大范围小比例影像融合方法

大范围小比例影像融合方法
大范围小比例影像融合方法

大范围小比例尺影像融合方法v0.1

因大范围的某区域图册需要,需制作一套多时相广东、广西和海南三省的遥感影像图,比例尺约定为1:200万。

1.数据选取

1.1 数据类型选择

地貌、城市、植被和流域的变化,故三

个时相的间隔需越大越好,由新至老每

10年左右为一间隔为佳。而ETM数据

分别在1987—1994年和1998—2003年

时间段有两批已镶嵌数据(TM Mosaic),

减轻了大部分的数据处理工作量。所以

选择2014—2015、1987—1994年和1998

—2002年的三个时间段,作为遥感影像

图 1 TM Mosaic 接图表的三个时间段。

1.2.1 TM Mosaic 数据选择

虽然TM Mosaic 为镶嵌并处理后的数据,但依旧是分块保存,只是其行列号是以6度×5度为范围定义的,坐标系均为WGS84椭球的UTM投影,其波段组合为742组合。根据TM Mosaic接图表,1987—1994年时间段和1998—2002年时间段采用如下影像(表3 )。所有影像均可以从美国地质调查局(USGS)网站1和地理空间云网站2查询下载。

表 3 1987—1994年时间段和1998—2002年时间段所用影像

图 2 LandSat8 WRS2 轨道接图表

1、影像清晰度高,云量和雪覆盖<10%,保证数据基本质量。

2、根据卫星推扫式的采集数据方式,同一条带尽量选择同一时间段的数据,这样条带之间

的影像镶嵌不会有裂缝。

3、不同条带之间的影像尽量选择相近时期,同一季节数据,保证影像图面色差相近。

4、大片海域的影像质量可以次要考虑,因为海域最后会用MASK盖住。

根据图2轨道覆盖情况和影像筛选原则,下载并逐景检查影像,最终选择表4中红色标注的影像参与镶嵌。其他影像留作备用。

表 4 广东、广西、海南三省LandSat8 Oli 影像一览

注:影像时间格式为AAAABBB,其中AAAA为年份,BBB为天数

2.数据处理

数据处理主要使用的是Envi5.1、Erdas9.2和ARCGIS10.2这三种软件。其中Envi5.1和Erdas9.2主要用作影像处理和拼接。ARCGIS10.2用作数据管理和出图。

2.1 TM/ETM Mosaic数据处理

因TM/ETM Mosaic数据已经是经过数据融合、镶嵌、调色后再切分为6°×5°的分块数据,所以在下载完处理时只需要镶嵌处理即可。但依然存在两个问题:

1、因1999—2003年时相数据为ETM Mosaic,分辨率为15米,数据量大,存档

数据采用的高压缩的Mid格式,一旦重新转成TIFF格式,三省地区总数据量

几乎可达30G值多,这样大的数据量进行镶嵌,速度非常之慢,而且ERDAS

进行MID格式镶嵌时出现了部分数据条带丢失的情况(因压缩率过大,个别像

元拼接后成为空值)。所以采用方法为先抽稀为50米分辨率数据后再镶嵌。

2、其中景号为N-48-20的影像仅有TM Mosaic 没有和其他区域一致的ETM

Mosaic,不仅分辨率不同,而且存在较大色差,故在镶嵌时的需给N-48-20的

影像做色差直方图匹配和接缝羽化处理。

而1987—1994年的数据只需要直接镶嵌即可。接着按照以下步骤:

(1)镶嵌后的影像由ARCMAP 转投影后采用合适的拉伸方式(一般为2.5%比例拉伸)输出为8位TIFF,这里的TIFF 必须小于1G,大于1G的TIFF在MAPGIS

转MSI时会出错,如果影像大于1G,可以使用LZW压缩方式输出。

(2)用PhotoSHOP 打开8位TIFF,利用菜单图像—>调整—>色彩平衡、亮度/对比度、曲线和颜色匹配等功能进行色调调整。调整后保存TIFF影像。注意,

这时的TIFF保存后会丢失投影信息,切不可直接在MAPGIS转成MSI。

(3)在ARCMAP里打开调整后的TIFF重新赋予正确投影。

(4)用MAPGIS 6.7 信工版的图像处理模块导入TIFF后自动生成MSI,设置投影参数后进行投影变换,这里的投影变换主要是改变单位和加上比例分母。注

意,如果是兰伯特投影的话,图像投影信息每次会自动提示双纬度一样,重新

设置无效,依然报这个错,这时可以用高斯投影代替,目标投影也使用相同高

斯投影,只用输入正确的比例分母和单位即可。

(5)在MAPGIS的图像处理模块中设置正确的拉伸方式(如果PS调整较好,就可以用原始数据显示)后保存。

(6)导入底图工程,在工程外制作白色底版MASK(防止生成图片时形成黑边)。

最后形成的影像图如图3:

