有机波谱分析谱图特征总结

有机波谱分析谱图特征总结
有机波谱分析谱图特征总结

区别醇、酚、酸:

1.酸():νO-H,3000,宽谱带,散谱νO-H,≈3500,强、宽峰

νC-O,≈1230

νC-H,3100-2700,多谱带

芳环骨架振动,1600-1450,3、4条谱带

叔,νC-O,1150-1200

仲,νC-O,1125-1150

伯,νC-O,1050 苯环特征吸收

2.酚

3.醇

图2:其他振动:

[CH 2]n : CH 2平面摇摆振动,800~700,弱吸收带。

N<4,向高波波数移动。

芳烃:

有机质谱

有机波谱分析知识点

有机波谱分析知识点

名词解析 发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。 助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。 红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。 蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。 增色效应(hyperchromic effect):使吸收强度增加的作用。 减色效应(hypochromic effect):使吸收强度减弱的作用。 吸收带:跃迁类型相同的吸收峰。 指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。但该区中各种官能团的特征频率不具有鲜明的特征性。 共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。 诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。 核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。 化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。 弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。 分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。 基峰:质谱图中表现为最高丰度离子的峰。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 麦氏重排(McLafferty rearrangement):具有不饱和官能团 C=X(X为O、S、N、C等)及其γ-H原子结构的化合物,γ-H原子可以通过六元环空间排列的过渡态,向缺电子(C=X+ )的部位转移,发生γ-H的断裂,同时伴随 C=X的β键断裂,这种断裂称为麦氏重排。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 自旋裂分:因自旋偶合而引起的谱线增多现象称为自旋裂分。 1.紫外光谱的应用 (1).主要用于判断结构中的共轭系统、结构骨架(如香豆素、黄酮等) (2).确定未知化合物是否含有与某一已知化合物相同的共轭体系。 (3).可以确定未知结构中的共轭结构单元。 (4).确定构型或构象 (5).测定互变异构现象 2.分析紫外光谱的几个经验规律 (1).在200~800nm区间无吸收峰,结构无共轭双键。

热分析考试考试)20121210)

热分析习题 一、填空(10分,共10题,每题1分)。 1、差热分析是在程序控温条件下,测量样品坩埚与坩埚间的温度差与温 度的关系的方法。(参比) 2、同步热分析技术可以通过一次测试分别同时提供-TG或 -TG两组信号。(DTA-TG ,DSD-TG) 3、差示扫描量热分析是在程序控温条件下,测量输入到物质与参比物的功率差与温度的关 系的方法,其纵坐标单位为。(mw或mw/mg) 4、硅酸盐类样品在进行热分析时,不能选用材质的样品坩埚。(刚玉) 5、差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC 与 型DSC。(功率补偿) 6、与差热分析(DTA)的不同,差示扫描量热分析(DSC)既可以用于定性分析,又可以 用于分析。(定量) 7、差热分析(DTA)需要校正,但不需要灵敏度校正。(温度) 8、TG热失重曲线的标注常常需要参照DTG曲线,DTG曲线上一个谷代表一个失重阶段, 而拐点温度显示的是最快的温度。(失重) 9、物质的膨胀系数可以分为线膨胀系数与膨胀系数。(体) 10、热膨胀系数是材料的主要物理性质之一,它是衡量材料的好坏的一个重要指 标。(热稳定性) 二、名词解释 1.热重分析答案:在程序控温条件下,测量物质的质量与温度的关系的方法。 2.差热分析答案:在程序控温条件下,测量物质与参比物的温度差与温度的关系的方法。 3.差示扫描量热分析答案:在程序控温条件下,测量输入到物质与参比物的功率差与温度的关系的方法。 4.热膨胀分析答案:在程序控温条件下,测定试样尺寸变化与温度或时间的关系的方法。 三、简答题 1.DSC与DTA测定原理的不同 答案:DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。DTA是测量T-T 的关系,而DSC是保持T = 0,测定H-T 的关系。两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。DTA在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如

