物发光是无机发光、有机发光与生物发光的交叉学科,有着重要的理论研究意义及应用价值。稀土铕、铽配合物具有荧光强度高,单色性好,耐候性强和不易被氧化等优点,越来越受到人们的重视。以苯甲酸、邻苯二甲酸为配体的稀土配合物的合成及荧光性能已有较多研究,并且以二羧酸为桥联配体,可更有效地传递能量。 在20世纪80年代中期,前苏联地Golodkova LN等人已经研制出了保温大棚膜的稀土光转换剂。它能吸收97%的200-450nm的紫外光,并能将其转换为500-750nm 的红橙光。近年来,稀土有机配合物由于具有发光强度高和稳定性较好的优点,越来越引起人们的广泛关注,其应用研究非常活跃。稀土配合物发光机理在于有机配位体将所吸收的能量传递给稀土离子,使其4f电子被激发产生f-f电子跃迁并发光,例如铕β-二酮配合物是发红光的荧光材料,主要产生5D0-7F2的跃迁。这种发光材料能吸收太阳光中的紫外光并转换为可见光,将其添加到塑料膜中能改善光质,更好地利用太阳能。 这种铕的配合物在365nm高压汞灯下观察有明亮的红色发光。从荧光的激发与发射光谱结果来看,配合物激发态处于长波紫外范围,这是配体的吸收,由于配合物是个大的共轭体系,所以π-π*吸收强度特别高,吸收的能量通过分子内能量传递,使中心离子Eu3+发出强的红光。 金属离子与有机配体的配位反应: EuCI3+3C6H5COOH Eu(C6H5COOH)3+3HCI Eu(C6H5COOH)3+phen Eu(C6H5COOH)3 phen 三.仪器与试剂 试剂:36%-38%的盐酸,氢氧化钠,苯甲酸(或苯甲酸钠),邻菲咯啉(phen),pH试纸(或ph计),无水乙醇。 仪器:荧光分光光度计,恒温磁力搅拌器,烘箱,减压抽滤装置,烧杯,温度计,移液管等。

发光稀土配合物Ln(phen)2(NO3)3的制备

实验四发光稀土配合物Ln(phen)2 (NO3)3 (Ln = Eu、Tb)的制备 一、实验要求 (一)学习Ln(phen)2(NO3)3的制备原理和方法 (二)观察配合物的发光现象 (三)了解Eu、Tb(Ⅲ)配合物发光的基本原理 (四)利用荧光光谱考察稀土配合物的荧光性质 二、实验原理 稀土指位于周期表中B族的21号元素钪(S C)、39号元素钇(Y)和57号至71号镧系元素镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)共17种元素。常用符号RE表示。 我国盛产稀土元素,储量居世界之首。近年来,稀土的产量也位于世界前列。在我国,发展稀土的应用具有很大的资源优势。 在稀土化学中,稀土配位化合物占有非常重要的地位。本实验通过合成一种简单的稀土配合物并观察其发光现象,从而获得一些有关稀土配合物的制备及发光性质的初步知识。 (一)发光配合物Eu(phen)2·(NO3)3的制备原理 稀土离子为典型的硬酸,根据硬软酸碱理论中硬-硬相亲原则,它们易跟含氧或氮等配位原子的硬碱配位体络合。能与稀土离子形成配合物的典型配位体有H2O、acac-(乙酰丙酮负离子)、Ph3PO(三苯基氧化膦)、DMSO(二甲亚砜)、EDTA(乙二胺四乙酸),dipy(2,2’–联吡啶)、phen(1,10-邻菲咯啉)以及阴离子配位体如F-、Cl-、Br-、NCS-、NO3-等。 在RE(Ⅲ)-氮的配合物中,胺能跟据RE(Ⅲ)形成稳定的配合物,常见的为多胺配合物。典型的多胺配位体有二配位基的2,2’-联吡啶、1,10-邻菲咯啉、和三配位基的三联吡啶等。由这些配位体形成的配合物实例有[La(bipy)2(NO3)3](十配位)、[Ln(terpy)3](ClO4)3(九配位)、[Ln(phen)4](ClO4)3(八配位)等。 稀土配合物的合成可采用的方法有: 1、稀土盐(REX3)在溶剂(S)中与配体(L)直接反应或氧化物与酸直接反应:REX3+nL+mS——REX3.nL.mS REX3+nL——REX3.nL RE2O3+2H n L——2H n-3REL.+3H2O 2、交换反应:利用配位能力强的配体L’或螯合剂Ch’取代配位能力弱的L、X或螯合剂Ch。 REX3+M n L—REL-(n-3)+M n X n-3 REX3.nL +mL’—REX3.mL’+nL 也可利用稀土离子取代铵、碱金属或碱土金属离子。 MCh2-+RE3+――RECh+M+ 其中M+=Li+、Na+、K+、NH4+等。 3、模板反应:配体原料在与金属形成配合物的过程中形成配体。 如,稀土酞菁配合物的合成。 稀土的硝酸盐、硫氰酸盐、醋酸盐或氯化物与邻菲咯啉按方法1作用时,都可得到RE:phen=1:2的化合物。 本实验中,起始原料Eu2O3、Tb3O4与HNO3反应完全蒸干后得到Ln(NO3)3.nH2O(Ln=Eu、Tb,n=5或6)后,使其在乙醇溶剂中与配体phen直接反应,生成产物。反应方程式为:

