linuxrc详解

linuxrc详解
linuxrc详解

linuxrc详解

来源: ChinaUnix博客日期:2008.12.18 16:38(共有0条评论) 我要评论

主題: 請問在busybox 中linuxrc 與/sbin/init 的不同處

linuxrc 是busybox make install 產生出來的

/sbin/init 也是busybox 用來初始開機的程式

我分別用來開機都可正常運作

那請問兩者的差別在哪裡還是這兩個東西其實都是一樣的^^"

以下為摘自linux kernel Documentation應該可以解決你的疑問。

When using initrd, the system typically boots as follows:

1) the boot loader loads the kernel and the initial RAM disk

2) the kernel converts initrd into a "normal" RAM disk and

frees the memory used by initrd

3) initrd is mounted read-write as root

4) /linuxrc is executed (this can be any valid executable, including

shell scripts; it is run with uid 0 and can do basically everything

init can do)

5) linuxrc mounts the "real" root file system

6) linuxrc places the root file system at the root directory using the

pivot_root system call

7) the usual boot sequence (e.g. invocation of /sbin/init) is performed

on the root file system

the initrd file system is removed

linuxrc常见错误

2008年09月04日星期四下午04:16

1> linuxrc不具备可执行属性

2> linuxrc的解释shell不在首行

3> linuxrc的解释shell不存在

一般都出不了上面三个原因.

linuxrc脚本

kernel启动后,执行/root_china/linuxrc脚本文件,接下来执行

/root_china/usr/etc/rc.local脚本文件。这两个文

件我以前没去管是什么意思,起到什么作用,直到今天。

/root_china/linuxrc:

#!/bin/sh

echo "mount /etc as ramfs"

/bin/mont -n -t ramfs ramfs /etc //将/etc目录mount成可写的ramfs文件系统

/bin/cp -a /mnt/etc/* /etc //将/mnt/etc目录下的文件拷贝到/etc目录下

echo "re-create the /etc/mtab entries"

#re-create the /etc/mtab entries

/bin/mount -f -t cramfs -o remount,ro /dev/mtdblock/2 / //将/dev/mtdblock/2 mount成根文件系统

/bin/mount -f -t ramfs ramfs /etc

exec /sbin/init //执行脚本档/usr/etc/rc.local

1. /bin/mount -n -t ramfs ramfs /etc

这句话的作用加载一个ramfs作为/etc目录。这样/etc就是一个可写目录。看这个脚本,得出根文件系统是一个

cramfs(只读可压缩文件系统),而/etc作为系统运行配置文件的存放地点,可能会写一些运行状态在这里,linuxrc第一件事情就是将一个ramfs mount到/etc只读目录中,使得/etc/目录可写,指定参数-n的目的是告诉mount不要写/etc/mtab(这个文件存放当前系统mount了的所有文件系统)。因为现在/etc/目录还是只读,所以这次mount不要写这个文件,否则会失败。ramfs在哪里?在

/etc/fstab文件中应该有ramfs一项,mount会去找这项,如果没有,mount会失败。后面就执行不下去。

2. /bin/cp -a /mnt/etc/* /etc

/etc成为可写目录后,将所有/mnt/etc中的配置文件拷贝到/etc/中,这说明ramfs可能是一个空的ramfs,没有配置文件,或者配置文件比较老。同时也说明这个系统是一个只读系统,每次系统运行中写入的配置不会保留。

将以前mount的那些信息重新写到/etc/mtab中,命令就是下面这些。

3. /bin/mount -f -t cramfs -o remount,ro /dev/bon/2 /

/bin/mount -f -t ramfs ramfs /etc

这些命令只是将这些mount信息写到/etc/mtab中,不会实际去mount这些block device,说明你的根文件系统依然是以前的那个/dev/bon/2

4. exec /sbin/init

执行根文件系统中的init执行程序,使其成为1号进程。shell正式运行

linux启动过程详解

2008-01-12 00:43

这几天看了很多文档,算是对linux的启动过程有了比较细致的了解.

网上有很多文章谈到这方面的内容,但总觉得没有一篇完全的解析linux启动的

细节,下面是我小弟在学习的过程中总结出来的一些东东.这个是完整的linux启动过程,

不涉及内核,但是我觉得比较详细哦.

(由于本人比较懒,这一段是从网上抄的)

机器加电启动后,BIOS开始检测系统参数,如内存的大小,日期和时间,磁盘

设备以及这些磁盘设备用来引导的顺序,通常情况下,BIOS都是被配置成首先检查

软驱或者光驱(或两者都检查),然后再尝试从硬盘引导。如果在这些可移动的设

备中,没有找到可引导的介质,那么BIOS通常是转向第一块硬盘最初的几个扇区,

寻找用于装载操作系统的指令。装载操作系统的这个程序就是boot loader.

linux里面的boot loader通常是lilo或者grub,从Red Hat Linux 7.2起,GRUB( GRand Unified Bootloader)取代LILO成为了默认的启动装载程序。那么启动的时候

grub是如何被载入的呢?

grub有几个重要的文件,stage1,stage2,有的时候需要stage1.5.这些文件一般都

在/boot/grub文件夹下面.grub被载入通常包括以下几个步骤:

1. 装载基本的引导装载程序(stage1),stage1很小,网上说是512字节,但是在我的系统上

用du -b /boot/grub/stage1 显示的是1024个字节,不知道是不是grub版本不同的

缘故还是我理解有误.stage1通常位于主引导扇区里面,对于硬盘就是MBR了,stage1的

主要功能就是装载第二引导程序(stage2).这主要是归结于在主引导扇区中没有足够的

空间用于其他东西了,我用的是grub 0.93,stage2文件的大小是107520 bit.

2. 装载第二引导装载程序(stage2),这第二引导装载程序实际上是引出更高级的功能,

以允许用户装载入一个特定的操作系统。在GRUB中,这步是让用户显示一个菜单或

是输入命令。由于stage2很大,所以它一般位于文件系统之中(通常是boot所在的根

分区).

上面还提到了stage1.5这个文件,它的作用是什么呢? 你到/boot/grub目录下看看,

fat_stage_1.5 e2fs_stage_1.5 xfs_stage_1.5等等,很容易猜想stage1.5和文件系统

有关系.有时候基本引导装载程序(stage1)不能识别stage2所在的文件系统分区,那么这

时候就需要stage1.5来连接stage1和stage2了.因此对于不同的文件系统就会有不同的stage1.5.但是对于grub 0.93好像stage1.5并不是很重要,因为我试过了,在没有stage1.5

的情况下, 我把stage1安装在软盘的引导扇区内,然后把stage2放在格式化成ext2或者fat格式的软盘内,启动的时候照常引导,并不需要e2fs_stage_1.5或者fat_stage_1.5. 下面是我的试验:

#mkfs.ext2 /dev/fd0

#mount -t ext2 /dev/fd0 /mnt/floppy

#cd /mnt/floppy

#mkdir boot

#cd boot

#mkdir grub (以上三步可用mkdir -p boot/grub命令完成)

#cd grub

#cp /boot/grub/{stage1,stage2,grub.conf} ./

#cd; umount /mnt/floppy

以上几步把软盘格式化成ext2格式,然后把stage1,stage2,grub.conf这几个启动的时候必须的文件拷贝到软盘的指定目录下.下面安装grub到软盘上.

#grub (进入grub环境)

grub> install (fd0)/boot/grub/stage1 (fd0) (fd0)/boot/grub/stage2

p (fd0)/boot/grub/grub.conf

以上这条命令也可以用下面的两句代替

grub>root (fd0) #grub的根目录所在的分区

grub>setup (fd0) #这一步就相当于上面的install命令

我在这里解释一下

install (fd0)/boot/grub/stage1 (fd0) (fd0)/boot/grub/stage2 p

(fd0)/boot/grub/grub.conf 这条命令.

install

告诉GRUB将(fd0)/boot/grub/grub/stage1

安装到软驱的引导扇区(fd0).

(fd0)/boot/grub/stage2

告诉grub stage2这个文件所在的位置.

p 参数后面跟着(fd0)/boot/grub/grub.conf 告诉grub的配置文件所在的位置.

好了,让BIOS从软驱启动,试一下,没有e2fs_stage_1.5文件照样能够进入系统.

其实这就是一个小小的启动盘啊.(了解了grub的运行原理,就简单多了^_^)

3. 现在我们已经到grub的开机选单这一步了,接下来grub所需要做的就是装载在一个特

定分区上的操作系统,如linux内核。一旦GRUB从它的命令行或者配置文件中,接到开始

操作系统的正确指令,它就寻找必要的引导文件,然后把机器的控制权移交给操作系统.

由于篇幅有限,避免冗长,grub的命令我就不多说了,网上很有多的资料,一个典型

完整的引导linux的命令如下:

title 51base

root(hd0,0)

kernel /bzImage ro root=/dev/ram0

initrd /initrd.img

这里有必要注意一下几个问题:

(1)grub的磁盘以及分区的命名方式和linux有所区别,第一个磁盘是从0开始,第一

个分区也是从0开始.譬如第一个硬盘的第5分区在linux下面是/dev/hda5 ,而在grub里面

是(hd0,4).再如/dev/fd0在grub里面是(fd0,0).(最后一句如有错误望提醒)

(2)不管是IDE硬盘hda,hdb还是SCSI硬盘sda,sdb在grub里面都是以hd方式命名. 譬如虚拟机里面的/dev/sda2在grub里面是(hd0,1),再如/dev/hdb7在grub里面以(hd1,6) 命名.

(3)要搞清楚上面两个root的关系,root (hd0,0)中的root是grub命令,它用来指定

boot所在的分区作为grub的根目录.而root=/dev/ram0是kernel的参数,它告诉操作系统

内核加载完毕之后,真实的文件系统所在的设备.要注意grub的根目录和文件系统的根

目录的区别.

再回到上面的几行命令.

kernel命令用来指定内核所在的位置,"/"代表(hd0,0),也就是grub的根目录

initrd命令用来指定初始化ram的img文件所在位置.

grub载入内核bzImage并展开到指定位置(应该是0x100000这个地方),同时载入initrd.img到内存(不知道是什么地方).

ps:

grub的任务至此就结束了,下面grub将机器的控制权转交给操作系统(linux).