有机波谱分析知识点

名词解析 发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。 助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。 红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。 蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。 增色效应(hyperchromic effect):使吸收强度增加的作用。 减色效应(hypochromic effect):使吸收强度减弱的作用。 吸收带:跃迁类型相同的吸收峰。 指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。但该区中各种官能团的特征频率不具有鲜明的特征性。 共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。 诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。 核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。 化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。 弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。 分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。 基峰:质谱图中表现为最高丰度离子的峰。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 麦氏重排(McLafferty rearrangement):具有不饱和官能团 C=X(X为O、S、N、C 等)及其γ-H原子结构的化合物,γ-H原子可以通过六元环空间排列的过渡态,向缺电子(C=X+ )的部位转移,发生γ-H的断裂,同时伴随 C=X的β键断裂,这种断裂称为麦氏重排。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 自旋裂分:因自旋偶合而引起的谱线增多现象称为自旋裂分。 1.紫外光谱的应用 (1).主要用于判断结构中的共轭系统、结构骨架(如香豆素、黄酮等) (2).确定未知化合物是否含有与某一已知化合物相同的共轭体系。 (3).可以确定未知结构中的共轭结构单元。 (4).确定构型或构象 (5).测定互变异构现象 2.分析紫外光谱的几个经验规律 (1).在200~800nm区间无吸收峰,结构无共轭双键。 (2).220~250nm,强吸收(max在104~2104之间),有共轭不饱和键(共轭二烯,,-不饱和醛、酮)

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

有机波谱分析

第七章 有机波谱分析 7-1.推测结构题。 (1) 化合物A (C 9H 10O ,能与羟胺反应得B C 9H 11NO 。A 与土伦试剂不反应,但在NaOH 与 I 2 溶液中反应得一种酸C ,C 强烈氧化得苯甲酸。A 在酸性条件下与乙二醇作用得D C 11H 14O 2 。试推测A-D 各化合物的结构,并写出各歩反应。 (2) 化合物A C 10H 12O 2 ,其IR 谱在1735cm -1处有强吸收峰,3010 cm -1有中等吸收。其NMR 谱如下,δH :1.3(三重峰,3H );2.4(四重峰,2H );5.1(单峰,2H );7.3(多重峰,5H )。试写出A 的结构,并指出IR ,NMR 各吸收的归属。 (3) 某化合物的元素分析表明只含有C,H ,O ,最简式为 C 5H 10O ,IR 谱1720 cm -1 处有强吸收,2720 cm -1附近无吸收。 解:(1)A 至D 各化合物的结构式f 分别为: A : H 2C CH 3 O B : H 2C C N CH 3 OH C; CH 2COOH D : H 2C C CH 3 O O

各步反应如下: H 2C CH 3 O H 2C C CH 3 N OH NH 2OH H 2C C CH 3 O H 2C C CH 3 O O 22+CH 3I H 2C CH 3 O H 2C C CH 3 O O 22+CH 3I CH 2COOH COOH [O] (2)A 的结构式为: H 2C O C O H 2C CH 3 A 的IR ,NMR 各吸收归属为: H 2C O C O H 2C CH 3 d c b a IR :1735 cm -1(强)酯的 v Ar-H ;3010 cm -1(中强) v c=O 。 NMR :δH :1.3(三重峰,3H )a ;2.4(四重峰,2H )b ;5.1(单峰,2H )c ;7.3(多重峰,5H )d 。 (3)IR 的谱1720 cm -1处有强吸收,2720 cm -1附近处无吸收,表明有酮羰基 RCOR ' 。 7-2.化合物 C 6H 12O 2 在1740 cm -1,1250 cm -1,1060 cm -1处有强的红外吸收峰。在2950

有机波谱分析习题(最新)