有机稀土配合物

有机稀土配合物的合成及其荧光特征 彭亮1,黄琪2,董建洋2,何沐恩2 ,朱雷2,曾继森2,黄健涵2 (中南大学化学化工学院应用化学系,湖南,长沙,410083) 摘 要:本文论述了Eu 2O 3与苯甲酸钠按1:3的比例制备了苯甲酸铕的实验,及以 1:3:1的Eu 3+、苯甲酸和邻菲咯啉(phen )进行了苯甲酸-邻菲咯啉-铕三元配合物的制备,对其荧光性能进行了分别测试。 Abstract: in this paper, through Eu2O3 prepared the benzoic acid and sodium benzoate 1:3 according to the proportion of europium,and with 1:3:1 Eu3 +, benzoic acid and its adjacent Philippine luo Lin (phen) benzoic acid - adjacent Philippine luo Lin - europium preparation of ternary complexes. 关键词:苯甲酸铕 苯甲酸和邻菲咯啉(phen ) 荧光性能测试 1. 前言 稀土元素是指周期表中ⅢB 族,21号元素钪(Sc)、39号元素钇(Y)和57~71的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素。由于稀土离子具有独特的结构和性质,使其与适当的有机配体配合后发出的荧光兼有稀土离子发光强度高,颜色纯和激发能量低,荧光效率高等优点。近年来,稀土元素作为光学高新材料的价值和应用日益受到广泛的关注[1]。 稀土元素的显著特点是大多数稀土离子含有能级相近且未充满的4f 电子,并且4f 电子处于原子结构的内层,受到5s25p6电子对外场的屏蔽,因此其配位场效应较小,其中,除La3+,Lu3+之外的镧系离子的4f 电子可在7个4f 轨道之间任意分布,从而产生各种光谱项和能级,而由于稀土元素位于内层的4f 电子可以在不同能级之间进行跳跃,从而产生了大量的吸收和荧光光谱信息[2] 。 本文通过Eu 2O 3与苯甲酸钠制备了苯甲酸铕,以Eu 3+、苯甲酸和邻菲咯啉 (phen )进行了苯甲酸-邻菲咯啉-铕三元配合物的制备。通过它们的荧光性能测试发现苯甲酸-邻菲咯啉-铕三元配合物的发光性能要优于苯甲酸铕。