操作系统接到控制权之后,开始start_kernel,接着内核将initrd.img展开到/dev/ram0 为临时根文件系统,执行里面的linuxrc文件.

P.这里有必要说一下initrd的作用特别是它里面的核心文件linuxrc的作用.

initrd是inital ram disk的宿写.

当存在initrd的时候,机器启动的过程大概是以下几个步骤(当initrd这一行用

noinitrd 命令代替后,就不存在initrd了)

1)boot loader(grub)加载内核和initrd.img

2)内核将压缩的initrd.img解压成正常的ram disk并且释放initrd所占的内存空间

3)initrd作为根目录以读写方式被挂载

4)initrd里面的文件linuxrc被执行

5)linuxrc挂载新的文件系统

6)linuxrc使用pivot_root系统调用指定新的根目录并将现有的根目录place到指定位置.

7)在新的文件系统下正式init

8)initrd被卸载.

为了便于理解,我将red hat linnux9 里面的initrd-2.4.20-8.img拿出来分析一下.

这其实是一个压缩了的文件,是以gz结尾的.

[root@localhost root]#cp /boot/initrd-2.4.20-8.img /mnt/initrd-2.4.20-8.gz [root@localhost root]#gunzip /mnt/initrd-2.4.20-8.gz

[root@localhost root]#mount -o loop /mnt/initrd-2.4.20-8 /mnt/ram

[root@localhost root]#cd /mnt/ram

[root@localhost ram]#ls

bin dev etc lib linuxrc loopfs proc sbin sysroot [root@localhost ram]#ls bin

insmod modprobe nash

[root@localhost ram]#ls lib

Buslogic.o ext3.o jbd.o scsi_mod.o sd_mod.o [root@localhost ram]ls dev

console null ram systty tty1 tty2 tty3 tty4

sbin目录是指向bin目录的一个连接,其他目录是空的. [root@localhost ram]cat linuxrc

#!/bin/nash

1.echo "Loading scsi_mod.o module"

2.insmod /lib/scsi_mod.o

3.echo "Loading sd_mod.o module"

4.insmod /lib/sd_mod.o

5.echo "Loading BusLogic.o module"

6.insmod /lib/BusLogic.o

7.echo "Loading jbd.o module"

8.insmod /lib/jbd.o

9.echo "Loading ext3.o module"

10.insmod /lib/ext3.o

11.echo Mounting /proc filesystem

12.mount -t proc /proc /proc

13.echo Creating block devices

14.mkdevices /dev

15.echo Creating root device

16.mkrootdev /dev/root

17.echo 0x0100 > /proc/sys/kernel/real-root-dev

18.echo Mounting root filesystem

19.mount -o defaults --ro -t ext3 /dev/root /sysroot

20.pivot_root /sysroot /sysroot/initrd

21.umount /initrd/proc

上面的编号是我为了下面好说明加上去的.

首先我们必须注意的是这里使用的shell是nash而不是bash,nash是专门为linuxrc可执行脚本设计的,因此你有必要看一看nash的man文档.

1-10行是加载一些必要的模快.11-12行加载proc内核文件系统,13-14行利用nash内建的命令mkdevices创建块设备,mkdevices是根据/proc/partitions文件创建里面列出的所有

块设备.15-16行利用nash内建的命令mkrootdev,mkrootdev使它后面的参数/dev/root成为一个块节点从而使得根分区设备被挂载,其中根分区设备由grub.conf里面的kernel命

令后面所带的参数root=决定,如果root=参数没有被指定,/proc/sys/kernel/real-root-

dev文件将提供根分区设备号.17行将数字256写入到后面的文件里面去.18-19行挂载根文

件系统到/sysroot目录下,/dev/root里面的内容就是root=参数所指定的设备里面的内容

20行调用pivot_root改变根目录所在地并place旧的根目录到指定的位置.21行卸载旧的

根目录里面的proc内核文件系统.

从这里面我们总结一下linuxrc的作用: (参考/usr/src/linux-2.4/Documenta

tion/initrd.txt文档)

2)/linuxrc文件决定在挂载真正的文件系统之前所需完成的事情(譬如加载必要的网

络驱动或者加载ext3文件系统).

3)/linuxrc加载必要的模块.

4)/linuxrc挂载根文件系统

5)/linuxrc调用pivot_root来改变根目录

关于initrd的用途可以查考上面提到的文档,想知道linux系统是如何安装的吗?那里

面由答案.

既然linuxrc的主要目的是加载模快用的,那如果我们的内核没有动态的模块而所需

的功能都是静态编译进内核的,那么是不是可以不用linuxrc文件呢?

答案是可以不用,在普通的linux操作系统里面可以加入noinitrd选项以告知boot

loader 不使用initrd.如果我们做网关,因为ram是我们的文件系统的载体,所以initrd

一行当然不能去掉,但是我们可以不用linuxrc文件,sysroot文件夹和initrd文件夹.

不信的话,试试看吧.

好了,initrd(linuxrc)已经介绍完了.

linuxrc执行完毕之后,系统就会以真正的根目录正式init.

系统在/bin/或者/sbin目录下找到init程式,然后根据它的配置文件/etc/fstab进行

初始化,最后调用mingetty程式启动login完成引导.

ps:init这一部分网上有很多的详细资料所以我在这里并没有展开来说.

终于写完了,希望对你有所帮助.如有错误,还望指正.

Trackback:

https://www.360docs.net/doc/ca5722125.html,/TrackBack.aspx?PostId=731583

Linux init详解

2008-12-08 12:25

Linux init详解

init是Linux系统操作中不可缺少的程序之一。

所谓的init进程,它是一个由内核启动的用户级进程。

内核自行启动(已经被载入内存,开始运行,并已初始化所有的设备驱动程序和数据结构等)之后,

就通过启动一个用户级程序init的方式,完成引导进程。所以,init始终是第一个进程(其进程编号始终为1)。

内核会在过去曾使用过init的几个地方查找它,它的正确位置(对Linux系统来说)是/sbin/init。如果内核找不到init,它就会试着运行/bin/sh,如果运行失败,系统的启动也会失败。

一、什么是INIT:

init是Linux系统操作中不可缺少的程序之一。

所谓的init进程,它是一个由内核启动的用户级进程。

内核自行启动(已经被载入内存,开始运行,并已初始化所有的设备驱动程序和数据结构等)之后,就通过启动一个用户级程序init的方式,完成引导进程。所以,init始终是第一个进程(其进程编号始终为1)。

内核会在过去曾使用过init的几个地方查找它,它的正确位置(对Linux系统来说)是/sbin/init。如果内核找不到init,它就会试着运行/bin/sh,如果运行失败,系统的启动也会失败。

二、运行级别

那么,到底什么是运行级呢?

简单的说,运行级就是操作系统当前正在运行的功能级别。这个级别从1到6 ,具有不同的功能。

不同的运行级定义如下:(可以参考Red Hat Linux 里面的/etc/inittab)

# 0 - 停机(千万不能把initdefault 设置为0 )

# 1 - 单用户模式

# 2 - 多用户,没有NFS

# 3 - 完全多用户模式(标准的运行级)

# 4 - 没有用到

# 5 - X11 (xwindow)

# 6 - 重新启动(千万不要把initdefault 设置为6 )

这些级别在/etc/inittab 文件里指定。这个文件是init 程序寻找的主要文件,最先运行的服务是放在/etc/rc.d 目录下的文件。在大多数的Linux 发行版本中,启动脚本都是位于/etc/rc.d/init.d中的。这些脚本被用ln 命令连接到/etc/rc.d/rcn.d 目录。(这里的n 就是运行级0-6)

三、运行级别的配置

运行级别的配置是在/etc/inittab行内进行的,如下所示:

12 : 2 : wait : / etc / init.d / rc 2

第一个字段是一个任意指定的标签;

第二个字段表示这一行适用于运行那个级别(这里是2);

第三个字段表示进入运行级别时,init应该运行第四个字段内的命令一次,而且init应该等待该命令结束。/etc/init.d/rc命令运行启动和终止输入以便进入运行级别2时所需的任何命令。

第四个字段中的命令执行设置运行级别时的一切―杂活‖。它启动已经没有运行的服务,终止不应该再在新运行级别内运行的服务。根据Linux版本的不同,采用的具体命令也不同,而且运行级别的配置也是有差别的。

init启动时,它会在/etc/inittab内查找一个代码行,这一行指定了默认的运行级别:

id : 2 : initdefault :

你可以要求init在启动时,进入非默认运行级别,这是通过为内核指定一个―single‖或―emergency‖ 命令行参数来实现的。比如说,内核命令行参数的指定可通过LILO来执行。这样一来,你就可以选择单用户模式了(即运行级别1)。

系统正在运行时,telinit命令可更改运行级别。运行级别发生变化时,init 就会从/etc/inittab运行相应的命令。

四、/etc/inittab中的特殊配置

/etc/inittab中,有几个特殊的特性,允许init重新激活特殊事件。这些特殊特性都是用第三个字段中的特殊关键字标记出来的。比如:

1. powerwait

允许init在电源被切断时,关闭系统。其前提是具有U P S和监视U P S并通知init电源已被切断的软件。

2. ctrlaltdel

允许init在用户于控制台键盘上按下C t r l + A l t + D e l组合键时,重新启动系统。注意,如果该系统放在一个公共场所,系统管理员可将C t r l + A l t + D e l组合键配置为别的行为,比如忽略等。

3. sysinit

系统启动时准备运行的命令。比如说,这个命令将清除/tmp。

上面列出的特殊关键字尚不完整。其他的关键字及其使用详情,可参考你的inittab手册页。

五、在单用户模式下引导

一个重要的运行级别就是单用户模式(运行级别1),该模式中,只有一个系统管理员使用特定的机器,而且尽可能少地运行系统服务,其中包含登录。单用户模式对少数管理任务(比如在/usr分区上运行fsck)而言,是很有必要的,因为这需要卸载分区,但这是不可能的,除非所有的服务系统已被杀死。

一个正在运行的系统可以进入单用户模式,具体做法是利用init,请求运行级别1。内核启动时,在内核命令行指定single或emergency关键字,就可进入运行级别1了。内核同时也为init指定命令行,init 从关键字得知自己不应该采用默认的运行级别(内核命令行的输入方式和你启动系统的方式有关)。

