北京市延庆高中数学第二章概率23随机变量的数字特征232离散型随机变量的方差新人教B版2-3.

北京市延庆高中数学第二章概率23随机变量的数字特征232离散型随机变量的方差新人教B版2-3.
北京市延庆高中数学第二章概率23随机变量的数字特征232离散型随机变量的方差新人教B版2-3.

2.3.2 离散型随机变量的方差

一、教学目标:

1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。

2、过程与方法:了解方差公式“D (a ξ+b )=a 2

D ξ”,以及“若ξ~Β(n ,p ),

则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。

3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

三、教学方法:讨论交流,探析归纳

四、内容分析:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.

回顾一组数据的方差的概念:设在一组数据1x ,2x ,…,n x 中,各数据与它们的平均值x 得差的平方分别是21)(x x -,22)(x x -,…,2)(x x n -,那么[12n

S =21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差

五、教学过程:

探析新课:

1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,

ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望.

3.方差的性质:(1)ξξD a b a D 2)(=+;(2)2

2)(ξξξE E D -=;(3)若ξ~B (n ,p ),

则=ξD np (1-p )

4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛

(三)、例题探析:

例1、随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差. 例2、有甲乙两个单位都愿意聘用你,而你能获得如下信息:

根据工资待遇的差异情况,你愿意选择哪家单位?

例3.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平

例4.A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:

A 机床

B 机床

问哪一台机床加工质量较好

(四)、课堂练习:

1、设ξ~B (n 、p)且E ξ=12 D ξ=4,求n 、p

2.设随机变量ξ的分布列为

求D ξ

机变量1ξ和2ξ,在1ξE 和2ξE 相等或很接近时,比较1ξD 和2ξD ,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

高中数学概率大题

高中数学概率大题(经典二)一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (Ⅲ)当p1=,p2=时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ. 3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师

和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼内还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ;(Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 7 8 B班 6 7 8 9 10 11 12

2019高考数学概率:几何概型

几何概型 【考点梳理】 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个基本特点 (1)无限性:在一次试验中可能出现的结果有无限多个. (2)等可能性:每个试验结果的发生具有等可能性. 3.几何概型的概率公式 P (A )= 构成事件A 的区域长度面积或体积 试验的全部结果所构成的区域长度面积或体积 . 【考点突破】 考点一、与长度(角度)有关的几何概型 【例1】(1)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC , CB 的长,则该矩形的面积大于20 cm 2的概率为( ) A .16 B .13 C .23 D .45 (2)如图所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________. [答案] (1) C (2) 1 3 [解析] (1)设|AC |=x ,则|BC |=12-x ,所以x (12-x )>20,解得2

P ′在C ''B 上发生”. 又在Rt△ABC 中,易求∠BAC =∠B ′AC ′=π 6 . 故所求事件的概率P = C D l l ''B 'B =π6·1π2 ·1=13 . 【类题通法】 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置. 2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 【对点训练】 1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .1 3 B .12 C .23 D .34 [答案] B [解析] 如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=1 2 .故选 B. 2.如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与 AB 交于点M ,则AM

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

高中数学概率大题(经典二)

高中数学概率大题(经典二) 一.解答题(共10小题) 1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字). 2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求ξ的分布列及Eξ.3.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由老师和老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设老师和老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到老师或老师所发活动通知信息的学生人数为X. (I)求该系学生甲收到老师或老师所发活动通知信息的概率; (II)求使P(X=m)取得最大值的整数m. 4.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以ξ表示笼还剩下的果蝇的只数. (Ⅰ)写出ξ的分布列(不要求写出计算过程)和数学期望Eξ; (Ⅱ)求概率P(ξ≥Eξ). 5.A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时): A班 6 6.5 7 7.5 8 B班 6 7 8 9 10 11 12 C班 3 4.5 6 7.5 9 10.5 12 13.5 (Ⅰ)试估计C班的学生人数; (Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P 0.4 0.2 0.2 0.1 0.1 商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润. (Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);