有机波谱分析习题 第一章电子辐射基础 (一)判断题 1.现代分析化学的任务是测定物质的含量。( ) 2.测定某有机化合物中C、H、O、N元素含量的方法属于定性分析。( ) 3.测定某有机化合物中是否含有羰基属于有机结构分析。( ) 4.利用物质分子吸收光或电磁辐射的性质,建立起来的分析方法属于吸收光谱分析。( ) 5.物质被激发后,利用物质跃迁至低能态或基态时发光的性质建立起来的分析方法属于发射光谱分析。( ) 6.根据Franck-condon原理,在电子能级发生跃迁时,必然伴随振动能级和转动能级的变化。( ) 7.紫外吸收光谱、红外吸收光谱、核磁共振波谱和质谱是有机结构分析的四种主要的有机光波谱分析方法,合称为四大谱。( ) 8.电磁辐射的波长越长,能量越大。( ) 9.有机波谱分析方法和仪器分析方法的灵敏度和准确度都要比化学分析法高得多。( ) 10.一般来讲,分子光谱远比原子光谱复杂,原子光谱通常为线状光谱,而分子光谱为带状光谱。( ) 11.吸收定律偏离线性完全是由于仪器因素引起的。( ) 12.电子能级间隔越小,跃迁时吸收光子的频率越大。( ) 13.分子光谱是由于电子的发射而产生的。( ) 14.分子荧光也叫二次光,都属吸收光谱的畴。( ) 15.ICP可用于测定F、Cl、Br、C、H、N、O、S等非金属元素。( ) (一)判断题答案 1.×2.×3.√4.√5.√6.√7.√8.×9.×l0.√11.×l2.×13.×l4.×l5.× (二)单选题 1.光或电磁辐射的二象性是指( )。 A.电磁辐射是由电矢量和磁矢量组成;B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应;D.电磁辐射具有波动性和微粒性。 2.光量子的能量与电磁辐射的哪一个物理量成正比?( ) A.频率;B.波长;C.周期;D.强度 3.可见光区、紫外光区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为( )。 A.紫外光区和无线电波区;B.紫外光区和红外光区; C。可见光区和无线电波区;D.可见光区和红外光区。 4.频率为l×107MHz的电磁辐射是处在哪个光区?( ) A.红外光区;B.紫外光区;C.无线电波区;D.可见光区。 5.有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的( )。 A.能量越大;B.波数越大;C.波长越长;D.频率越高。 6.分析化学发生第二次变革的年代是( )。 A.20世纪初;B.20世纪20年代;C.20世纪40年代;D.20世纪末。

红外谱图峰位分析方法

红外谱图分析(一) 基团频率和特征吸收峰 物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1 氢键区 2 500~2 000 cm-1 产生吸收基团有O—H、C—H、N—H; 叁键区 2 000~1 500 cm-1 C≡C、C≡N、C═C═C 双键区 1 500~1 000 cm-1 C═C、C═O等 单键区 按吸收的特征,又可划分为官能团区和指纹区。 一、官能团区和指纹区 红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。 4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。由于基团的特征吸收峰一般位于高频围,并且在 该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。 在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区 对于区别结构类似的化合物很有帮助。 指纹区可分为两个波段 (1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振 动和C═S,S═O,P═O等双键的伸缩振动吸收。

如何识别红外谱图

红外谱图分析 可以按如下步骤来: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), 例如:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800 cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000 cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000 cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000 cm-1有吸收,则应在2250~1450 cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm-1 烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650 cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700 cm-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! 1.烷烃:C-H伸缩振动(3000-2850 cm-1) C-H弯曲振动(1465-1340 cm-1) 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010 cm-1)

语音信号的频域分析

实验二:语音信号的频域分析 实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。 实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。 实验内容: 1、 语音信号的频谱分析 1.1加载“ma1_1”语音数据。基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。 load ma1_1; x = ma1_1 (4161:4460); plot (x) N = 1024; k = - N/2:N/2-1; X = fftshift (fft (x.*hann (length (x)),N)); plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ]) 已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。 问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别? 问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期? 问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度? 1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱: ∏ ==R r r X HPSx 1)()(ωω 式中,R 一般取为5。在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。