有时,以单用户模式进行启动是必要的,这样一来,用户在装入分区之前,或至少在装入分散的/usr 分区之前,能手工运行fsck(在分散的文件系统上,任何活动都可能使其更为分散,所以应该尽可能地运行fsck)。

如果自动化的fsck在启动时失败了,启动脚本init的运行将自动进入单用户模式。这样做是为了防止系统使用不连贯的文件系统,这个文件系统是f s c k不能自动修复的。文件系统不连贯的现象极为少见,而且通常会导致硬盘的不连贯或实验性的内核释放,但最好能做到防患于未然。

由于安全上的考虑,在单用户模式下,启动外壳脚本之前,配置得当的系统会要求用户提供root密码。否则,它会简单地为L I L O输入合适的一行代码,以r o o t的身份登录(当然,如果/etc/passwd已经由于文件系统的问题而不连贯了,就不适合这里的原则了,为对付这种情况,你最好随时准备一张启动盘)。

不同的运行级有不同的用处,也应该根据自己的不同情形来设置。

例如,如果丢失了root口令,那么可以让机器启动进入单用户状态。在启动后的lilo 提示符下输入:init=/bin/sh rw 使机器进入运行级1 ,并把root 文件系统挂为读写。他会跳过所有系统认证,让你可以使用passwd 程序来改变root口令,然后启动到一个新的运行级。

Linux操作系统中/sbin/init程序的执行过程

2007-09-02 00:28

来自:https://www.360docs.net/doc/ca5722125.html,/art/2583/20070821/1184763_1.html

当init启动后,它通过执行各种启动事务来继续引导进程(检查并监视文件系统,启动后台程序daemons,等等),直至完成用户所有操作环境的设置工作。这里主要涉及4个程序:init、getty(agetty)、login 和shell程序。这4个程序之间的关系见下图所示。

init进程的主要任务是根据/etc/rc文件中设置的信息,执行其中设置的命令,然后根据/etc/inittab文件中的信息,为每一个允许登录的终端设备使用fork()创建一个子进程,并在每个新创建的子进程中运行agetty (getty)程序。而init进程则调用wait(),进入等待子进程结束状态。每当它的一个子进程结束退出,它就会根据wait()返回的pid号知道是哪个对应终端的子进程结束了,因此就会为相应终端设备再创建一个新的子进程,并在该子进程中重新执行agetty程序。这样,每个被允许的终端设备都始终有一个对应的进程为其等待处理。

在正常的操作下,init确定agetty正在工作着以允许用户登录,并且收取孤立进程。孤立进程是指那些其父辈进程已结束的进程;在Linux中所有的进程必须属于单棵进程树,所以孤立进程必须被收取。当系统关闭时,init负责杀死所有其它的进程,卸载所有的文件系统以及停止处理器的工作,以及任何它被配置成要做的工作。

getty程序的主要任务是设置终端类型、属性、速度和线路规程。它打开并初始化一个tty端口,显示提示信息,并等待用户键入用户名。该程序只能由超级用户执行。通常,若/etc/issue文本文件存在,则getty 会首先显示其中的文本信息,然后显示登录提示信息(例如:plinux login: ),读取用户键入的登录名,并执行login程序。

为了能让init程序运行getty,/etc/inittab文件中必须含有getty(agetty)命令。/etc/inittab文件中有关agetty的内容例子见如下所示。

列表3.1 poeigl-1.2中的inittab文件

# inittab for linux, poeigl 1.2

# format:

# ttyline:termcap-entry:getty-command

tty1:con80x60:/bin/agetty 9600 tty1

tty2:con80x60:/bin/agetty 9600 tty2

tty3:con80x60:/bin/agetty 9600 tty3

tty4:con80x60:/bin/agetty 9600 tty4

# tty5:con80x60:/bin/agetty 9600 tty5

# tty64:dumb:/bin/agetty 9600 tty64

# tty65:dumb:/bin/agetty -m -t60 2400 tty65

每个终端都有自己的getty命令。其中列出了tty1—tty4对应的登录项信息。以’#’开始的是注释行。第1列是所用终端设备名称,第2列是指定终端的类型,这里指定了终端类型是con80x60。第3列是所执行的命令及其参数。最后两行中的tty64和tty65对应连接在串行端口上的终端。

对于使用串行端口与主机直接相连的终端以及通过modem拨号连接的终端,Linux的agetty程序还有其它一些属性。如在读取登录名时自动调整tty的设置信息,例如奇偶校验位、檫除字符、行结束字符以及上档键字符等。可选择地从链接的Hayes兼容modem信息中检测出传输波特率。

/dev/inittab中每一项的参数格式与具体使用哪一种getty程序有关。目前一般常用的getty程序有如下几种:

1.agetty(有时直接称为getty):容易设置,无须配置文件。适用于直接连接的终端;

2.getty(getty_ps的一部分):适用于直接连接的终端;

3.mgetty:最适合于通过modem连接,也可用于直连;

4.uugetty:仅用于通过modem连接终端,是getty_ps软件包的部分;

5.mingetty:简单的getty。适用于控制台终端或虚拟终端;

6.fbgetty:适用于控制台或虚拟终端。

Redhat 9系统默认配置中带有mingetty和agetty两个程序。控制台或虚拟终端使用的是mingetty。对于实际的字符终端则一般使用agetty。因此在Redhat 9系统的/etc/inittab文件中会看到以下的信息。列表3.2 RedHat 9系统的/etc/inittab文件中有关getty的信息

# Run gettys in standard runlevels

1:2345:respawn:/sbin/mingetty tty1

2:2345:respawn:/sbin/mingetty tty2

3:2345:respawn:/sbin/mingetty tty3

4:2345:respawn:/sbin/mingetty tty4

5:2345:respawn:/sbin/mingetty tty5

6:2345:respawn:/sbin/mingetty tty6

其中第1列表示名称tty后的数字,2345表示该mingetty的运行层。respawn表示如果该mingetty 被终止,则mingetty将再次自动执行。/sbin/mingetty是命令。ttyn代表/dev/ttyn(n表示数字1—5)。在登录到Linux系统中之后,你会发现(使用‖top‖或‖ps –ax‖命令)自己终端原来的getty进程已经找不到了。因为getty进程执行了login程序,被替换成了login进程,并且最后被替换成你的登录shell

进程。

当你在‖login: ―提示符下键入了你的用户名后,getty会读取用户名并且去执行login程序,也把用户名信息传给了它。因此getty进程被替换成了login进程。此时login进程会接着要求你输入口令。在口令检查通过后就会去执行/etc/passwd文件中对应你用户名项中记录的程序。通常这个程序是bash shell程序。因此原来的getty进程最终被替换成了bash进程,对应的这三个程序也就都具有相同的进程ID。

当注销登录(log out)时,则该终端上的所有进程都会被终止(killed),包括登录shell进程bash。因此,对于在/etc/inittab文件中列出的getty程序,一旦其被替换执行的bash程序被终止或退出,init

进程就会为对应终端重新创建一个getty进程。

login程序则主要用于要求登录用户输入密码。根据用户输入的用户名,它从口令文件passwd中取得对应用户的登录项,然后调用getpass()以显示‖password:‖提示信息,读取用户键入的密码,然后使用加密算法对键入的密码进行加密处理,并与口令文件中该用户项中pw_passwd字段作比较。如果用户几次键入的密码均无效,则login程序会以出错码1退出执行,表示此次登录过程失败。此时父进程(进程init)的wait()会返回该退出进程的pid,因此会根据记录下来的信息再次创建一个子进程,并在该子进程中针对该终端设备再次执行agetty程序,重复上述过程。

login程序也可以被用户在运行过程中在shell下当作一个命令执行。此时它可以被用随时从一个用户切换成另一个用户。如果执行时没有给出参数,则login就会显示输入用户名的提示信息。如果用户不是超级用户(root),并且/etc/目录下存在一个名为nologin的文件,那么该文件中的信息就会被显示出来,此次登录过程也随即被终止。

如果在/etc/usertty文件中对该用户指定了特殊的访问限制,那么这些限制要求必须满足。如果是一个超

级用户,那么所使用的登录tty设备必须是在/etc/securetty文件中指定的。

在所有这些条件满足之后,login同样也会要求用户输入密码并对其进行检查。如果.hushlogin存在的话,login就会执行一个―安静‖的登录过程,也即不检查是否有邮件,也不显示上次登录时间和motd文件中的信息。否则如果/var/log/lastlog文件存在的话,就会显示其中的最后登录时间。

如果用户键入的密码正确,则login就会把当前工作目录(Currend Work Directory)修改成口令文件中指定的该用户的起始工作目录。并把对该终端设备的访问权限修改成用户读/写和组写,设置进程的组ID。然后利用所得到的信息初始化环境变量信息,例如起始目录(HOME=)、使用的shell程序(SHELL=)、用户名(USER=和LOGNAME=)和系统执行程序的默认路径序列(PATH=)。接着显示/etc/motd

文件(message-of-the-day)中的文本信息,并检查并显示该用户是否有邮件的信息。最后login程序改变成登录用户的用户ID并执行口令文件中该用户项中指定的shell程序,如bash或csh等。

如果口令文件/etc/passwd中该用户项中没有指定使用哪个shell程序,系统则会使用默认的/bin/sh程序。如果口令文件中也没有为该用户指定用户起始目录的话,系统就会使用默认的根目录/。有关login程序的一些执行选项和特殊访问限制的说明,请参见Linux系统中的在线手册页(man 8 login)。

Shell程序是一个复杂的命令行解释程序,是当用户登录系统进行交互操作时执行的程序。它是用户与计算机进行交互操作的地方。它获取用户输入的信息,然后执行命令。用户可以在终端上向shell直接进行交互输入,也可以使用shell 脚本文件向shell解释程序输入。在Linux系统中,目前常用的shell有:Bourne Again Shell,/bin/bash

C shell,/bin/csh(或tcsh)

BSD shell/bin/ash(或bsh)

在登录过程中,系统(login)会从口令文件用户对应登录项的最后一个字段知道应该为用户执行哪个shell 程序。

shell程序中实现了一个具有流控制结构的语言,使用相当广泛。目前这些shell程序都朝着与IEEE POSIX 1003.2兼容的方向发展,因此它们各自虽然各自有自己的特点,但基本功能已经越来越相象。本书主要介绍bash的工作原理和实现机制,其它几种shell的实现机制与之类似。