抗癌有机金属配合物综述

抗癌金属配合物的综述 无机化学2013级康玲313070301001 摘要:综合评述近年来铂配合物,有机锡配合物,有机锗化合物,茂钛衍生物及稀土配合物不同金属配合物在抗癌药物中的研究应用新进展,同时还对金属配合物的抗癌机理进行初探。 关键词:金属配合物; 抗癌药物; 抗癌机理; 综述 癌症是仅次于人类第二大死因(心脑血管)的严重危害人类健康的主要威胁[1]。根据世界卫生组织曾披露的癌症发展趋势表明,预计2015年发达国家癌症死亡人数将为300万人,发展中国家为600万人,全年预计死亡人数达900万人。专家预计癌症将成为未来人类的第一杀手。化疗是治疗癌症的重要手段,但是其毒副作用较大,于是寻求高效、低毒的抗癌药物一直是人们孜孜以求、不懈努力的奋斗目标。自从首次报道顺铂具有广谱抗癌活性以来,这一领域的研究引起了人们的极大关注,相继合成出了许多具有抗癌活性的金属化合物,其中包括某些新型铂配合物,二烃基锡衍生物,有机锗化合物,茂钛衍生物以及稀土配合物等。 1铂配合物 第一代顺铂抗癌药物顺铂[cis-二氯二氨合铂(Ⅱ)],(cis2dichloro2diammineplatinum(II))的俗称,其抗癌作用是美国生理学家 B. Rosenberg 于1965年偶然发现的。顺铂为平面四边形结构的配合物。其抗癌作用机制和传统的有机药物有所不同。通过大量的研究,人们初步认为其机理大致为:跨膜运转,水合离解,靶向迁移和作用DNA。顺铂具有强大的抗癌活性,是一个高效、广谱的抗癌药,并且已成功用于卵巢癌和睾丸癌的治疗,现在临床采用的联合化疗方案中,70%~80%的方案以顺铂为主药或有顺铂参与配伍[2]。尽管第一代顺铂配合物具有强烈的抗癌作用,但由于其毒性大等不足而限制了它的应用。第二代顺铂药物,卡铂[1,1- 环丁二羧酸二氨合铂(Ⅱ)] (或称碳铂),由美国Squibb- BristolMyer、英国癌症研究所和JohnsonMatthey 公司合作开发出来的第二代铂族抗癌药物。其作用机理与顺铂相同,虽然其化学稳定性好,毒性小,但是它与顺铂有交叉耐药性。主要应用在治疗晚期头颈部癌、小细胞肺癌等方面。奈达铂

金属配位的有机半导体

《有机半导体材料合成与改性》
第五章 金属配位的有机半导体
陈军武 材料学院 高分子光电材料与器件研究所

纲 要
一、基本的金属配位化学反应 二、重要的金属配合物半导体的应用 三、 三线态发光(磷光)

一、基本的金属配位化学反应
1、金属配合物的特征 https://www.360docs.net/doc/c05276529.html, 从试剂商网站了解金属配合物的特征

先认识一些钯(palladium)的配合物
Bis(triphenylphosphine)palladium(II) dichloride
Suzuki偶联催化剂
(Ph3P)2PdCl2
Tetrakis(triphenylphosphine)palladium(0)
Suzuki偶联催化剂
Bis(benzonitrile)palladium(II) chloride
注意体会钯的价态(0价,2价)

Bis(dibenzylideneacetone)palladium(0)
Bis(3,5,3’,5’-dimethoxydibenzylideneacetone)palladium(0)
Bromo(tri-tert-butylphosphine)palladium(I) dimer
Bis(acetonitrile)dichloropalladium(II)
注意体会钯的价态(0价,1价,2价)

钯的配合物有很多,上述钯的配合物是其中的部分代表, 它们通常用作化学反应催化剂, 而非有机半导体。 金属配合物有很多种类,以及各式各样的用途,比如:
酞菁金属配合物

相关文档
最新文档