图 3 1987—1994年影像和1999—2003年影像

2.2 LandSat8 Oli 数据处理

LandSat8 Oli 数据共有34景,数据处理工作量大,主要难点在数据镶嵌时怎样保证区域的色调一致。为此需先做一定前期准备工作。

2.2.1 镶嵌准备

根据操作手册3首先应该进行数据大气校正,单因时间紧迫,LandSat8 数据无法每一景都做大气校正,而且大气校正后每景的接边像元值会有变化,故跳过大气校正,进行以下步骤:

1、波段选取,波段选择更符合实际的真彩色组合B4/3/2组合。

2、抽稀数据,和TM Mosaic数据镶嵌道理一样,每景数据均重采样到50米。

3、条带镶嵌,因为卫星的推扫式采样特征,所以同一列影像的同一时间是扫描后分割开的,

所以可以直接镶嵌,镶嵌时无需匀光、调色、羽化操作。

按条带镶嵌后结果如图 4

图 4 按条带镶嵌后结果

2.2.2 镶嵌处理

因为每个条带的影像的时相有差别,镶嵌时必须采用多种方式进行色调统一调整,但各个软件的处理实际效果不一样,最好的方式是将各种功能组合的都试一遍,但是即使抽稀到50米辨率,条带影像数据量也很大,总体数据量达10G左右,统一做一次镶嵌需要10小时左右。故在调试镶嵌效果时将所有数据抽稀到500米,这样总体数据量也不过100m,可以在几分钟内运行一遍镶嵌操作。

利用ENVI和ERDAS软件的镶嵌功能,采用表5的各种组合做出结果进行对比。其中采样方式多用影像处理中较为成熟的三次卷积,结果图均采用了最优的线性拉伸方法显示。对比结果如图5,结果显示通过Erdas Mosaic 去除海域后的直方图匹配效果最好(图5j)。

表5 影像镶嵌功能组合表

发现西边的128-124几个条带色调基本一致,镶嵌效果较好而东边的123和122条带左右的

a.未调色的envi镶嵌结果 b.envi重叠区直方图匹配结果

c.envi全图直方图匹配结果

d.envi class 重叠区直方图匹配结果

e.envi class 全图直方图匹配结果

f.Erdas 色彩平衡结果

g.erdas匀光结果h.erdas去除水域后的色彩平衡

I.erdas直方图匹配j.erdas去除水域的直方图匹配

图 5 各种镶嵌效果结果图

注:软件均自带有预览功能其和500米试验影像结果基本一致,单envi的预览效果却差很远。

接缝效果很差。Envi Class 的Mosaic功能区域直方图匹配效果非常差如图5d。而全区域直方图匹配和图5b效果差不多。

Erdas 软件Mosaic的导入图像的Active Area效果较好。其默认的色彩平衡图5f虽然色调未统一,但是显示效果比envi的更逼真。图5g 是采用Erdas独有的匀光(Dodge)功能,

虽然局部色调均衡而且看不出来接缝,但是整体效果非常差。图5h 为排除水域后的色彩平衡效果,但依然不能减弱色差。图5i 的直方图匹配效果比envi 的效果略好,色差接缝已经被弱化。而排除水域后的直方图匹配则最大程度上的平衡了色差,并保留了较好的真彩色效果。不过在直方图匹配变化中有可能将低值区(山体阴影)计算成负值导致变为空值或零值,此时可以用影像的替换值功能或者在ARCGIS 中设置空值显示为黑色如图 6,然后按照拉伸结果导出。

通过多次测试最终选择最佳的erdas 软件去除水域的直方图匹配方法,后期处理方法同TM Mosaic 的数据处理方法。得到最终的影像图如图 7效果。真彩色融合图保留了原色调。

从影像图上还能看到地貌的起伏变化。

图 7 2014—2015年LandSat8遥感影像图

3. 结语

a.直方图匹配后的空值

b. ARCGIS 中显示为黑色后

图 6 直方图匹配后空值和0值的处理方式

此项工作是利用野外的空闲时间完成,因时间零散、工作量大,有些技术方法、步骤未能解析透彻,有些方法还值得进一步试验和比较分析。主要体现在以下几个方面:

1、影像波段选取,考虑到要真实反映三省地貌、植被状况,所以2015年的影像采用的是真彩色组合B4/3/2,影像总体色调偏暗,偏灰。而前两个时段所采用的是假彩色B7/4/2组合,影像偏绿,即使经过Photoshop中的色彩匹配后依然有很大色差。

2、因最新时段中的LandSat8影像广东部分的数据有限,云量最少的影像也有12%,广西北部的影像云量也略大,对影像成图效果略有影响,

3、方法试验中做重做的镶嵌方法试验,对结果的拉伸处理和后期的PS调色处理还未深入研究,实际后期调色处理如果手段丰富,可以做出更好的效果。

4、本次工作时间有限,未能更多的验证其他遥感软件的类似操作,比如PCI、ARCGIS、MAPGIS等,留作后期完善。

文档说明

参考文献:

1 https://www.360docs.net/doc/cc5615415.html,/

2 https://www.360docs.net/doc/cc5615415.html,/

3 WCGS.TC.001-2015 LandSat8数据处理流程

遥感图像融合方法比较

1 绪论 1.1研究目的及意义 20世纪90年代中后期以后,搭载许多新型传感器的卫星相继升空,使得同一地区的遥感数据影像数目不断增多。如何有效地利用这些不同时相、不同传感器、不同分辨率的遥感数据便成为了遥感工作者研究的瓶颈问题,然而解决这一问题的关键技术就是遥感影像数据融合。 遥感数据融合就是对多个遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定法则(算法)进行处理,获得比单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱和时间特征的合成图像。 遥感是不同空间、时间、波谱、辐射分辨率提供电磁波谱不同谱段的数据。由于成像原理不同和技术条件的限制,任何一个单一遥感器的遥感数据都不能全面的反映目标对象的特征,也就是有一定的应用范围和局限性。各类非遥感数据也有它自身的特点和局限性。影像数据融合技术能够实现数据之间的优势互补,也能实现遥感数据与地理数据的有机结合。数据融合技术是一门新兴的技术,具有十分广阔的应用前景。所以,研究遥感影像数据融合方法是非常必要的。 1.2研究现状及发展的趋势 1.2.1研究现状 20世纪美国学者提出“多传感器信息融合”的概念认为在多源遥感影像数据中能够提取出比单一遥感影像更丰富、更有效、更可靠的信息。之后由于军事方面的要求,使得遥感影像数据融合技术得到了很大的发展,美、英,德等国家已经研制出了实用的遥感数据融合处理的系统和软件,同时进行了商业应用。 1)、融合结构 融合的结构可分为两类:集中式和分布式。集中式融合结构:各传感器的观测数据直接被送到中心,进行融合处理,用于关联、跟踪、识别等。分布式融合结构:每个传感器独立完成关联、识别、跟踪,然后由融合中心完成配准、多源关联的融合。 2)、融合的层次 图像融合可分为:像元级融合、特征级融合和决策级融合。 像元级融合是最低级的信息融合,可以在像素或分辨单位上进行,又叫做数据级融合。它是对空间配准的遥感影像数据直接融合,然后对融合的数据进行特征提取和属性说明。 特征级融合是由各个数据源中提取特征信息进行综合分析和处理的过程,是中间层次的融合。特征级融合分为目标状态信息融合和目标特征融合。 决策级融合是在信息表示的最高层次上进行融合处理。首先将不同传感器观测同一目标获得的数据进行预处理、特征提取、识别,以建立对所观测目标的初步理论,然后通过相关处理、决策级融合判别,最终获得联合推断结果,从而为决策提供依据。

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

ERDAS影像融合操作流程

影象融合流程 影像融合在影象解译模块和雷达影象处理模块中都有,但是雷达模块中的处理效果要相对好一些,下面就两个不同模块中的融合处理流程进行分别介绍。 一、影象解译模块(Interpreter) 1)单击,在弹出的Interpreter菜单中选则Spatial Enhancement (空间增强)弹出Spatial Enhancement菜单,再选择Resolution Merge(分辨率融合)选项。 弹出对话框如下

在Resolution Merge对话框中需要设置下列参数 (1)确定高分辨率输入文件(high Resolution input file); (2)选择影象波段; (3)确定多光谱输入文件(multispectral input file); (4)定义输出文件; (5)选择融合方法。在分辨率变换中,erdas提供了三种融合方法Principal Component(主成分变换法)、Multipalcative(乘积变换)、Brovey transform(比值变换)。其图象分别如下: Principal Component(主成分变换法)

Multipalcative(乘积变换) Brovey transform(比值变换) (6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)、Bilinbear Interpolation(二次线形内插)和Cubic Convolution(立方卷积)。其中 以Cubic Convolution方法最为平滑。 (7)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为

高分辨率遥感图像融合方法的比较正式

包头师范学院 本科学年论文 论文题目:高分辨率遥融图像融合方法比较院系:资源与环境学院 专业:地理信息系统 学号:0912430022 姓名:郭殿繁 指导教师:同丽嘎 撰写学年:2010 至2011 学年 二零一零年十二月

摘要:目前,遥感中高分辨率全色遥感影像和低空间分辨率的多光谱遥感影像融合是影像融合技术应用的主流。本文通过对遥感影像四种融合方法的研究,并且用呼和浩特市快鸟影像图像融合举例,加深对四种融合方法的理解和理论应用,最后通过截取呼和浩特市快鸟影像的原始多波段彩色影像和原始高分辨率全色波段影像的一部分进行四种融合方法来进行精度的比较,以ENVI4.7软件作为平台,最终得出,Gram-Schmidt变换效果最好,HSV变换融合效果最差。 关键词:图像融合;PCA变换;Gram-Schmidt变换;Brovey变换;HSV变换;精度比较 Abstract: At present, the remote sensing high resolution full-color remote sensing image and low spatial resolution multi-spectral remote sensing image fusion is image fusion technology application of mainstream. This article through to four kinds of remote sensing image fusion method with the principle and analysis, and in Hohhot, fast image image fusion for example, the bird to deepen the understanding of four fusion method and theory, and finally by intercepting the original image Hohhot fast bird multichannel color image and primitive high-resolution full-color band image on the part of four fusion method for precision compared to ENVI4.7 software as a platform to finally arrive, the best effect, Schmidt transform - the worst. Fusion result transformation HSV. Key words: image fusion, PCA transform; Schmidt transform; the - Brovey transform; HSV transform; Precision;