在登录过程中login开始执行shell时,所带参数argv[0]的第一个字符是’-’,表示该shell是作为一个登录shell被执行。此时该shell程序会根据该字符,执行某些与登录过程相应的操作。登录shell会首先

从/etc/profile文件以及.profile文件(若存在的话)读取命令并执行。如果在进入shell时设置了ENV 环境变量,或者在登录shell的.profile文件中设置了该变量,则shell下一步会从该变量命名的文件中读去命令并执行。因此用户应该把每次登录时都要执行的命令放在.profile文件中,而把每次运行shell都要执行的命令放在ENV变量指定的文件中。设置ENV环境变量的方法是把下列语句放在你起始目录的. profile文件中。

ENV=$HOME/.anyfilename; export ENV

在执行shell时,除了一些指定的可选项以外,如果还指定了命令行参数,则shell会把第一个参数看作是一个脚本文件名并执行其中的命令,而其余的参数则被看作是shell的位置参数($1、$2等)。否则shell 程序将从其标准输入中读取命令。

在执行shell程序时可以有很多选项,请参见Linux系统中的有关sh的在线手册页中的说明。

Linux 的initrd (linuxrc,init)

2008-10-19 17:18

Linux 的initrd 技术是一个非常普遍使用的机制,linux2.6 内核的initrd 的文件格式由原来的文件系统镜像文件转变成了cpio 格式,变化不仅反映在文件格式上,linux 内核对这两种格式的initrd 的处理有着截然的不同。本文首先介绍了什么是initrd 技术,然后分别介绍了Linux2.4 内核和2.6 内核的initrd 的处理流程。最后通过对Linux2.6 内核的initrd 处理部分代码的分析,使读者可以对initrd 技术有一个全面的认识。为了更好的阅读本文,要求读者对Linux 的VFS 以及initrd 有一个初步的了解。1.什么是Initrd

initrd 的英文含义是boot loader initialized RAM disk,就是由boot loader 初始化的内存盘。在linux内核启动前,boot loader 会将存储介质中的initrd 文件加载到内存,内核启动时会在访问真正的根文件系统前先访问该内存中的initrd 文件系统。在boot loader 配置了initrd 的情况下,内核启动被分成了两个阶段,第一阶段先执行initrd 文件系统中的"某个文件",完成加载驱动模块等任务,第二阶段才会执行真正的根文件系统中的/sbin/init 进程。这里提到的"某个文件",Linux2.6 内核会同以前版本内核的不同,所以这里暂时使用了"某个文件"这个称呼,后面会详细讲到。第一阶段启动的目的是为第

二阶段的启动扫清一切障爱,最主要的是加载根文件系统存储介质的驱动模块。我们知道根文件系统可以存储在包括IDE、SCSI、USB在内的多种介质上,如果将这些设备的驱动都编译进内核,可以想象内核会多么庞大、臃肿。

Initrd 的用途主要有以下四种:

1. linux 发行版的必备部件

linux 发行版必须适应各种不同的硬件架构,将所有的驱动编译进内核是不现实的,initrd 技术是解决该问题的关键技术。Linux 发行版在内核中只编译了基本的硬件驱动,在安装过程中通过检测系统硬件,生成包含安装系统硬件驱动的initrd,无非是一种即可行又灵活的解决方案。

2. livecd 的必备部件

同linux 发行版相比,livecd 可能会面对更加复杂的硬件环境,所以也必须使用initrd。

3. 制作Linux usb 启动盘必须使用initrd

usb 设备是启动比较慢的设备,从驱动加载到设备真正可用大概需要几秒钟时间。如果将usb 驱动编译进内核,内核通常不能成功访问usb 设备中的文件系统。因为在内核访问usb 设备时,usb 设备通常没有初始化完毕。所以常规的做法是,在initrd 中加载usb 驱动,然后休眠几秒中,等待usb设备初始化完毕后再挂载usb 设备中的文件系统。

4. 在linuxrc 脚本中可以很方便地启用个性化bootsplash。

2.Linux2.4内核对Initrd 的处理流程

为了使读者清晰的了解Linux2.6内核initrd机制的变化,在重点介绍Linux2.6内核initrd之前,先对linux2.4内核的initrd进行一个简单的介绍。Linux2.4内核的initrd的格式是文件系统镜像文件,本文将其称为image-initrd,以区别后面介绍的linux2.6内核的cpio格式的initrd。linux2.4内核对initrd 的处理流程如下:

1. boot loader把内核以及/dev/initrd的内容加载到内存,/dev/initrd是由boot loader初始化的设备,存储着initrd。

2. 在内核初始化过程中,内核把/dev/initrd 设备的内容解压缩并拷贝到/dev/ram0 设备上。

3. 内核以可读写的方式把/dev/ram0 设备挂载为原始的根文件系统。

4. 如果/dev/ram0 被指定为真正的根文件系统,那么内核跳至最后一步正常启动。

5. 执行initrd 上的/linuxrc 文件,linuxrc 通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动,以及加载根文件系统。

6. /linuxrc 执行完毕,真正的根文件系统被挂载。

7. 如果真正的根文件系统存在/initrd 目录,那么/dev/ram0 将从/ 移动到/initrd。否则如果

/initrd 目录不存在,/dev/ram0 将被卸载。

8. 在真正的根文件系统上进行正常启动过程,执行/sbin/init。linux2.4 内核的initrd 的执行是作为内核启动的一个中间阶段,也就是说initrd 的/linuxrc 执行以后,内核会继续执行初始化代码,我们后面会看到这是linux2.4 内核同2.6 内核的initrd 处理流程的一个显著区别。

[url=https://www.360docs.net/doc/ca5722125.html,/developerworks/cn/linux/l-k26initrd/#main][/url]

3.Linux2.6 内核对Initrd 的处理流程

linux2.6 内核支持两种格式的initrd,一种是前面第3 部分介绍的linux2.4 内核那种传统格式的文件系统镜像-image-initrd,它的制作方法同Linux2.4 内核的initrd 一样,其核心文件就是/linuxrc。另外一种格式的initrd 是cpio 格式的,这种格式的initrd 从linux2.5 起开始引入,使用cpio 工具生成,其核心文件不再是/linuxrc,而是/init,本文将这种initrd 称为cpio-initrd。尽管linux2.6 内核对cpio-initrd和image-initrd 这两种格式的initrd 均支持,但对其处理流程有着显著的区别,下面分别介绍linux2.6 内核对这两种initrd 的处理流程。

cpio-initrd 的处理流程

1.boot loader 把内核以及initrd 文件加载到内存的特定位置。

2.内核判断initrd的文件格式,如果是cpio格式。

3.将initrd的内容释放到rootfs中。

4.执行initrd中的/init文件,执行到这一点,内核的工作全部结束,完全交给/init文件处理。

内分泌科考试试题及答案解析

内分泌科出科临床考试试题(一) 姓名毕业学校分数 一、单选题:每题2分 1.糖尿病是一组病因不明的内分泌代谢病,其共同主要标志是() A 多饮、多尿、多食 B 乏力 C 消瘦 D 高血糖 E 尿糖阳性 2.下述哪一项符合淡漠型甲亢() A.突眼征明显 B.心悸、多食、多汗、无力明显 C.甲状腺肿大明显 D.T4不增高,而只有T3增高 E.常见于老年人,易发生甲亢危象 3.内分泌系统的反馈调节是指: ( ) A.神经系统对内分泌系统的调节. B.内分泌系统对神经系统的调节 C.免疫系统对内分泌系统的调节; D.免疫系统对神经系统的调节; E.下丘脑一垂体一靶腺之间的相互调节 4.常用于内分泌功能减退的动态功能试验是: ( ) A.兴奋试验 B.抑制试验; C.激发试验 D.拮抗试验; E.负荷试验 5.1型糖尿病与2型糖尿病,最主要的区别在于() A 症状轻重不同 B 发生酮症酸中毒的倾向不同 C 对胰岛素的敏感性不同 D 胰岛素的基础水平与释放曲线不同 E 血糖稳定性不同 6.引起ACTH升高的疾病是: ( ) A.Sheehan综合征 B.肾上腺皮质腺瘤 C.Addison病 D.原发性醛固酮增多症 E.PRI 瘤 7.血中直接调节胰岛素分泌而且经常起调节作用的重要因素是 A 游离脂肪酸 B 血糖浓度 C 肾上腺素 D 胃肠道激素 E 血酮体浓度 8.Sheehan综合征患者各靶腺功能减退替代治疗应先补充: ( ) A.性激素 B.甲状腺激素 C.糖皮质激素 D.ACTH E.GnRH 9.对于慢性淋巴细胞性甲状腺炎的描述,以下哪项是错误的() A.可合并恶性贫血 B.多见于中年妇女 C.可伴有甲状腺功能亢进 D.可合并1型糖尿病 E.诊断明确,宜手术治疗 10.糖尿病性血管病变,最具有特征性的是()

四大波谱基本概念以及解析综述

四大谱图基本原理及图谱解析 一.质谱 1.基本原理: 用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。 在质谱计的离子源中有机化合物的分子被离子化。丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。它还会发生一些化学键的断裂生成各种 碎片离子。带正电荷离子的运动轨迹:经整理可写成: 式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。 质谱的基本公式表明: (1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。这就是磁场的重要作用,即对不同质荷比离子的色散作用。 (2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。 (3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范