第二章 语音信号处理基础知识

第二章语音信号处理基础知识 1、语音信号处理? 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。 2、语音信号处理的目的? 1)如何有效地,精确地表示、存储、传递语音信号及其特征信息;2)如何用机器来模仿人类,通过处理某种运算以达到某种用途的要求,例如人工合成出语音,辨识出说话人、识别出说话内容等。 因此,在研究各种语音信号处理技术之前,需要了解语音信号的基本特性,同时,要根据语音的产生过程建立实用及便于分析的语音信号模型。 本章主要包括三方面内容:语音的产生过程、语音信号的特性分析以及语音信号生成的数学模型。 第一部分内容语音的产生过程,我们要弄清两个问题:1)什么是语音?2)语音的产生过程? 3、什么是语音? 语音是带有语言的声音。人们讲话时发出的话语叫语音,它是一种声音,由人的发音器官发出且具有一定的语法和意义。语音是声音和语言的组合体,所以对于语音的研究包括:1)语音中各个音的排列由一些规则控制,对这些规则及其含义的研究成为语言学;2)对语音中各个音的物理特征和分类的研究称为语音学。 4、语音的产生 语音的产生依赖于人类的发声器官。人的发音器官包括:肺、气管、喉、咽、鼻、口等。 ◆喉以上的部分称为声道,其形状随发出声音的不同而变化; ◆喉的部分称为声门。 ◆喉部的声带是对发音影响很大的器官。声带振动产生声音。 ◆声带开启和闭合使气流形成一系列脉冲。

每开启和闭合一次的时间即振动周期称为基音周期,其倒数为基音频率,简称基频。基频决定了声音频率的高低,频率快则音调高,频率慢则音调低。 基音的范围约为70 -- 350Hz,与说话人的性别、年龄等情况有关。 人的说话过程可以分为五个阶段:(1)想说阶段(2)说出阶段(3)传送阶段(4)理解阶段(5)接收阶段。 人的说话的过程: 1)想说阶段:人的说话首先是客观事实在大脑中的反映,经大脑的决策产生了说话的动机; 接着说话神经中枢选择适当的单词、短语以及按照语法规则的组合,以表达想说的内容和情感。 2)说出阶段:由想说阶段大脑中枢的决策,以脉冲形式向发音器官发出指令,使得舌、唇、鄂、声带、肺等部分的肌肉协调地动作,发出声音。与此同时,大脑也发出一些指令给其他有关器官,使之产生各种动作来配合言语的效果,如表情、手势、身体姿态等。经常有些人说话时会手舞足蹈。另外,还会开动“反馈”系统来帮助修正语音。 3)传送阶段:说出的话语是一连串声波,凭借空气为媒介传送到听者的耳朵。有时遇到某种阻碍或其他声响的干扰,使声音产生损耗或失真。 4)接收阶段:从外耳收集的声波信息,经过中耳的放大作用,达到内耳。经过内耳基底膜的振动,激发器官内的神经元使之产生脉冲,将信息以脉冲形式传送给大脑。 5)理解阶段:听觉神经中枢收到脉冲信息后,经过一种至今尚未完全了解的方式,辨认说话人及听到的信息,从而听懂说话人的话。 再开始介绍语音信号的特性之前,我们先了解一下语音和语言的定义。 5、语言 是从人们的话语中概括总结出来的规律性的符号系统。包括构成语言的语素、词、短语和句子等不同层次的单位,以及词法、句法、文脉等语法和语义内容。语言学是语音信号处理的基础。例如,可以利用句法和语义信息减少语音识别中搜索匹配范围,提高正确识别率。 6、语音学 Phonetics是研究言语过程的一门科学。它考虑的是语音产生、语音感知等的过程以及语音中各个音的特征和分类问题。现代语音学发展成为三个分支:发音语音学、声学语音学以

语音信号采集与时频域分析正文

第一章引言 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和频域等处理方法。语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。 时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。 频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。主要分析的特征参数:短时谱、倒谱、语谱图等。 本文采集作者的声音信号为基本的原始信号。对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。整体设计框图如下图所示: 图1.1时频域分析设计图 图1.2加噪滤波分析流程图