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

遥感图像的假彩色合成

北京化工大学 学士学位论文 遥感图像的假彩色合成 姓名:刘晓璐 班级:信息与计算科学0304班 学号:200362102

遥感图像的假彩色合成 摘要:遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内及其我国的许多政府部门,科研单位和公司得到了广泛的应用。在遥感数据源向着更高光谱分辨率和更高空间分辨率发展的同时,处理技术也更加成熟;在应用上,结合了地理信息系统(GIS)和全球定位系统(GPS),向着更系统化,更定量化方向发展,使遥感数据的应用更加广泛和深入。 假彩色增强是将一幅彩色图像映射为另一幅彩色图像,从而达到增强彩色对比,使某些图像达到更加醒目的目的。 本文的主要目的就是大遥感的多光谱图像用自然彩色显示。在遥感的多光谱图像中,有些是不可见光波段的图像,如近红外,红外,甚至是远红外波段。因为这些波段不仅具有夜视能力,而且通过与其他波段的配合,易于区分地物。 用假彩色技术处理多光谱图像,目的不在于使景物恢复自然的彩色,而是从中获得更多的信息。为了实现这样的目的,本文采用了MATLAB数学软件编程的方法以及运用Envi4.2 软件直接编辑图像这两种方法,并对其进行对比,得出最优的合成图像。 关键词:图像融合,假彩色合成,彩色增强,灰度级,RGB图像,

False color mapping for image fusion Abstract: A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the component of two original input images is determined. Second, the common component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous(an important consideration when it has to fit in an airplane, for instance). Key words: image fusion, false color mapping, color enhances, gray-level, RGB images

ERDAS 影像融合方法汇总(chimneyqin)

ERDAS 影像融合方法汇总 影像融合是指将多源信道所采集到的关于同一目标的影像数据经过影像处理和计算机技术等,最大限度的提取各自信道中的有利信息,最后综合成高质量的影像,以提高影像信息的利用率、改善计算机解译精度和可靠性、提升原始影像的空间分辨率和光谱分辨率,利于监测。 ERDAS IMAGINE 提供多种影像融合方法,且支持带RPC模型的影像融合处理。 1、 (1 4个波段(蓝/ 像也为 Step4: 利用低通滤波器(5×5)对多光谱影像进行滤波处理,输出多光谱滤波影像。 Step5: 利用相减法对全色锐化影像、全色滤波影像进行相减处理,并将全色锐化影像按照权重融合到多光谱滤波影像各个波段,输出新多光谱影像。 (2)参数说明

Input Sensor Type 待融合影像传感器类型,分为Quickbird、IKONOS、Format三种传感器。输入影像要求:多光谱和全色分辨率比为4:1、同时获取、为同一个传感器,全色为单波段,多光谱为4波段。 Sharpening Filter Center Value3×3锐化卷积窗口中心值,其他值都为-1,默认值根据传感器变化,范围值为11、14、17、20、23、1000,小的中心值会产生更好的锐化效果。一般来说,大分辨率影像锐化程度要求低,小分辨率影像锐化程度要求高,若全色影像已经经过锐化处理,此处选择1000。 Pan Contribution Weight融合时全色图像所占的比重(权重),范围为0.7-1.3,默认值根据传感器变化,小的锐化值会产生更好的锐化效果。 Create image of subset area根据子区的坐标来定义融合影像范围。 Create image of full area输出所有区域的融合影像,这个范围是全色和多光谱影像的交集(intersect)。该项勾选时才可设置融合影像成果名称和存放路径。 Null Value 设置输出图像空值的数值。 Mask input Null Values 勾选该项时,可设置输出图像空值。

浅析多源遥感数据融合原理及应用

浅析多源遥感数据融合原理 摘要: 本文介绍了遥感影像融合技术, 系统阐述了几种常见的遥感影像融合方法及其优缺点。首先,阐述了多源遥感影像数据融合的目的、意义以及多源遥感影像数据融合的基本理论;然后介绍了多源遥感影像数据融合的层次和常用方法,在分析和探讨多源遥感影像数据融合原理、层次、结构及特点的基础上,归纳了多源遥感影像数据融合方法,然后通过实验,对不同方法融合后的成果图进行比较,每种方法都有其自身的优点和不足之处,这就决定了它们在应用方面的不同,采用乘积方法变换、Brovey比值变换和PCA变换融合方法融合后的图像,其光谱保真程度逐渐降低.Muhiplieative(乘积)变换融合较好地保留了多光谱波段的光谱分辨率和空间信息,融合图像的光谱保真能力较好,详细程度较高;PCA变换融合和Brovey变换;融合和影像质量一般.与PCA变换融合比较,Brovey变换融合的空间信息的详细程度较低,但相对好的保留了多光谱波段的光谱分辨率。 关键词: 遥感影像融合融合层次融合方法优缺点对比