紫微斗数秘笈星情讲解之七杀星

紫微斗数秘笈星情讲解之七杀星.txt爱尔兰﹌一个不离婚的国家,一个一百年的约定。难过了,不要告诉别人,因为别人不在乎。★真话假话都要猜,这就是现在的社会。 紫微斗数秘笈星情讲解之七杀星 七杀星 原文:七杀星在五行属阴金,在天属南斗星,化为权。是紫微斗数中的大将星曜。佐助紫微星与天府星,所以遇紫微天府则为国家栋梁,出将入相,得遇贵人提携,平步青云,指调百万雄师。在商亦于实业工厂方面发展。以其能掌握大众,如工人职员等。与廉贞星同度,在未宫或七杀星在午宫,称为[雄宿乾元格],乃是上格,魄力雄厚。因为七杀的阴金被廉贞的文火所锻练,相制为用。在子宫则次之,在丑宫者普通。如会照煞星,反主刑剋、伤害、颠簸。七杀在命宫者,最恶落陷化忌、擎羊、陀罗、火星、铃星、空劫、天虚、阴煞等星曜,主孤独或福不全;每多解说尘世为僧为道者。有幻想,时或感觉心灵上的空虚。迁移宫有天府星者,外刚强而内富情感,花前月下,每生飘飘然的出世想,妻子亦每多志高聪明,或性情外柔内刚、有丈夫气概之配偶,否则多刑剋分离病灾;或虽有夫妻之名,而无夫妻之实者。 评注: (一)七杀是大将之星,性质刚烈强硬,故七杀守命,人生比较孤剋,六亲缘份不足,但在事业方面,每因命造积极苦干,所以就不会遇吉星吉化,或反过来见煞曜,也会有所表现,得名利富贵。 (二)七杀会紫微天府,这其实是指七杀在寅宫和申宫独坐,紫微天府拱照而言,七杀在寅宫,因南斗北斗星主在上方申宫,故称[七杀仰斗]格,七杀在申宫,因南斗北斗星主在下方寅宫,故称[七杀朝斗]格。这是七杀的大格之一。紫微天府具贵人气质,所以主[贵人提携],如果不见煞曜,更有左辅、右弼、天魁、天钺、禄存、天马等,适宜[实业工厂方面]发展,不见禄存天马却有煞曜,则可[调百万雄师],当军警领导人。 (三)七杀在未宫,和廉贞同度,为七杀的另一大格,称为[雄宿乾元]格,其结构的道理可见原文。另外,七杀居于午宫守命,廉贞在申宫守福德宫,亦属[雄宿乾元]格。在子宫和在丑宫,都不入格,成就远远不如。 (四)凡七杀在命,人生都比较孤独,无论成就有多大,事业局面有多宏伟,都会感到[心灵上的空虚],不见煞曜见吉星,就是成为大格,也不例外,只是程度不如七杀见煞忌那样强烈。 (五)七杀坐命,迁移宫必是天府,十二宫都如此,没有一宫例外。七杀性质变化和冲动激烈,天府性质稳定和保守平和,故此,对宫多吉,则七杀的性格较柔,人生也较安定,可以平衡性格,但如果天府性质弱,七杀性质强,过刚则折,故人生纵使成就高,但六亲缘更差,精神更空虚。 (六)原文提到,七杀居命宫,主妻子[志高聪明]、[外柔内刚]、[丈夫气概]等,这其实和七杀无关,而是夫妻宫星系的克应。凡七杀在命,夫妻宫必定是天相星,这星在夫妻宫为吉曜,对男命尤其如此,读者可以参阅有关天相入夫妻宫的部份。 七杀星临命宫 原文:七杀星临命宫,主面色黄白或红黄色,面型长方者或瘦长者较多;方面较少。中等身材,不怒而有威,为众人所敬服。一生事业性重。处事外表果决,内实进退考虑。富计谋,善策划。与紫微、天府、禄存、化禄、化权、化科、左辅、右弼、天魁、天钺、文昌、文曲会照者,得群众拥护。在国家为大将之材,极品之贵,在商为工业界之领袖,左右经济(七杀最喜会照或同度禄存、化禄,以其能柔化七杀之刚暴),名震他邦。若与擎羊、陀罗、火星、铃星、天刑、空劫、大耗会照者,主刑剋伤害。落陷者,或死于兵荒马乱,或阵亡灾死,或则疾病开刀。性情倔强,刚愎自用,处事霸道,行为凶横而寿夭。故七杀最忌落陷会煞星。

内分泌系统讲解

内分泌系统 概述 内分泌系统endocrine system 是神经系统以外主导支配人体的另一套调节系统,由内分泌腺和内分泌组织构成。主要功能是与神经系统一起共同调节人体的新陈代谢、生长发育和生殖过程等生理功能的活动,以保持机体内环境的平衡与稳定。 内分泌腺属于无管腺,分泌物称激素hormone,直接进入血液或淋巴,随血循环运输至全身各处,调节各器官的活动。内分泌腺还有丰富的血液供应和植物神经分布,其结构和功能活动有显著的年龄变化。体内主要内分泌腺有脑垂体、松果体、甲状腺、甲状旁腺、肾上腺、性腺等。内分泌腺的体积和重量都很小,最大的甲状腺仅几十克;有的内分泌组织是一些细胞团,分散于某些器官内,如:胰岛、卵泡、黄体等。一种类型的激素只作用于特定的器官、组织或细胞,又称为靶器官、靶组织或靶细胞。 内分泌激素在通过细胞膜时,因细胞膜能感受细胞表面刺激作用,在穿越细胞膜过程中,激素同样以二种方式进行,一种方式被限制在蛋白质性质通道中(每一通道只允许一种分子或离子通过,如葡萄糖、氨基酸、钾、钠、钙、氯等受扩散梯度影响的被动运输以及依靠能耗的主动运输)经通道开关被穿膜运输;另一种方式是脂溶性物质如甾体激素等,直接穿越膜的脂类部分,不必通过蛋白质通道进入细胞内,靠细胞膜内陷形成的液泡“内吞泡”又叫胞吞泡方式进入细胞和“外排泡”又叫胞吐泡方式将内涵物释放到细胞外。细胞膜上带有多种多样的受体分子,只对某种刺激发生反应,如胰岛素、乙酰胆碱和低密度脂蛋白的受体;另一些受体则可被普通因子所激活,如与其它细胞或无机物表面接触,细胞表面受到刺激可造成跨膜电位的改变。激素在运动员生理代谢过程中为保证最大限度地动员体能、控制能量代谢、运动后体能恢复等均具有极大作用。血液中激素应维持正常水平,过多过少均会导致机体功能紊乱,甚至产生严重后果。各种激素分泌水平还受血液中代谢产物含量或其它激素浓度的影响与调节。 一、甲状腺 甲状腺thyroid gland是人体内最大的内分泌腺。位于第5颈椎至第1胸椎水平,既甲状软骨的中部和气管上段前面和两侧,分左、右两个侧叶,中间以峡部相连,呈粉红色“H”形,重约20—40克。少数人甲状腺峡缺如,半数人自峡部向上伸出一个细长的锥体叶,可延伸至舌骨处。 甲状腺富含血管,外包颈深筋膜,深入腺内将甲状腺实质分若干大小不同的团块或小叶。甲状腺实质有两类细胞组成,一类细胞为大小、形状不规则的甲状腺滤泡,滤泡表面围以单层立方上皮,每一滤泡中央为胶体(被伊红染成粉红色,含碘化球蛋白),即甲状腺球蛋白储存地。甲状腺滤泡位于细蜜的结缔组织之间,内含丰富的毛细血管和毛细淋巴管和交感神经纤维。甲状腺滤泡上皮细胞通过吐胞作用,入滤泡腔后形成甲状腺球蛋白,以此构成甲状腺激素三碘甲腺原氨酸(T3)和四碘甲腺原氨酸(T4)的前体。甲状腺滤泡细胞具有合成和胞吐甲状腺球蛋白(入滤泡腔)并释放甲状腺素(T3和T4)入毛细血管的作用。另一类细胞为滤泡旁细胞,靠近滤泡细胞外缘,比滤泡细胞大,形似卵圆或多边形,单个或小群分散出现在滤泡细胞之间,但不入滤泡腔。根据免疫化学研究泡内可能储存有甲状腺降钙素,用以调节血钙代谢。控制甲状腺降钙素释放的主要因子是血清钙浓度,血钙浓度升高可刺激降钙素的分泌,而低钙血症可抑制其分泌。 甲状腺的主要功能具有增进机体物质代谢,维持人体正常生长发育,尤其对骨骼和神经系统正常发育起着重要作用。甲状腺素分泌过旺,可引起功能亢进,造成眼突眼性甲状腺肿,简称为“甲亢”。表现为心跳加速、神经过敏、体重减轻、眼球突出等。儿童甲状腺素分泌不足

有机波谱综合谱图解析

综合谱图解析 1.某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。并解释质谱中m/z 57和31的来源。

2?待鉴定的化合物(I )和(II )它们的分子式均为C 8H 12O 4。它们的质谱、红外 光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I )入max 223nm , S 4100; (II )入max 219nm 2300,试确定这两个化合物。 未之物(I )的谱图 127 100-1 - 10 10 曲 凹 M 亠亲) ? 册 -J P 科 J S W

未之物(II)的谱图

3、某未知物的分子式为C 9H 10O 2,紫外光谱数据表明:该物入max 在26 4、262 I? 257、252nm (&maxIOI 、158、147、194、153);红外、核磁数据如图所示,试 0 LOtMio. sopoiggg 翌g 嚴效 却31卿]卿丄电00 uyo iw mo 推断其结构,并说明理 由。 ! \ \ 「 1 CCh 1 I J —' 1 1 _■ ____ __ _ ,B . _ ,- T J.亠」亠亠」亠 | * --------------- U 5>0 4. 0 d/ppm

4.某未知物C ii H i6的UV 、IR 、中NMR 、MS 谱图及13C NMR 数据如下,推导 未知物结构。 序号 S c ( ppm ) 碳原子个数 序号 S c ( ppm ) 碳原子个数 1 143.0 1 6 32.0 1 2 128.5 2 7 31.5 1 3 128.0 2 8 22.5 1 4 125.5 1 9 10.0 1 5 36.0 1 MS(E[] 100 so 30D A/tnn 350 血 >0624*68<)2 4 內 OS n 2 2 98765^43211 0SU 'H bMRfCDCI^