第二章 语音信号时域分析 语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。 2.1窗口选择 由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。两种窗函数的时域波形如下图2.1所示: sample w (n ) sample w (n ) 图2.1 矩形窗和Hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下 {1,00,()n N w n ≤<=其他 (2.1) 哈明窗的定义:一个N 点的哈明窗函数定义为如下 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = (2.2) 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

有机波谱分析习题参考答案

有机波谱分析习题参考答案“有机质谱”部分习题参考答案 1 A C 2H 3 Cl, B C 2 H 6 S 2. C 2 H 2 Cl 2 , ClCH=CHCl 3. m/z 142 M43 (C 3H 7 ), m/z 142 C 9 H 20 N, (n-C 4 H 9 ) 3 N, 4.略 5.(a)CH 3COCH 2 CH 2 CH 2 CH 3 , or CH 3 COCH 2 CH(CH 3 ) 2 (b)CH 3COCH(CH 3 )CH 2 CH 3 (c) CH 3 COC (CH 3 ) 3 6. (a) CH 3CH 2 CH 2 COOCH 3 , (b) (CH 3 ) 3 CCOOH (c) CH 3 CH 2 COOCH 2 CH 3 7. p-CH3COC6H4NO2 8. m/z 172, M28 (C 2H 4 ) , C 6 H 5 OBr , BrC 6 H 4 OCH 2 CH 3 9.C 6H 5 COOCH 2 CH 2 CH 2 CH 3 , m/z 123 M55,酯的双氢重排。 “核磁共振氢谱”部分习题参考答案 1.CH 3CH 2 COOCH 3 , (NO 2 )CH 3 3.(a) C 6H 5 CH(CH 3 )OCOCH 3 , (b)C 6 H 5 CH 2 CH 2 OCOCH 3 , (c) p-CH3C6H4COOCH2CH3 4. HOCH 2CH 2 CN , 5. CH 3 CH 2 OCOCH 2 N(CH 3 ) 2 6.CH 3CH 2 OCOCH=CHCOOCH 2 CH 3 , 7. 略, 8. CH 3 CH 2 CH 2 COOCH=CH 2 10.(a) 2-乙基吡啶,(b) 3-乙基吡啶“核磁共振碳谱”部分习题参考答案 3. CH 3COOCH=CH 2 4. p-N CC6H4COOH 5. p-ClC6H4COCH3 6. CH3CH2OCOCH2CH2COOCH2CH3 7.(CH 3CH 2 CO) 2 O 8. a: C 6 H 5 CH 2 COCH 3 , b: C 6 H 5 COCH 2 CH 3 8.C 6H 5 OCH 2 CH 2 OCOCH 3

孟令芝-有机波谱分析-第三版课后习题及答案

孟令芝-有机波谱分析-第三版课后习题及答案

第二章 质谱习题及答案 解:A 、C 2H 3Cl ,B 、C 2H 6S 分子离子峰为偶数表明含有偶数个氮或不含氮。 C x H y N z O w S S 不含氮 含氮 2 2 RI(M+1) 100 1.10.370.8RI(M) RI(M+2)(1.1 ) 1000.2 4.4RI(M)200 x z s x w s ?=++?=++ 2 2 RI(M+1) 100 1.10.370.8RI(M) RI(M+2)(1.1) 1000.2 4.4RI(M)200 x z s x w s ?=++?=++ A 、RI(M+1) 4.8 100 1.10.37100RI(M)100 x z ?=+=?,设z=1,则x=4.02,C 4N 分子量>62,不合理。所以无氮元素。 同理B ,设z=1,则x=3.11,C 3N 分子量>62,不合理。所以无氮元素。 同位素相对丰度表,p26表2.3。 对于A ,RI 相对丰度,M :(M+2)=3:1,则A 中有氯原子,推断其分子式为CH 2=CHCl 对于A ,RI 相对丰度,M :(M+2)=25:1,则A 中有硫原子,推断其分子式CH 3CH 2SH 解:C 2H 2Cl 2,ClCH=CHCl