目录 1、绪论 (1) 2、多源遥感数据融合的基本理论 (1) 2.1 多源遥感数据融合的概念 (3) 2.2多源遥感数据融合的原理 (4) 2.3多源遥感数据融合层次 (4) 2.3.1 像元级融合 (4) 2.3.2 特征级融合 (4) 2.3.3 决策级融合 (5) 3、多源遥感数据融合常用方法 (5) 3.1 主成分变换(PCT) (5) 3.2 乘积变换 (5) 3.3 Brovey比值变换融合 (5) 4、实验与分析 (6) 5、结语 (8) 参考文献 (9) 致谢 (10)

遥感—— 影像融合

实验名称:影像融合 一、实验内容 1.对TM影像和SPOT影像进行HSV数据融合。 2.利用均值、标准差、特征值等参数对融合效果进行评价。 二、实验所用的仪器设备,包括所用到的数据 电脑一台,遥感影像处理软件(ENVI),英国伦敦的TM影像数据lon_tm和SPOT影像数据lon_spot。 三、实验原理 (一)影像融合 定义:图像(影像)融合是指将多源遥感图像按照一定的算法,在规定的地理坐标系中,生成新的图像的过程。 目的:1)提高图像空间分辨率;2)改善分类;3)多时相图像融合用于变化检测。 (二)HSV数据融合 HSV变换法的主要原理为:首先将多光谱图像经HSV变换得到H、S、V三个分量。然后将高分辨率的全色图像代替V分量,保持H、S分量不变。最后在进行HSV反变换得到具有高空间分辨率的多光谱图像。 (三)Brovey变换 Brovey融合也称为色彩正规化( color normalization)变换融合, 由美国学者Brovey推广而得名。其算法是将多光谱影像空间(multispectral image space)分解为色度和亮度成分, 并进行计算。其特点是简化了影像转换过程的系数, 以最大限度地保留多光谱数据的信息。Brovey融合法的表达式: 红色通道=R / (R +G +B ) ×1 绿色通道=G / (R +G +B ) ×1 蓝色通道=B / (R +G +B ) ×1 其中: R、G、B分别为多光谱影像的三个波段, I为高空间分辨率影像。 该方法对RGB图像和高分辨率数据进行数学合成,即RGB图像中的每一个波段都乘以高分辨率数据与RGB图像波段总和的比值。然后自动地用最近邻、双线性或三次卷积技术将3个RGB波段重采样到高分辨率像元尺寸。本方法也要求数据具有地理参考或者具有相同的尺寸大小。 (四)评价指标 (1)均值与标准方差 上述两个公式中,M、N为图像长宽像素个数,f(i, j)为i行j列图像灰度值。 (2)信息熵 对于灰度范围{0,1.…,L-1}的图像直方图,Pi为灰度值等于i的像素数与图像总像素数之比,L为灰度级总数,它表示了图像中纹理的非均匀程度或复杂程度。其中P(i)为灰度值为i的像素在

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

遥感卫星数据处理知识详解

北京揽宇方圆信息技术有限公司 遥感卫星数据处理知识详解 遥感技术自20世纪60年代兴起以来,被应用于各种传感仪器对电磁辐射信息的收集、处理,并最后成像。遥感信息通常以图像的形式出现,故这种处理也称遥感图像信息处理。 那对遥感图像处理可以达到什么目的呢? ①消除各种辐射畸变和几何畸变,使经过处理后的图像能更真实地表现原景物真实面貌; ②利用增强技术突出景物的某些光谱和空间特征,使之易于与其它地物的K 分和判释; ③进一步理解、分析和判别经过处理后的图像,提取所需要的专题信息。遥感信息处理分为模拟处理和数字处理两类(见数据釆集和处理)。 遥感数据处理过程 多谱段遥感信息的处理过程是: ①数据管理:地面台站接收的原始信息经过摄影处理、变换、数字化后被转换成为正片或计算机兼容的磁带,将得到的照片装订成册,并编目提供用户选用。 ②预处理:利用处理设备对遥感图像的几何形状和位置误差、图像辐射强度信息误差等系统误差进行几何校正和辐射校正。 ③精处理:消除遥感平台随机姿态误差和扫描速度误差引起的几何畸变,称为几何精校正;消除因不同谱段的光线通过大气层时受到不同散射而引起的畸变,称为大气校正。