四大图谱综合解析

2013/12/2四大图谱综合解析[解] 从分子式CHO,求得不饱和度为零,故未知物应为512饱和脂肪族化合物。 1 某未知物分子式为CHO,它的质谱、红外光谱以及核磁共振谱如图,512未知物的红外光谱是在CCl溶液中测定的,样品的CCl稀溶液它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。44-1的红外光谱在3640cm处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在3360cm-1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。质谱中从分子离子峰失去质量31(-CHOH)部分而形成基2峰m/e57的事实为上述看法提供了证据,因此,未知物的结构CH是3CCl稀溶液的红外光谱, CCl浓溶液44 CHOH C HC在3360cm-1处有1宽峰23 CH3 2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的根据这一结构式,未知物质谱中的主要碎片离子得到了如下紫外吸收光谱在210nm以上没有吸收,确定此未知物。解释。CH CH3+3.+ +C CH HCOH CHOH C HC3223 m/e31CH CH33 m/e88m/e57-2H -CH-H-CH33m/e29 CH m/e73CHC23+ m/e41 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应从分子量减去这一部分,剩下的质量数是44,仅足以组为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未成1个最简单的叔胺基。知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、CH3N酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存CH3在。红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 的甲基。因此,未知物的结构为:-1cm处的吸收带则进一步指出未知物可能是伯醇乙酸酯。O核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来CH3N看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子CHCHCHOC223CH(CHC=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重33峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子相连的亚甲-CH-CH,其中去屏蔽较大的亚甲基与酯基上的氧原子22的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个相连。碎片为至此,可知未知物具有下述的部分结构:CHO3NCH2CHCHCHOCCH32231 2013/12/23.某未知物CH的UV、IR、1H NMR、MS谱图及13C NMR数据如下,推[解] 1. 从分子式CH,计算不饱和度Ω=4;11161116导未知物结构。 2. 结构式推导未知物碳谱数据UV:240~275 nm 吸收带具有精细结构,表明化合物为芳烃;序号δc序号δc碳原子碳原子IR ::695、740 cm-1 表明分子中含有单取代苯环;(ppm)个数(ppm)个数MS :m/z 148为分子离子峰,其合理丢失一个碎片,得到m/z 91的苄基离子;1143.01632.01 313C NMR:在(40~10)ppm 的高场区有5个sp杂化碳原子;2128.52731.51 1H NMR:积分高度比表明分子中有1个CH和4个-CH-,其中(1.4~1.2)3128.02822.5132 ppm为2个CH的重叠峰;4125.51910.012因此,此化合物应含有一个苯环和一个CH的烷基。511536.01 1H NMR 谱中各峰裂分情况分析,取代基为正戊基,即化合物的结构为:23

紫微斗数秘笈星情讲解之天府星

紫微斗数秘笈星情讲解之天府星 天府星在五行属阳土,在天是南斗的主星,是财帛的库府。与紫微星同度,如得左辅、右弼、天相、武曲、文昌、文曲、天魁、天钺会照,称为君臣相会,主大富大贵。在戌宫为上格,有吉曜辅星扶持,为军政元首、人民领袖、各部门长官。在商则主为创业巨子、商界闻人。在技术或艺术方面,亦主有特殊见地,超人发明,另有特长,出人头地,举世扬名,但注意必须要有左辅、右弼及吉星扶持,或天魁、天钺夹持命宫者,为上格。在巳、亥宫,紫府对照,有吉星扶持或同度者,大富大贵,或大寿,或突遇贵人提拔,平步青云。寅、申二宫无吉助,乃清高自赏,或是人师,或执教鞭。辰、戌二宫安命,会照左辅星,不如同度为更贵更富之奇格。但须会到禄存星方是真格。因为天府星在戌宫立命,则紫微星正在午宫庙地,而太阳也正在旭日东升的宫上,太阴又是躔在月朗天门的宫位,如能会到吉辅同度,而没有恶煞冲破,当然非侯卿之命,亦是将相之材了。有了煞曜冲破,亦主为商业巨子,会空劫者,则主由理想幻像中成天下。 评注: (一)天府星是南斗的主星,在紫微斗数中,共有四颗主星,除南斗的天府外,还有北斗主星紫微,日间的中天主星太阳,夜间的中天主星太阴,虽性质各有不同,但皆有贵气。 (二)天府是[财帛的库府]是指天府具有储财的本质,由此引伸,意指天府有保守、稳定的本质,因为欲要积储财富,就一定要环境稳定,而积储就是不胡乱花费,故保守。不过,如果性质不良,便会形成自私自利和吝啬。 (三)斌兆公对于紫微天府同度,有很高的评价,这在原文讲义的各个篇章中,都可找到这方面的推断,在此亦不例外,他认为紫微天府同度,更有天相和辅弼魁钺昌曲六吉,兼见武曲,是为[君臣相会],主大富大贵。无疑,得六吉的紫微天府,固然很有气势,领导力佳,但却只宜公职,且紫微天府性质矛盾,一主进攻一主保守,故魄力有余,决断则不足,不能担当最高的决策人。这类命格,较适宜担任公职,可以统领部门。 (四)天府在戌宫,是和廉贞同度,三方见午宫的紫微,和寅宫的武曲天相,

高中生物知识点解析:内分泌系统

2019年高中生物知识点解析:内分泌系统【】2019年高中生物知识点解析:内分泌系统是查字典生物网为您整理的最新学习资料,请您详细阅读! 1、甲状腺: 位于咽下方。可分泌甲状腺激素。 2、肾上腺: 分皮质和髓质。皮质可分泌激素约50种,都属于固醇类物质,大体可为三类: ①糖皮质激素如可的松、皮质酮、氢化可的松等。他们的作用是使蛋白质和氨基酸转化为葡萄糖;使肝脏将氨基酸转化为糖原;并使血糖增加。此外还有抗感染和加强免疫功能的作用。 ②盐皮质激素如醛固酮、脱氧皮质酮等。此类激素的作用是促进肾小管对钠的重吸收,抑制对钾的重吸收,因而也促进对钠和水的重吸收。 ③髓质可分泌两种激素即肾上腺素和甲肾上腺素,两者都是氨基酸的衍生物,功能也相似,主要是引起人或动物兴奋、激动,如引起血压上升、心跳加快、代谢率提高,同时抑制消化管蠕动,减少消化管的血流,其作用在于动员全身的潜力应付紧急情况。 3、脑垂体: 分前叶(腺性垂体)和后叶(神经性垂体),后叶与下丘脑相连。前叶可分泌生长激素(191氨基酸)、促激素(促甲状腺激素、促肾上腺皮质激素、促性腺激素)、催乳素(199氨基酸)。后叶的激素有催产素(OXT)

和抗利尿激素(ADH)(升压素)(都为含9个氨基酸的短肽),是由下丘脑分泌后运至垂体后叶的。 4、下丘脑: 是机体内分泌系统的总枢纽。可分泌激素如促肾上腺皮质激素释放因子、促甲状腺激素释放激素、促性腺激素释放激素、生长激素释放激素、生长激素释放抑制激素、催乳素释放因子、催乳素释放制因子等。 5、性腺: 主要是精巢和卵巢。可分泌雄性激素、雌性激素、孕酮(黄体酮)。6、胰岛: a细胞可分泌胰高血糖素(29个氨基酸的短肽), b细胞可分泌胰岛素(51个氨基酸的蛋白质),两者相互拮抗。 7、胸腺: 分泌胸腺素,有促进淋巴细胞的生长与成熟的作用,因而和机体的免疫功能有关。 查字典生物网的编辑为大家带来的2019年高中生物知识点解析:内分泌系统,希望能为大家提供帮助。

四大波谱

红外光谱 原理:用一定频率的红外光聚焦照射被分析的样品时,如果分子中某个基团的振动频率与照射红外线频率相同便会产生共振,从而吸收一定频率的红外线,把分子吸收红外线的这种情况用仪器记录下来,便能得到全面反映样品成分特征的光谱,进而推测化合物的类型和结构。应用:1高分子材料的分析与鉴别2高分子材料反应研究3高分子材料共混相容性研究 紫外光谱 原理:用一定频率的红外光聚焦照射被分析的样品时,如果分子中某个基团的振动频率与照射红外线频率相同便会产生共振,从而吸收一定频率的红外线,把分子吸收红外线的这种情况用仪器记录下来,便能得到全面反映样品成分特征的光谱,进而推测化合物的类型和结构。应用:1高分子定性分析2高分子定量分析3聚合物组成分析 质谱 原理:使待测样品分子汽化,用具有一定能量的电子轰击气态分子,使失去一个电子而成为带正电的分子离子,分子离子还可能断裂成各种碎片离子,所有的离子在电场和磁场的综合作用下按质荷比依次排列而得到质谱图。 应用:1高分子材料中间体和添加剂的分析2聚合物结构表征3热解机理的研究 核磁共振 原理:核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系 应用:1分子量测定2端基分析3支华度分析4聚合物构象分析 DSC在高分子材料的应用: 1熔点、沸点测定2物质鉴定(借助标准物的预先测定或标准数据);3各种热效应(蒸发、升华、熔融、结晶、相变、生成等)焓变值测定和物质鉴定;4 比热的DSC测定;5玻璃化转变、热容转变; DMA在高分子材料的应用 1研究高聚物的玻璃化转变 2高分子材料的相容性表征 3表征高分子材料的阻尼性能 4研究热固性材料的固化过程 扫描电镜 观察 制样 影响DSC测试的因素 1,样品量,样品量少分辨率就高,但是灵敏度下降,一般根据热效应大小调节样品量。最好3~5mg 2,升温速率,升温速率越快,灵敏度提高,分辨率下降。一般5~20度每分钟 3,气体,一般使用惰性气体,如氮气,氨气,氩气等等,这样不会产生氧化反应峰 应用: 1测定玻璃化转变 2测定结晶温度与结晶焓变

禄存星

禄存星 一、禄存主“孤独”;二、禄存星带有贵气,也有“爵禄”的性质。“爵”代表着地位,“禄”代表财富;三、禄为养命之源,能够“掌人寿机”;四、禄存星性质稳定,而且被动;五、禄存的前后二宫永远是擎羊、陀罗。过去研究斗数的人,往往急于求成,做学问不求甚解,只记得禄存星代表财富,而忽略了另外几条重要性质,导致看盘不够精确,时准时不准。例如,当禄存星【独坐】子女宫时,他们就只能说“子女带财而来”,除了这一条以外,就不知道该怎么解释了。便可以作出这样的推理:由于禄存星带有“孤”的特点,因此,当禄存星坐入六亲宫位时,就代表着数量上的稀少。又因为禄存永远被擎羊陀罗所夹,所以或多或少都会影响这个宫位的人际关系。如上例,假若子女宫是空宫,没有十四正曜而禄存独坐,则主其人的子女数目少,并主晚得子息。注意,在推断婚姻的过程中,子女宫的意义十分重大,因为它牵涉到一个“连锁反应”。关于“连锁反应”及“多宫合参”的内容,后面我再讲,这里先把禄存星的意义做一个彻底的分析。由于禄存主孤,所以在坐入命宫的时候,最不宜与天机、天梁、武曲等主孤的星曜同度,否则孤的性质太重,会对人生产生十分不利的影响。这是因为,禄存星虽然可以带来钱财,但越是有钱的人,往往就越容易受人攻击