m/z=98分子离子峰,M :(M+2)=6:1,有两个氯。同位素相对丰度表,p26表2.3。 M-35=98-Cl ,M-36=98-HCl ,M-37=98-HCl-H 解:m/z 142=M -43(?C 3H 7),m/z 142=C 9H 20N ,(n-C 4H 9)3N, 分子离子峰为奇数表明含有奇数个氮。 C x H y N z O w S S RI(M+1)10 100 1.10.37100RI(M)100x z ?=+=?,设z=1,则x=8.75,若z=3,则x=8.08,不合理。M :(M+1)=10:1,表明不含有卤素和氧硫。 m/z 44=CH 2=N +HCH 3,m/z 100=142-42(C 3H 6) m/z 57=M -43(?C 3H 7), m/z 44=57-13(CH 3),CH 2=N +HCH 3, 第四章 红外课后习题及答案

实验一显示语音信号的语谱图

实验一显示语音信号的语谱图 一、实验目的 综合信号频谱分析和滤波器功能,对语音信号的频谱进行分析,并对信号含进行高通、低通滤波,实现信号特定处理功能。加深信号处理理论在语音信号中的应用;理解语谱图与时频分辨率的关系。二、实验原理 语谱图分析语音又称语谱分析,语谱图中显示了大量的与语音的语句特性有关的信息,它综合了频谱图和时域波形的优点,明显的显示出语音频谱随时间的变化情况。语谱图实际上是一种动态的频谱。窄带语谱图有良好的频率分辨率及较差的时间分辨率;而宽带语谱图具有良好的时间分辨率及较差的频率分辨率。 三、实验内容 实验数据为工作空间ex3M2.mat中数组we_be10k是单词“we”和“be”的语音波形(采样率为10000点/秒)。 1、听一下we_be10k(可用sound) 2、使用函数specgram_ex3p19.显示语谱图和语音波形。对比调用参数窗长20ms(200点)、帧间隔1ms(10点)和参数窗长5ms(50点)、帧间隔1ms(10点);再对比窗长>20ms或小于5ms,以及帧间隔>1ms时的语谱图说明宽带语谱图、窄带语谱图与时频分辨率的关系及如何得到时频折中。 3、生成高通和低通滤波器,观察其频谱;对语音信号we_be进行滤波,听一下对比其效果。

四、实验结果 实验程序 语谱图和语音波形

低通滤波器频谱

高通滤波器频谱 结论:1、因频率分辨率随窗口宽度的增加而提高,但同时时间分辨率降低;如果窗口取短,频率分辨率下降,但时间分辨率提高。由以上图可知:窄带语谱图有良好的频率分辨率及较差的时间分辨率,而宽带语谱图具有良好的时间分辨率及较差的频率分辨率。窄带语谱图中的时间坐标方向表示的基因及其各次谐波;而宽带语谱图给出语音的共振峰平率及清辅音的能量汇集区。 2、因加窗的目的是要限制分析的时间以使其中的波形特性没有显著变化,因此想要得到时频折中,选用的窗函数应尽量满足a、频率分辨率高b、卷积后其他的频率成分产生的频谱泄露少。海明窗在频率范围中的分辨率高,具有频谱泄露少的优点,频谱中高频分量弱、波动小,因而得到较平滑的谱。

有机波谱分析谱图特征总结

峰区 波数(cm –1 ) 键的振动类型 区别醇、酚、酸: 1.酸( ):νO-H ,3000,宽谱带,散谱 νO-H ,≈3500,强、宽峰 νC-O ,≈1230 νC-H ,3100-2700,多谱带 芳环骨架振动,1600-1450,3、4条谱带 叔,νC-O ,1150-1200 仲,νC-O ,1125-1150 伯,νC-O ,1050 第一峰区:(4000-2500) X —H 的伸缩振动 O —H 、 N —H 、 C —H 。 3750~3000 νOH, 游离,≈3700 缔合,≈3500,特点:峰强而宽 νNH,3500-3150,特点:弱尖峰 区别胺: 伯,3500-3100,2/3条 仲,3400 1条 叔,无 3300~3000 不饱和:>3000 ν≡CH,3300,谱带尖锐 ν=CH ,3100-3000 νAr —H ,3100-3000,多谱带 极少数可到2900cm –1 3000~2700 饱和:<3000 νC —H,>2900 νC —H (-CHO),2850-2720,双谱带 νS —H ,2600-2500,谱带尖锐 —CH 3,2960-2870 —CH 2-,2920-2850 第二峰区:(2400-2100) 叄键、累积双键 2400~2100 νC≡N ,2250-2240 νC≡C ,2200-2100 ν—C≡C—C≡C — 苯环特征吸收 2. 酚 3.醇 区别酰胺: 伯,3300、3150,双峰 仲,3200 1条 叔,无