④信息提取:按用户要求进行多谱段分类、相关掩模、假彩色合成、图像增 强、密度分割等。 ⑤信息综合:将地面实况调查与不同高度、不同谱段遥感获得的信息综合编 辑,并绘制成各种专题图。 遥感信息处理方法和模型越来越科学,神经网络、小波、分形、认知模型、地学专家知识以及影像处理系统的集成等信息模型和技术,会大大提高多源遥感技术的融合、分类识别以及提取的精度和可靠性。统计分类、模糊技术、专家知识和神经网络分类有机结合构成一个复合的分类器,大大提高分类的精度和类数。多平台、多层面、多传感器、多时相、多光谱、多角度以及多空间分辨率的融合与复合应用,是目前遥感技术的重要发展方向。不确定性遥感信息模型和人工智能决策支持系统的开发应用也有待进一步研究。 多源遥感数据融合 遥感数据融合技术旨在整合不同空间和光谱分辨率的信息来生产比单一数据包含更多细节的融合数据,这些数据来自于安放在卫星、飞行器和地面平台上的传感器。融合技术已成功应用于空间和地球观测领域,计算机视觉,医学影像分析和防卫安全等众多领域。 遥感数据处理的发展趋势 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。 这种发展主要表现在以下4个方面: 1. 1.多分辨率多遥感平台并存 2. 空间分辨率、时间分辨率及光谱分辨率普遍提高。目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m 的多种空间分辨率。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 1. 2.微波遥感、高光谱遥感迅速发展 2. 微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。 微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们

(完整版)遥感图像融合技术的发展现状

遥感图像融合技术的发展现状及趋势 1 引言 多源图像融合属于多传感器信息融合的范畴, 是指将不同传感器获得的同一景物的图像或同一传感器在不同时刻获得的同一景物的图像, 经过相应处理后, 再运用某种融合技术得到一幅合成图像的过程。多幅图像融合可克服单一传感器图像在几何、光谱和空间分辨率等方面存在的局限性和差异性, 提高图像的质量, 从而有利于对物理现象和事件进行定位、识别和解释。与单源遥感图像相比, 多源遥感图像所提供的信息具有冗余性、互补性和合作性。因此,将多源遥感图像各自的优势结合应用, 获得对环境正确的解译是极为重要的。多源遥感图像融合则是富集这些多种传感器遥感信息的最有效途径之一,是现代多源数据处理和分析中非常重要的一步。本文基于遥感图像融合的研究现状、分析了图像融合研究的困境和不足, 最后提出了未来的发展趋势和热点, 以期达到抛砖引玉的作用。 2 遥感图像融合研究现状 随着信息科学技术的发展, 在20 世纪七八十年代诞生了一个称为数据融合的全新概念。这一概念不断扩展, 处理的对象由一般的数据发展到数字图像。1979 年, Daliy 等人首先将雷达图像和LandsatMSS 图像的复合图像应用于地质解译, 被认为是最早的图像

融合。20 世纪80 年代, 图像融合技术逐渐应用到遥感图像的分析和处理中。90年代以后, 图像融合技术成为研究的热点, 并成为很多遥感图像应用的一个重要预处理环节。目前, 遥感图像融合已经发展为像素级、特征级和决策级3个层次, 如表1。需要指出的是, 融合层次并没有划分融合算法严格的界限, 因为本质上各个融合层次都是信息融合的范畴。像素级图像融合技术已被广泛研究和应用, 并取得了一定的成果。特征级融合是一种中等层次的信息融合, 利用从各个传感器图像的原始信息中提取的特征信息,进行综合分析及融合处理, 不仅增加从图像中提取特征信息的可能性, 还可能获取一些有用的复合特征, 尤其是边缘、角、纹理、相似亮度区域、相似景深区等。在特征级融合中, 对图像配准的要求不如像素级图像融合对配准要求那么严格。决策级图像融合是一种更高层次的信息融合, 其结果将为各种控制或决策提供依据。在进行融合处理前, 先对图像进行预处理、特征提取、识别或判决, 建立对同一目标的初步判决和结论, 然后对各个图像的决策进行相关处理, 最后进行决策级的融合。从特点来看,不同层次的融合各有优缺点, 难以在信息量和算法效率方面都同时满足需求。 表一:遥感图像融合三个层次的对比 融合层次融合算法特点