和排挤。所以,当天机、天梁、武曲等星与禄存同度在命宫时,最喜有左辅、右弼同照命宫,可以减少孤独的性质。如果命宫有禄存,而正曜是紫微、太阳、七杀等强有力的星曜,则一般不会受人攻击及排挤,但由于擎羊、陀罗夹宫的原因,也会使其人的命运受到限制,人生并不潇洒。若是天府与禄存在命宫同度,人生颇有福气,但保守过甚,不爱花销,开支不论大小都要精打细算。天府本身是财星,如果与禄存同度,就会相当重视金钱,是一个很现实的人。以上这些特点,一般也可以引申入其余宫位。例如天梁星在奴仆宫,与禄存同度,表示命主可以通过下属、朋友而获得财富,但他的下属、朋友并不会很多。 除了“孤”和“财富”的性质以外,禄存星还是一颗有贵气、有地位的星曜。古书所记载的【阳梁昌禄格】,最利读书考试,命宫如果在安在卯宫,在三方四正会齐这四颗星,又没有遇到煞忌侵害,便主甲第登科,金榜题名,风光无限。古代科举考试的状元,地位十分尊贵,可以得到皇帝的御笔亲封,在皇宫大殿即刻封授官职。明清两朝,状元可以授六品的翰林院修撰,这比知县的级别还要高,相当于现在的正处级干部了。在现代社会,状元的地位远不如古代,【阳梁昌禄格】的意义便转化为竞争得胜,例如在公务员面试中胜出,在人民的投票选举中胜出等等。这里需要注意,【阳梁昌禄】的表现形式虽然发生了变化,但此格局所带来的荣誉、地位

NMR,VU,IR,MS四大图谱解析解析

13C-NMR谱图解析 13C-NMR谱图解析流程 1.分于式的确定 2.由宽带去偶语的谱线数L与分子式中破原子数m比较,判断分子的对称性. 若L=m,每一个碳原子的化学位移都不相同,表示分子没有对称性;若L

基团类型Qc/ppm 烷0-60 炔60-90 烯,芳香环90-160 羰基160 4.组合可能的结构式 在谱线归属明确的基础上,列出所有的结构单元,并合理地组合成一个或几个可能的工作结构。 5.确定结构式 用全部光谱材料和化学位移经验计算公式验证并确定惟一的或

可能性最大的结构式,或与标准谱图和数据表进行核对。经常使用的标准谱图和数据表有: 经验计算参数 1.烷烃及其衍生物的化学位移 一般烷烃灸值可用Lindeman-Adams经验公式近似地计算: ∑ Qc5.2 =nA - + 式中:一2.5为甲烷碳的化学位移九值;A为附加位移参数,列于下表,为具有某同一附加参数的碳原子数。 表2 注:1(3).1(4)为分别与三级碳、四级碳相连的一级碳;2(3)为与三级碳相连的二级碳,依此类推。 取代烷烃的Qc为烷烃的取代基效应位移参数的加和。表4一6给出各种取代基的位移参数

四大图谱综合解析

2013/12/2
四大图谱综合解析
1 某未知物分子式为C5 H12 O,它的质谱、红外光谱以及核磁共振谱如图,
它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。
CCl4稀溶液的红外光谱, CCl4浓溶液 在3360cm-1处有1宽峰
[解] 从分子式C5H12O,求得不饱和度为零,故未知物应为 饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液 的红外光谱在3640cm-1处有 1尖峰,这是游离 O H基的特征吸收 峰。样品的CCl4浓溶液在 3360cm-1处有 1宽峰,但当溶液稀释 后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子 中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可 看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值 相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特 丁基和羟基之间。 质谱中从分子离子峰失去质量31(- CH2 OH)部分而形成基 峰m/e57的事实为上述看法提供了证据,因此,未知物的结构 CH3 是
H3C
C
CH3
CH2OH
根据这一结构式,未知物质谱中的主要碎片离子得到了如下 解释。
CH 3
2. 某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的 紫外吸收光谱在210nm以上没有吸收,确定此未知物。
CH2
+ OH m/e31 -2H
+ . CH2OH
H3C
CH3
H3C
C
CH 3
C+
CH3
m/e88 -CH3 m/e29 m/e73
m/e57 -CH3 -H CH 3 C + CH 2
m/e41
[解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应 为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未 知物分子含奇数个氮原子。根据未知物的光谱数据中无伯或仲胺、腈、 酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存 在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型 的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸收带则进一步指出未知物可能是伯醇乙酸酯。 核磁共振谱中δ1.95处的单峰(3H),相当1个甲基。从它的化学位移来 看,很可能与羰基相邻。对于这一点,质谱中,m/e43的碎片离子 (CH3C=O)提供了有力的证据。在核磁共振谱中有2个等面积(2H)的三重 峰,并且它们的裂距相等,相当于AA’XX'系统。有理由认为它们是2个 相连的亚甲-CH2-CH2,其中去屏蔽较大的亚甲基与酯基上的氧原子 相连。 至此,可知未知物具有下述的部分结构:
O CH 2 CH 2 O C CH 3
从分子量减去这一部分,剩下的质量数是 44,仅足以组 成1个最简单的叔胺基。
CH 3 CH3 N
正好核磁共振谱中δ2. 20处的单峰(6H ),相当于2个连到氮原子上 的甲基。因此,未知物的结构为:
CH3 CH3 O N CH2 CH2 O C CH3
此外,质谱中的基峰m /e 58是胺的特征碎片离子峰,它是由氮原子 的β位上的碳碳键断裂而生成的。结合其它光谱信息,可定出这个 碎片为
CH3 CH3 N CH 2
1

综合谱图解析

1、某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。 1 : 2 : 9 [解] 从分子式C5H12O,求得不饱和度为零,故未知物应为饱和脂肪族化合物。 未知物的红外光谱是在CCl4溶液中测定的,样品的CCl4稀溶液的红外光谱在3640cm-1处有1尖峰,这是游离O H基的特征吸收峰。样品的CCl4浓溶液在

3360cm -1处有1宽峰,但当溶液稀释后复又消失,说明存在着分子间氢键。未知物核磁共振谱中δ4. 1处的宽峰,经重水交换后消失。上述事实确定,未知物分子中存在着羟基。 未知物核磁共振谱中δ0.9处的单峰,积分值相当3个质子,可看成是连在同一碳原子上的3个甲基。δ3.2处的单峰,积分值相当2个质子,对应1个亚甲基,看来该次甲基在分子中位于特丁基和羟基之间。 质谱中从分子离子峰失去质量31(-CH 2OH )部分而形成基峰m/e57的事实为上述看法提供了证据,因此,未知物的结构是 C CH 3 H 3C CH 3 CH 2OH 根据这一结构式,未知物质谱中的主要碎片离子得到了如下解释。 C CH 3 H 3C CH 3 CH 2OH +. C + CH 3 CH 3 H 3C CH 2 OH + m/e31m/e88 m/e57 -2H -CH 3 -CH 3-H CH 3 C CH 2 + m/e29 m/e73 m/e41 2、某未知物,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在210nm 以上没有吸收,确定此未知物。

226 3 [解] 在未知物的质谱图中最高质荷比131处有1个丰度很小的峰,应为分子离子峰,即未知物的分子量为131。由于分子量为奇数,所以未知物分子含奇数个氮原子。根据未知物的光谱数据亚无伯或仲胺、腈、酞胺、硝基化合物或杂芳环化合物的特征,可假定氮原子以叔胺形式存在。 红外光谱中在1748 cm-1处有一强羰基吸收带,在1235 cm-1附近有1典型的宽强C-O-C伸缩振动吸收带,可见未知物分子中含有酯基。1040 cm-1处的吸

有机合成四大谱

一、有机波谱分析简介
1.常见有机波谱 2.有机四大谱及其特点 3.电磁波谱与有机光谱的对应关系
二、红外吸收光谱
2.分子振动与红外光谱 1.红外吸收光谱的定义 3.有机化合物基团的特征光谱 4.红外谱图解析
三、核谱共振谱
1.核磁共振产生的基本原理 3.自旋偶合和自旋裂分 5.13C 谱简介 2.化学位移 4.谱图解析

1.常见有机波谱 常 见 有 机 波 谱

2、有机四大谱及其特点
有机四大谱:紫外吸收光谱、红外吸收光谱 、 核磁共振谱、质谱 ? UV 0.01-5mg(与天平精度有关) ? IR 0.1-1mg ? ?样品用量少 ? 优点? ? NMR 1-5mg ? 准确快速 ? MS 0.001-0.1mg ?
? UV ? IR ? ? ? NMR ? MS ?
? 仪器昂贵 ? 缺点? ?仪器操作复杂、维护费用高 ?
2-10万 5-50万 100-1000万 50-500万

3.电磁波谱与有机光谱的对应关系
λ/nm λ/cm-1

二、红外吸收光谱 1.红外吸收光谱的定义
红外吸收光谱是分子中成键原子振动 能级跃迁而产生的吸收光谱,只有引起分 子偶极距变化的振动才能产生红外吸收。

2.分子振动与红外光谱
振动方程式:
1 v振 = 2π
m1 + m2 k m1m2
k:力常数,与化学键的强度有关(键长越短,键能 越小,k越大) m1和m2分别为化学键所连的两个原子的质量,单 位为克
即:化学键的振动频率(红外吸收峰的频 率)与键强度成正比,与成键原子质量成 反比。