人教版高中数学必修三 第三章 概率几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 基本知识 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的概率公式 P(A)=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 3.几何概型的特点 (1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的.这是两者的不同之处.另一方面,古典概型与几何概型的试验结果都具有等可能性,这是两者的共性. 通过以上对几何概型的基本知识点的梳理,我们不难看出其要点是:要抓住几何概型具有无限性和等可能性这两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提.因此,用几何概型求解的概率问题跟古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示. 常见题型 1.长度之比类型 例1 小赵欲在国庆60周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 分析 因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型. 解 设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟.因此,由几何概型的概率公式,得P(A)= 605060-=61,即小赵等车时间不多于10分钟的概率为6 1. 例2 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方 形的面积介于36 cm 2 与81 cm 2之间的概率. 分析 正方形的面积只与边长有关,因此,此题可以转化为在12 cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率. 解 记“面积介于36 cm 2 与81 cm 2之间”为事件A ,事件A 的概率等价于“长度介于 6cm 与9 cm 之间”的概率,所以有P(A)= 9612-=14. 小结 本题的难点不在于几何概型与古典概型的区别,而是将正方形的面积关系转化为边长的关系,从而将问题归为几何概型中的长度类型,这是本题的关键所在.同时,本题也体现了数学上的化归思想的作用. 2.面积、体积之比类型 例3 在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

高中数学大题规范解答-全得分系列之十概率与统计的综合问题答题模板

概率与统计是高中数学的重要学习内容,在高考试卷中,每年都有所涉及,以解答题形式出现的试题常常设计成包含概率计算,统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,注重考查基础知识和基本方法;以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算. “大题规范解答——得全分”系列之(十) 概率与统计的综合问题答题模板 [典例](2012辽宁高考改编·满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图: 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性. (1)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关? 非体育迷体育迷合计 男 女 合计 (2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率. 附K2=n(ad-bc)2 (a+b)(c+d)(a+c)(b+d) ,

P (K 2≥k ) 0.05 0.01 k 3.841 6.635 [教你快速规范审题] 1.审条件,挖解题信息 观察 条件 ―→ 100名观众收看节目时间的频率分布直方图及日均收看时间不低于40分钟的观众称为体育迷,女体育迷10名 ??????→ 借助直方可确定图非体育迷及 体育迷人数 2.审结论,明解题方向 观察所求结论―→完成2×2列联表并判断“体育迷”与性别的相关性 ???→ 需要确定a ,b ,c ,d 及K 2的值 3.建联系,找解题突破口 由直方图及条件确定体育迷与非体育迷人数―→完成列联表―→ 计算K 2可判断结论 1.审条件,挖解题信息 观察条件―→确定“超级体育迷”标准且有2名女性“超级体育迷” ??????→由率分布直方频图 确定“超级体育迷”的人数 2.审结论,明解题方向 观察所求结论―→从“超级体育迷”中任取2人求至少有1名女性观众的概率 ????→ 分分析类1名女性观众或两名女性观众 3.建联系,找解题突破口 由频率分布直方图确定“超级体育迷”的人数?????→列法列出 举举

高中数学 第三章 概率 几何概型的类型及解法知识素材 北师大版必修3

几何概型的类型及解法 几何概型是一种特殊的概率模型,下面结合例题介绍它的类型及其解题方法。 一、与长度有关的几何概型 若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个长度,如线段长、时间区间、距离、路程等,那么需要求出各自相应的长度,然后运用几何概型的计算公式即可求出事件A 发生的概率。 例1 某人睡觉醒来,发现钟表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。 分析 假设他在0~60分钟之间任何一个时刻打开收音机是等可能的。因为电台每隔1小时报时一次,他在哪个时间段打开收音机的概率只与这时间段的长度有关,因此,需要求出各自相应的时间“长度”,然后用几何概型公式求解。 解 设事件A ={等待时间不超过10分钟},我们关心的事件A 恰好是打开收音机的时刻位于[50,60]之间,它的区间长度为10;电台每隔1小时报时一次,它的区间长度为60,由几何概型的计算公式得()P A = 605060-=16。即“他等待的时间不多于10分钟的概率”为16 。 评注 解决此类问题的关键是确定他在哪个时间段打开收音机的概率只与这时间段的长度有关,把它转化为与“长度”有关的几何概型。 二、与角有关的几何概型 若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个角,那么需要求出各自相应的角度,然后运用几何概型的计算公式即可求出事件A 发生的概率。 例 如图1所示,在直角坐标系内,射线OT 落在60的终边上,任作一条射线

OA ,求射线OA 落在xOT ∠内的概率。 分析 过O 作射线OA 是随机的,射线OA 落在任何位置都是等可能的,落在xOT ∠内的概率只与xOT ∠的大小有关,符合几何概型的条件。 解 设事件A ={射线OA 落在xOT ∠内},事件A 的“几何度量”是60,而坐标平面的“几何度量”为360,所以由几何概率公式,得()P A =60360=16 。 评注 解此题的关键是找到事件A ={射线OA 落在xOT ∠内}的“几何度量”是60,以及坐标平面的“几何度量”为360。 三、与面积有关的几何概型 如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域内的某个指定区域内的点,且该区域中每一个被取到的机会都一样,这样的概率模型就可以用几何模型来解。并且,这里的区域可以用面积表示,然后利用几何概型的公式求解。 例3 两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率。 分析 设两人分别在x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当x y -≤23 。两人到达约定地点的所有时刻(x ,y )的可能结果可用图2中的单位正方形内(包括边界)的点表示,而两人能在约定的时间内相见的所有可能结果可用图2中的阴影部分(包括边界)表示,因此可求出两人在约定时间内相见的概率。 解 设两人分别在x 时和y 时到达约见地点,要使两人在能在约定时间范围内相见,当且仅当x y -≤23 。如图2所示,根据题意,得两人在约定时间内相见的概