遥感图像融合质量评价方法

遥感图像融合质量评价方法 武坚李崇伟王积武李相全 (68011部队甘肃兰州 730020) 摘要:图像融合可为摄影测量与遥感提供高质量的遥感融合图像。遥感融合图像质量如何是图像使用者关心的一个重要问题。本文运用主观评价、客观评价、几何质量等三种评价方法对融合后的遥感图像的质量展开讨论。实践表明这些评价方法能够保证融合后图像高质量地应用于摄影测量与遥感生产。 关键词:主观评价客观评价几何质量质量评价 1.前言 摄影测量与遥感[1]是以数字影像为基础,来确定被摄物体的形状、大小、空间位置及其性质。遥感图像是摄影测量与遥感最原始、最基本的资料。高质量的遥感图像是完成摄影测量与遥感的基础。遥感影像融合[2]是将多传感器、多时相、多光谱和多分辨率影像的各自局部优势信息整合处理,以提供高分辨率、多光谱的单一图像,解决遥感影像解译过程中信息不足的问题。由此看出,图像融合可以为摄影测量与遥感提供高质量的遥感影像。 2.图像融合的评价方法 当前对融合后图像的质量评价主要是主观目视与统计相关信息参数相结合的办法,即:利用目视效果和信息熵、清晰度、平均梯度、偏差指数、均方根误差等参数统计分析,而对融合后图像的几何量测性则关注较少。对于摄影测量与遥感应用,几何精度是一个很重要的因素。本文结合摄影测量与遥感应用角度,来对分析融合后图像的质量做出评价。 站在通用图像处理角度,目前大多数对影像质量评价分为主观评价和客观评价,并结合起来使用。主观评价是通过目视观察进行分析,客观评价是利用图像的统计参数进行判定。严格意义上讲,融合图像的主客观评价应该是一致的,即图像的统计参数特征应该符合人眼的目视感觉。但由于遥感图像融合具有特殊性,它不仅仅要求提高融合图像的空间分辨率,而且要尽可能制约[2]。因此,对遥感融合图像的质量评价,应综合考虑空间细节的增强和光谱保持原始图像的光谱特征。此外,这两个要求在很大程度上是不太相容,相互信息的保持两个方面,利用图像的统计参数结合目视观察来分析与评价。 对于摄影测量与遥感而言,影像的几何质量(影像的可量测性)是很重要的一个因素,它将决定融合图像能否达到数字地形图生产的精度限差[4]。因此,从主观、客观、几何质量等三个方面对做出质量评价可以保证融合后图像高质量地应用于摄影测量与遥感生产。

遥感数据融合

遥感图像的融合 1、目的与要求 1、了解遥感图像融合的原理和方法 2、熟悉高、低分辨率的影像的融合步方法骤 3、掌握遥感软件中常用的遥感数据融合的步骤与方法 2、实验内容 选择ETM8波段的数据与假彩色合成波段的数据做融合处理。融合的方法主要是高、低分辨率遥感数据的融合。 数据要求:在融合之前,第8波段和合成波段数据都已经经过了几何校正和辐射校正等预处理。 3、实验步骤 1、空间分辨率融合 选择“Erdas”面板菜单“Interpreter”->”Spatial Enhancement”->”Resolution Merge”命令,打开“Resolution Merge”对话框。设置如下参数: 文件设置:高空间分辨率的输入图像、多光谱输入图像和输出文件。 融合方法的选择: ¤主成分变换法 ¤乘积变换法 ¤比值变换法 主成分变换法:

融合前融合后乘积变换法:

融合前融合后 2、IHS融合 选择“Erdas”面板菜单“Interpreter”->”Spatial Enhancement”->”Mod.IHS Resolution Merge”命令,打开”Mod.IHS Resolution Merge”对话框,在输入、层选择和输出3个页面中设置参数。

融合前融合后 3、高通滤波融合 选择“Erdas”面板菜单“Interpreter”->”Spatial Enhancement”->”HPF Resolution Merge”命令,

打开”HPF Resolution Merge”对话框,设置如下参数: R值:多光谱图像分辨率与高分辨率图像的分辨率的比值。通过它可以调整卷积核的大小和中心值。 Kernel Size:高通滤波卷积核的大小,有R值决定。 Center Value:卷积核的中心值。 Weighting Factor:权重影响因子。 2Pass Processing :二次滤波选项。当R值大于或等于5.5时,此选项才生效。

ENVI遥感图像处理方法

《ENVI遥感图像处理方法》科学出版社2010年6月正式出版 上一篇/ 下一篇 2010-05-26 15:02:30 / 个人分类:ENVI 查看( 643 ) / 评论( 5 ) / 评分( 0 / 0 ) 从上个世纪六十年代E.L.Pruitt提出“遥感”这个词至今,遥感已经成为人类提供了从多维和宏观角度去认识宇宙世界的新方法和新手段。目前,遥感影像日渐成为一种非常可靠、不可替代的空间数据源。ENVI (The Environment for Visualizing Images)是由遥感领域的科学家采 用交互式数据语言IDL(Interactive Data Language)开发的一套功能强大的遥感图像处理软件。ENVI以其强大的图像处理功能,尤其是和ArcGIS 一体化集成,使得众多的影像分析师和科学家选择ENVI来处理遥感图像和获得图像中的信息,从而全面提升了影像的价值。ENVI已经广泛使用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市和区域规划等众多领域。和此形成鲜明对比的是,目前关于ENVI 的中文教程非常少,给广大用户学习软件和使用软件带来诸多不便。 针对上述情况,在ESRI中国(北京)有限公司的大力支持下,根据多年遥感使用研究和软件操作经验,历时一年半编著完成本书。全书按照遥感图像处理流程由浅到深逐步引导读者掌握ENVI软件操作。各个章节相对独立,读者可视个人情况进行选择阅读。全书分为17章,第1、2、3章介绍了ENVI软件的基础知识,可作为ENVI软件入门,也可作为参考内容;第4、5、6、7、8章介绍了遥感图像处理一般流程,包

遥感图像融合.