图2: 氢谱 常见类型结构的质子化学位移:其他振动: [CH 2]n : CH 2平面摇摆振动,800~700,弱吸收带。 N<4,向高波波数移动。 RR'CH ═C H 2(同碳),895~885,1条(890) R CH ═C H R'(顺), 830~750,1条(800) 芳烃: ???见图2 单取代:740 ,690, 2条 邻二取代:740 , 1条 间二取代:860 ,770,,700,3条 对二取代:810, 1条 -COOH 12~10 -CHO 10~9 ArOH 8~4

最新有机波谱分析考试题库及答案

最新有机波谱分析考试题库及答案目录 第二章:紫外吸收光谱 法 ..................................................................... ........................................................ , 第三章红外吸收光谱法...................................................................... ................................................... , 第四章 NMR习 题 ..................................................................... ........................................................ ,, 第五章质 谱 ..................................................................... ................................................................. ,, 波谱分析试卷 A ...................................................................... ................................................................. ,, 波谱分析试卷 B ...................................................................... ................................................................. ,, 波谱分析试卷 C ...................................................................... ................................................................. ,, 二 ..................................................................... ........................................................................

实验三 语音信号的频域分析

实验三语音信号的频域分析 一、实验名称语音信号的频域分析 二、实验目的 1)掌握傅里叶分析原理,利用Matlab软件估计短时谱、倒谱。 2)借助频域分析方法所求得的参数分析语音信号的基音周期或共振峰。 三、实验设备 Matlab 软件计算机 四、实验步骤 1、语音信号短时谱的求取。 用Matlab软件读取语音文件h.wav数据,取N=256点,求取其短时频谱,记录频谱图,并判断该帧语音是清音还是浊音。 用Matlab软件读取语音文件u.wav数据,取N=256点,求取其短时频谱,记录频谱图,并判断该帧语音是清音还是浊音。 参考程序: clear a=wavread('h'); subplot(2,1,1); plot(a);title('original signal'); grid N=256; k=hamming(N); for m=1:N b(m)=a(m)*k(m); end y=20*log(abs(fft(b,1024))); pinlv=(0:1:255)*8000/512;%点和频率的对应关系 subplot(2,1,2); y1(1:256)=y(1:256); plot(pinlv,y1);title('短时谱'); xlabel('频率/Hz') ylabel('对数幅度/dB') grid

2、语音信号的语谱图。 语音信号的语谱图,即水平方向是时间轴,垂直方向是频率轴,图上的灰度条纹代表各个时刻的语音短时谱。生成hubeis.wav语音文件的语谱图。

参考命令: >> [x,fs,nbits]=wavread('hubeis'); >> specgram(x,512,fs,100); 3、倒谱分析 浊音信号的倒谱中存在着峰值,它的存在位置正好是该帧语音的基音周期。清音信号的倒谱中不存在峰值,利用这一特点可以分辨清音与浊音,并可估计浊音的基音周期。分别计算语音文件“h”及“u”的倒谱,并判断哪个是清音,哪个是浊音,若为浊音请估计它的基音周期。 参考程序: clear a=wavread('h'); N=300; h=hamming(N); for m=1:N b(m)=a(m)*h(m); end d=rceps(b); d=fftshift(d); plot(d);title('h 加汉明窗时的倒谱')

相关文档
最新文档