高中数学《随机变量及其分布》单元测试

数学选修2-3第二章《随机变量及其分布》单元测试 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.设X~B(n,p),E(X)=12,D(X)=4,则n,p的值分别为() A.18, B.36, C.36, D.18, 2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为() A. B. C. D. 3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为() A.0.3 B.0.5 C.0.1 D.0.2 4.在区间(0,1)内随机取一个数x,若A=,B=,则P(B|A)等于() A. B. C.D. 5.若离散型随机变量X的分布列为 X123 P

则X的数学期望E(X)=() A. B.2 C. D.3 6.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于() X01 P m2m A. B. C. D. 7.同时抛掷两枚质地均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)=() A. B. C. D.5 的值分别为() 8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1) 与D(2ξ+1) A.13,4 B.13,8 C.7,8 D.7,16 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为() A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的 10.节日期间,某种鲜花进货价是每束 2.5元,销售价是每束5元,节日后没卖出的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X的分布列为 X200300400500 P0.200.350.300.15 若进这种鲜花500束,则利润Y的均值是() A.706 B.690 C.754 D.720 11.现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击两次,每次命中的概率为.该射手每次射击的结果相互独立.假设该射手完成以上三次射击,该射手恰好命中一次的概率为()

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

高中数学完整讲义——概率_古典概型与几何概型1.古典概型

高中数学讲义 版块一:古典概型 1.古典概型: 如果一个试验有以下两个特征: ⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件; ⑵等可能性:每个基本事件发生的可能性是均等的. 称这样的试验为古典概型. 2.概率的古典定义: 随机事件A 的概率定义为()P A = A 事件包含的基本事件数 试验的基本事件总数 . 版块二:几何概型 几何概型 事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 几何概型中,事件A 的概率定义为()A P A μμΩ =,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量. 题型一 基础题型 【例1】 在第136816,,,,路公共汽车都要依靠的一个站(假设这个站只能停靠一辆汽车),有一 位乘客等候第6路或第16路汽车.假定当时各路汽车首先到站的可能性都是相等,则首先 到站正好是这位乘客所需求的汽车的概率等于____ 【例2】 (2010崇文一模) 从52张扑克牌(没有大小王)中随机的抽一张牌,这张牌是J 或Q 或K 的概率为_______. 【例3】 (2010上海卷高考) 从一副混合后的扑克牌(52张)中随机抽取1张,,事件A 为“抽得红桃K”,事件B 为“抽得为黑桃”,则概率()P A B = (结果用最简分数表示). 典例分析 知识内容 板块一.古典概型

高中数学讲义 【例4】 (2010湖北高考) 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰于向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 A .512 B .12 C .712 D .3 4 【例5】 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( ) A .12 B .1 3 C .14 D .16 【例6】 甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙后面值班的概率是 ( ) A .16 B . 14 C .1 3 D .12 【例7】 今后三天每一天下雨的概率都为50%,这三天恰有两天下雨的概率为多少? 【例8】 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随 意填写两个答案,则两个答案都选错的概率为 . 【例9】 现有8名奥运会志愿者,其中志愿者123,,A A A 通晓日语,123,,B B B 通晓俄语,12,C C 通 晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. ⑴求1A 被选中的概率; ⑵求1B 和1C 全被选中的概率.