实习五、高分辨率遥感影像融合 一、实习目的 1. 学习 ERDAS IMAGINE软件中 Interpreter 模块的功能; 2. 掌握 ERDAS 软件中实现 IHS 融合的流程。 二、实习要求 1. 理解基于 IHS 变换的图像融合的原理; 2. 掌握 ERDAS 软件中色彩变换、色彩逆变换、基于直方图匹配的辐射增强以及多波段数据组合的操作方法; 3. 独立完成实习内容。 三、实习内容 将不同类型的遥感数据进行融合, 可以更好地发挥不同数据源的优势, 增强数据信息的质量, 更有利于综合分析。如在本实习中, 全色波段影像具有较高的空间分辨率, 而多光谱影像的光谱信息较为丰富; 为了充分利用这两种影像各自的优势,可以通过图像融合(将覆盖同一地区的全色影像和多光谱影像进行融合 , 使多光谱图像的空间分辨率得到提高, 同时又保留其较为丰富的光谱信息。运用 ERDAS 软件进行全色波段影像和多光谱影像的融合的基本操作包括: 1. 组合多光谱影像的 R 、 G 、 B 波段数据(Layer Stack 2. 色彩变换(RGB to IHS 3. 辐射校正(Radiometric Enhancement 4. 多波段数据组合(Layer Stack 5. 色彩逆变换(IHS to RGB

四、数据说明 本实习采用的数据为:西南交通大学犀浦校区 QuickBird 全色波段影像 xipu_QuickBird_pan.img,及多光谱影像 xipu_QuickBird_RGBNIR.img(于 2006年 11月获取。其中,全色波段分辨率为 0.6m , 4个多波段(B, G, R, NIR分辨率为 2.4m 。本实习中仅使用全色波段与 R 、 G 、 B 波段数据。 五、实习步骤 1. 将多光谱影像 xipu_QuickBird_RGBNIR.img的红、绿、蓝波段提取,进行多波段数据重组(假设生成文件为 rgb321.img ; 2. 对重组后的多光谱影像进行色彩变换,将多光谱影像(rgbnir321.img 从 RGB 彩色空间转换到 IHS 彩色空间(假设生成文件为 ihs.img ; 3. 以 ihs.img 的亮度分量(Intensity 为参量,对全色波段影像(pan.img 进行基于直方图匹配的辐射校正(假设生成文件 pan_cal.img ; 4. 用校正后的全色影像(pan_cal.img代替 ihs.img 的亮度分量(Intensity , 实现多波段数据的组合; 5. 对多波段数据组合后生成的文件进行色彩逆变换。 具体说明如下: (1组合多光谱影像的 R 、 G 、 B 波段数据 由于本实习中仅使用多光谱影像的 R 、 G 、 B 波段数据,故对这三个波段进行多光谱数据重组。 执行操作时, 在 ERDAS 控制面板工具条中单击“Interpreter” 图标, 在弹出的对话框中单击“Utilities” 选项, 弹出对话框, 再单击“Layer Stack” 选项, 打开“Layer Selection and Stacking” 对话框,如下图所示:

影像融合流程

影像融合流程 影像融合在影象解译模块和雷达影象处理模块中都有,但是雷达模块中的处理效果要相对好一些,下面就两个不同模块中的融合处理流程进行分别介绍。 一、影象解译模块(Interpreter) 1)单击,在弹出的Interpreter菜单中选则Spatial Enhancement(空间增强)弹出Spatial Enhancement菜单,再选择Resolution Merge(分辨率融合)选项。 弹出对话框如下 在Resolution Merge对话框中需要设置下列参数 (1)确定高分辨率输入文件(high Resolution input file); (2)选择影象波段; (3)确定多光谱输入文件(multispectral input file); (4)定义输出文件; (5)选择融合方法。在分辨率变换中,erdas提供了三种融合方法Principal Component(主成分变换法)、Multipalcative(乘积变换)、Brovey transform(比值变换)。其图象分别如下: Principal Component(主成分变换法) Multipalcative(乘积变换) Brovey transform(比值变换) (6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)、Bilinbear Interpolation(二次线形内插)和Cubic Convolution(立方卷积)。其中以Cubic Convolution方法最为平滑。 (7)确定Output Options输出图象选项。选择Lgnore Zero Stats,可以忽略像素值为0的像素; (8)确定Layer Selection(输出图象波段组合); (9)确定Data Type(输出数据类型); (10)击OK按钮执行操作。 2)在Spatial Enhancement菜单中选择wavelet Resolution Merge(小波融合),弹出对话框如下: 在wavelet Resolution Merge对话框中我们要设置参数: (1)确定高分辨率输入文件(high Resolution input file); (2)选择影象波段; (3)确定多光谱输入文件(multispectral input file); (4)定义输出文件; (5)选择融合方法在小波融合中,erdas提供了三种融合方法Principal Component(主成分变换法)、ISH(色彩变换)、Single Band(单波段变换)。其图象分别如下: Single Band(单波段变换) ISH(色彩变换) Principal Component(主成分变换法) (6)选择重采样方法。系统提供了两种重采样方法Nearest Neighbor(邻近像元法)和Bilinbear Interpolation(二次线形内插)。

相关文档
最新文档