官禄宫

紫微官禄宫详解 官禄宫有紫微 紫微,庙旺遇左右昌曲魁钺,轩胜位至封候伯,加羊陀火铃平常,天府同权贵名利两全,天相加内外权贵清正,破军同闹中安身。 官禄宫有天机 天机,入庙权贵,会文曲为良巨,见羊陀火铃方宜,天梁同文武之材,太阴同名振边夷,陷宫退官失职,吏员立脚。 官禄宫有太阳 太阳,入庙文武为良,不见羊陀火铃吉,太阴同贵显,左右昌曲魁钺同更君科禄权,定居一品之贵。 官禄宫有武曲 武曲,入庙与昌曲左右同宫,武职峥嵘,常人发福,会科权禄为财富之官,贪狼同为贪污之官,破军同军旅内出身,与安身七杀同横立功名,陷宫及陀铃劫忌功名无分。 官禄宫有天同 天同,入庙文武皆宜,无羊陀火铃吉,巨门同先小后大,太阳昌曲科权禄吉美天姿,同权贵太阴同,陷宫胥更论。 官禄宫有廉贞 廉贞,入庙武职权贵不耐久,贪狼同闹中权贵,紫微会三方文职谕,七杀同军旅出身,天相天府同衣锦富贵。 官禄宫有天府 天府,入庙文武皆吉,无羊陀火铃空耗全美,紫微同文武声名,廉贞武曲同权贵,见空劫平常。 官禄宫有太阴 太阴,入庙多贵,陷地气高横破难显达,会太阳昌曲左右三品之贵,天同同文武皆宜,天机同闹中进身吏员立脚。 官禄宫有贪狼 贪狼,入庙遇火铃武职掌大权,紫微同文武之职权贵非小,陷宫贪污之官,加羊陀空劫平常。 官禄宫有巨门 巨门,入庙武职权贵,文人不耐久,太阳同有进退,入庙久长,天机同在卯宫吉美,在酉宫虽美无始终,陷宫遭悔吝,加羊陀火铃空劫更不美,退宫卸职。 官禄宫有天相

天相,入庙文武皆宜食禄千钟,陷地成败,紫微同权贵,昌曲左右同权显荣贵,武曲同边夷之职,廉贞同峥嵘权贵,加羊陀火铃空劫有贬谪。官禄宫有天梁 天梁,庙午会左右魁钺,文武之材天同同权贵不小,天机同峥嵘贵显,加羊陀火铃空劫平。 官禄宫有七杀 七杀,庙旺武职峥嵘权贵非小,不宜文人,武曲同权贵,廉贞同功名显达。 官禄宫有破军 破军,庙旺武职轩胜,武曲同加权禄,文昌文曲显达,加羊陀火铃平常,紫微同宫名振扬,廉贞同文人不耐久,胥吏最美。 官禄宫有:文昌 文昌,入庙太阳同加吉科权禄,文武之材,同天府文曲富贵双全。 官禄宫有:文曲 文曲,庙旺文武皆宜,陷宫与天机太阴同宫,胥吏权贵,会紫府左右近君频而执政,加羊陀火铃空劫平常。 官禄宫有:火星 火星,晚年功名遂心,早年成败,会紫微贪狼吉,陷地不美。 官禄宫有:铃星 铃星,独守旺宫吉,陷地不美,加诸吉星权贵。 官禄宫有:左辅 左辅,入庙文武之材,武职最旺,不利文人,会吉星身中清,文武皆良,见羊陀火铃空劫进退声名。 官禄宫有:右弼 右弼,宜居武职,不和文人,与紫府昌曲同,财官双美,陷宫成败有贬谪,见美陀火铃空劫亦有黜降。 官禄宫有:陀罗 陀罗,独守平常,加吉星亦虚名而已。 官禄宫有:擎羊 擎羊,入庙最利武职,同吉星权贵,陷地平常,虚名而已。

四大光谱

四大光谱介绍 ⑴光具有波粒二象性E=hν=hc/λ,λ=c/ν,V=1/ λ。熟悉波长λ、频率ν、波数、能量E的概念、单位及相互关系。 ⑵熟悉电磁波谱图,包括紫外光区、红外光区的划分。 ⑶了解分子总的能量E的组成,它包括E平动能,电子运动能E电、分子振动能量E振与分子转动能量E转。电磁波(光波)照射物质时,分子要吸收一部分辐射,但就是,吸收就是量子化的,即只吸收某些特定频率的辐射,吸收的能量可以激发电子到较高的能级或增加分子振动能级与转动 能级,从而产生特征的分子吸收光谱。其中电子能级差最大、振动能级差次之,转动能级差最小。只有恰好等于某个能级差时,分子才能吸收。 ⑷了解吸收光谱与分子结构的关系。分子中不同的基团表现出不同的吸收特征,因此,确定分子的吸收光谱可以推测分子可能存在的官能团。 ⑸了解分子能级裂化与光谱的关系。读者要了解吸收光谱的分类,以及电磁波谱区域与相应波谱方法的对应关系。 ①紫外光谱法:波长在200—400nm的近紫外光,激发n及π电子跃迁 ②红外光谱法:波长在2、5—15μm激发振动与转动 ③核磁共振波谱法:波长在无线电波1—1000m激发原子核自旋能级。 质谱不同于以上三谱,不属于吸收光谱。它不就是描述一个分子吸收不同波长电磁波的能力,而就是记录化合物蒸汽在高真空系统中,受到能量很小的电子束轰击后生成碎片正离子的情况。 ⑹光吸收定律 透射率T=透射光/入射光=I/I0,吸光度A=-logT=εbc(L-B定律) ⑺物质吸收谱带的特征 主要特征:位置(波长)及强度(几率) 1、分子轨道形成与σ,π及n轨道。 读者应习惯于用分子轨道表示分子结构。处在分子轨道中的价电子主要涉及σ,π,n,价电子的跃迁产生uv:σ→σ* π→π* n→n* 其能量次序大致为σ<π<n<π*<σ*据此,可以比较不同类型能级跃迁所需能量的大小,以及与吸收峰波长的关系。 2、电子能级与跃迁类型 σ→δ* 200nm以下,远红外区,饱与碳氢化合物,例如,CH4λmax=125nm。 n→π* 200-400nm,近红外区,适用于含杂原子的双键或杂原子上的孤电子对与碳上π电子形成p-π共轭,R带λmax=310nm。

四大谱图综合解析

3 待鉴定的化合物(I)和(II)它们的分子式均为C8H12O4。它们的质谱、红外光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I)λmax223nm,δ4100;(II)λmax219nm,δ2300,试确定这两个化合物。 未之物(I)的质谱 未之物(II)质谱

化合物(I)的红外光谱 化合物(II)的红外光谱 化合物(I)的核磁共振谱

化合物(II)的核磁共振谱 [解] 由于未知物(I)和(II)的分子式均为C8H12O4,所以它们的不饱和度也都是3,因此它们均不含有苯环。(I)和(II)的红外光谱呈现烯烃特征吸收,未知物(I):3080cm-1,(υ=C-H),1650cm-1(υ=C-C) 未知物(II)::3060cm-1 (υ=C-H),1645cm-1(υ=C-C) 与此同时两者的红外光谱在1730cm-1以及1150~1300 cm-1之间均具有很强的吸收带,说明(I)和(II)的分子中均具有酯基; (I)的核磁共振谱在δ6.8处有1单峰,(II)在δ6.2处也有1单峰,它们的积分值均相当2个质子。显然,它们都是受到去屏蔽作用影响的等同的烯烃质子。另外,(I)和(II )在δ4. 2处的四重峰以及在δ1.25处的三重峰,此两峰的总积分值均相当10个质子,可解释为是2个连到酯基上的乙基。因此(I)和(II)分子中均存在2个酯基。这一点,与它们分子式中都含有4个氧原子的事实一致。 几何异构体顺丁烯二酸二乙酯(马来酸二乙酯)和反丁烯二酸二乙酯(富马酸二乙酯)与上述分析结果一致。现在需要确定化合物([)和(II)分别相当于其中的哪一个。 COOEt COOEt COOEt EtOOC 顺丁烯二酸二乙酯反丁烯二酸二乙酯 利用紫外吸收光谱所提供的信息,上述问题可以得到完满解决。由于富马酸二乙酯分子的共平面性很好,在立体化学上它属于反式结构。而在顺丁烯二酸二乙酯中,由于2个乙酯基在空间的相互作用,因而降低了分子的共平面性,使共轭作用受到影响,从而使紫外吸收波长变短。

生理题目第十一章 内分泌说课讲解

第十一章内分泌 一、名词解释 1.激素2.旁分泌 3.自分泌 4.神经分泌 5.靶细胞 6.允许作用 7.下丘脑调节肽 8.促激素 9.应急反应 lO.应激反应 二、填空题 1.按分子结构和化学性质,将激素可分为两大类,即———和———。 2.内分泌细胞分泌的信使分子称为——,其作用的细胞称为————。 3.下丘脑基底部的促垂体区神经元分泌下丘脑调节肽,经————运送到————调节其分泌功能。 4.内分泌腺分泌水平的相对稳定是通过——机制实现的。 5.生长素的主要作用是———和———。 6.由神经垂体释放的激素,其生物合成部位是——。 7.人幼年缺乏生长素将患——;成年后生长素分泌过多则出现———。 8.幼年时缺乏T3、T4将患——;成年后缺乏T3、T4将患—— 9.肾上腺皮质分泌的激素有———、———、和———。 10.糖皮质激素浓度升高可引起血液中中性粒细胞数目——,淋巴细胞数目——,嗜酸性粒细胞数目——。 11.应急反应和应激反应的主要区别在于,前者主要是——系统活动的增强,而后者则是——系统活动的增强。 12.血糖水平升高可引起胰岛素分泌———。

13.胰岛A细胞主要产生的激素是——,B细肥产生的主要是——,D细胞产生的主要是———。 14.维生素D,的活性形式是——。 15.甲状腺功能亢进时,血胆固醇水平———于正常。 16.当体内甲状腺激素含量增高时,心脏活动———。 17.调节体内钙、磷代谢的激素是——、———、和维生素D3 18.蛋白餐或静脉注射氨基酸可使胰岛素分泌————。 三、选择题 (一)A型题 1.血中激素浓度很低,而生理效应十分明显是因为 A.激素的半衰期长 B.激素的特异性强 C.激素作用有靶细胞 D.激素间有相互作用 E.激素有高效能放大作用 2.关于含氮类激素的正确描述是 A.分子较大,不能透过细胞膜 B.不易被消化酶所破坏,故可口服使用 C.可直接与胞质内受体结合而发挥生物效应 D.全部是氨基酸衍生物 E.用基因调节学说来解释其作用机制 3.第二信使cAMP’的作用是激活 A.DNA酶 B.磷酸化酶’ C.蛋白激酶 D.腺苷酸环化酶, E.磷酸二酯酶 4.下列哪种激素属于含氮激素 A.1,25-二羟维生素D3 B.雌二醇 C.睾酮 D.醛固酮 E.促甲状腺激素 5.神经激素是指

相关文档
最新文档