古典概型的特征和概率计算公式

高中数学必修(3)导学案 2013-2014学年第二学期高一年级班姓名编写者使用时间2018-6-23 课题:§3.2.1 古典概型的特征和概率计算公式 1 课时学习目标: 1、知识与技能 (1)正确理解基本事件的概念,准确求出基本事件及其个数; (2)正确理解古典改性的两个特征; (3)掌握古典概型的概率计算公式,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率. 2、过程与方法 鼓励学生通过实践、观察、类比,归纳总结出古典概型的概率计算公式,提高学生利用数学知识解决实际问题的能力. 3、情感态度与价值观 通过各种有趣的,贴近学生生活的素材,进一步培养学生用随机的观点认识世界,激发学生学习数学的热情和兴趣. 学习重点:理解古典概型的含义及其概率的计算公式. 学习难点:计算试验的所有可能结果数以及某事件所包含的结果数. 基础达标: 1、古典概型 (1)定义:具有以下两个特征的的数学模型称为古典概型(古典的概率模型). ①试验的所有可能结果,每个试验只出现其中的结果. ②每一个试验结果出现的可能性. (2)基本事件 试验的称为基本事件. 2、随机事件A的概率 对于古典概型,通常试验中的某一事件A是由组成.如果试验的所有可能结果(基本事件)数为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=.合作交流: 1、判断下列事件是否为古典概型. (1)在适宜的条件下种下一粒种子观察它是否发芽; (2)射击运动员向一靶心进行射击,射中与射不中; (3)向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的; (4)如果袋内装有n个不同的球,现从中依次有放回摸球,每次摸一个; (5)如果袋内装有n个不同的球,现从中依次无放回摸球,每次摸一个. 2、一个口袋装有大小相同的1个白球和与它编有不同号码的3个黑球,从中摸出2个 球.求: (1)找出所有基本事件;(2)事件“摸出2个黑球”包括多少个基本事件? 3、袋中装有6个形状完全相同的小球,其中4个白球,2个红球,从袋中任意取出两球, 求下列事件的概率. (1)A:取出的两球都是白球;(2)B:取出的两球一个是白球,另一个是红球. 思考探究: 1、在标准化的考试中既有单选题,又有多选题,多选题是从A、B、C、D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么? 2、使用古典概型概率的计算公式时应注意些什么?

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表 称为离散型随机变量离散型随机变量X ,简称X 的分布列。 (2)分布列的性质:①0,1,2,,i p i n ?g g g ;②11n i i p ==? (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x ==为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C --===g g g g 其中m i n {,m M n =,且* ,,,,)n N M N n M N N #?,称分布列为超几何分布列。如果随机变量X 的分布列

题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二 由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1) 该顾客中奖的概率; (2)该顾客获得的奖品总价值X 元的概率分布列.

高中数学离散型随机变量综合测试题(附答案)

高中数学离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量 一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X; ④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是() A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量; ③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是() A.小球滚出的最大距离 B.倒出小球所需的时间 C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数 [答案] D

[解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“4”表示的试验结果是() A.第一枚6点,第二枚2点 B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=54,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是() A.2 B.2或1 C.1或0 D.2或1或0 [答案] C [解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故可能取值有两种0,1,故选

高中数学必修三-概率练习题

一、选择题(每小题3分共30分) 1、下列事件 (1)物体在重力作用下会自由下落; (2)方程x 2+2x+3=0有两个不相等的实根; (3)某传呼台每天某一时段内收到传呼次数不超过10次; (4)下周日会下雨,其中随机事件的个数为( ) A.1个 B.2个 C.3个 D.4个 2、5张卡片上分别写有A,B,C,D,E 5个字母,从中任取2张卡片,这两张卡片上的字母恰好是按字母顺序相邻的概率为( ) A.51 B. 52 C.103 D.10 7 3、掷一枚骰子三次,所得点数之各为10的概率为( ) A. 61 B.81 C.121 D.361 4、下列不正确的结论是( ) A.若P(A) =1.则P(A ) = 0. B.事件A 与B 对立,则P(A+B) =1 C.事件A 、B 、C 两两互斥,则事件A 与B+C 也互斥 D.若A 与B 互斥,则A 与B 也互斥 5、今有一批球票,按票价分别为:10元票5张,20元票3张,50元票2张.从这10张票中随机抽出3张,则票价之和为70元的概率是( ) A. 51 B. 52 C.61 D.4 1 6、在5件产品中,有3件一等品和2张二等品,从中任取2件,那么以 107为概率的事件是( ) A.都不是一等品 B.恰有一件一等品 C.至少有一件一等品 D.至多一件一等品 7、某射手命中目标的概率为P, 则在三次射击中至少有一次未命中目标的概率为( ) A.P 3 B.(1-P)3 C.1-P 3 D.1-(1-P)3 8、甲,乙两人独立地解决同一个问题,甲解决这个问题的概率为P 1,乙解决这个问题的概率为P 2,那么两人都没能解决这个问题的概率是( ) A.2-P 1-P 2 B.1-P 1 P 2 C.1-P 1-P 2+ P 1 P 2 D1-(1-P 1)(1-P 2) 9、设两个独立事件A 和B 都不发生的概率为9 1,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P(A)是( )

相关文档
最新文档