Dynamics and Rheology of a Supercooled Polymer Melt in Shear Flow

Dynamics and Rheology of a Supercooled Polymer Melt in Shear Flow
Dynamics and Rheology of a Supercooled Polymer Melt in Shear Flow

a r X i v :c o n d -m a t /0203207v 1 [c o n d -m a t .s o f t ] 9 M a r 2002

Dynamics and Rheology of a Supercooled Polymer Melt in Shear Flow

Ryoichi Yamamoto and Akira Onuki

Department of Physics,Kyoto University,Kyoto 606-8502,Japan

(February 1,2008)

Using molecular dynamics simulations,we study dynamics of a model polymer melt composed of short chains with bead number N =10in supercooled states.In quiescent conditions,the stress relaxation function G (t )is calculated,which exhibits a stretched exponential relaxation on the time scale of the αrelaxation time ταand ultimately follows the Rouse dynamics characterized by the time τR ~N 2τα.After application of shear ˙γ,transient stress growth σxy (t )/˙γ?rst obeys the linear

growth t 0dt ′G (t ′

)for strain less than 0.1but saturates into a non-Newtonian viscosity for larger strain.In steady states,shear-thinning and elongation of chains into ellipsoidal shapes take place

for shear ˙γlarger than τ?1

R .In such strong shear,we ?nd that the chains undergo random tumbling motion taking stretched and compact shapes alternatively.We examine the validity of the stress-optical relation between the anisotropic parts of the stress tensor and the dielectric tensor,which are violated in transient states due to the presence of a large glassy component of the stress.We furthermore introduce time-correlation functions in shear to calculate the shear-dependent relaxation times,τα(T,˙γ)and τR (T,˙γ),which decrease nonlinearly as functions of ˙γin the shear-thinning regime.

PACS numbers:83.10.Nn,83.20.Jp,83.50.By,64.70.Pf

I.INTRODUCTION

The dynamics and rheology of glassy polymers are

known to be very complicated and are still not well un-derstood.We summarize salient features of such systems below.

First,in the linear response regime,thermal relax-ations of the chain conformations occur from microscopic to macroscopic time scales,as revealed in measurements of stress and dielectric responses.1,2In a relatively early stage,the stress relaxation function G (t ),which describes linear response to small shear deformations,can be ?tted to the Kohlrausch-Williams-Watts (KWW)form,

G G (t )=G 0exp[?(t/τs )c ],

(1.1)

after a microscopic transient time t tra .The time τs (?τtra )is of the order of the structural αrelaxation time τα(to be de?ned in (3.8)below),which grows dramati-cally as the temperature T is lowered towards the glass transition temperature T g .When the time t consider-ably exceeds τs ,the relaxation of the chain conforma-tions is relevant and is well described by the Rouse or reptation dynamics,depending on N N e ,respectively.3Here N is the polymerization index and N e is that between entanglements on a chain.For short chain systems with N

G (t )=G G (t )+G R (t ).

(1.2)

The G R (t )is the stress time-correlation function in the Rouse model whose terminal relaxation time τR is of or-der N 2τα.For entangled chain systems with N >N e ,the KWW function in (1.1)is followed by the power-law decay,

G (t )~=e ?1G 0(t/τs )?ν

(1.3)

with ν~0.5until the rubbery plateau G (t )?G (0)

N is

reached,1,2where G (0)

N assumes the modulus nk B T/N e of entangled polymers with n being the bead number density.Ultimately,G (t )follows the reptation relax-ation G rep (t )on the time scale of a very long rep-tation time τrep .These hierarchical relaxations arise from rearrangements of jammed atomic con?gurations and subsequent evolution of chain conformations.They also give rise to the corresponding characteristic behav-iors in the frequency-dependent shear modulus G ?(ω)≡iω ∞

0dte ?iωt G (t ),depending on the frequency ωrelative to the inverse characteristic times introduced so far.1–3Second,in the nonlinear response regime,glassy ?u-ids generally exhibit highly viscous non-Newtonian ?ow close to (but above)T g even if they are low-molecular-weight ?uids.4In such ?uids,if ˙γ>τ?1

α,atomic rear-rangements are induced not by thermal agitations but by externally applied shear.5–7In chain systems with-out entanglements,on one hand,shear thinning occurs at su?ciently high (but sometimes unrealistically large)shear rates due to chain elongation.8–12In entangled polymers,on the other hand,shear thinning occurs at

very small shear larger than τ?1

rep ,where disentanglements

are induced by shear.3

Thus supercooled chain systems are most easily driven into a nonlinear response regime even by extremely small shear,though the crossover shear stress from linear to nonlinear regimes may not be very small.Furthermore,in glassy ?uids below T g ,plastic de-formations are often induced in the form of large-scale shear bands above a yield stress (corresponding to a few %strain).13,14It is of great importance to understand

how these nonlinear e?ects occur depending on˙γ,T,and N.

Third,in rheological experiments on polymers,use has been made of the stress-optical relation between the devi-atoric(anisotropic)parts of the dielectric tensor?αβ(at optical frequencies)and the average stress tensorσαβ.3,15 In shear?ow with mean velocity˙γy in the x direction,it is expressed as

?xy=C0σxy,?αα??ββ=C0(σαα?σββ),(1.4) where C0is called the stress-optical coe?cient.For melts this relation excellently holds at relatively high T(>T g) for general time-dependent nonlinear shear deformations. If measurements are made in steady states,it holds even close to T g.16For its validity,we need to require that the form contribution to?αβis negligible as compared to the intrinsic contribution15and that the glassy part of the stress is negligible as compared to the usual entropic part.Thus it is violated when the form part is relevant such as in polymer solutions close to the demixing critical point or when measurements are made in transient states close to T g.In the latter case,as is evident from the en-hancement ofτs in(1.1),the glassy part of the stress is dominant for relatively rapid deformations.16–19

While the predictive power of analytic theories in poly-mer science is still poor,computer simulations20–22can provide us a useful tool to investigate the microscopic origins of experimentally observed macroscopic phenom-ena.In quiescent states,di?usive motions in supercooled melts have been extensively studied using molecular dy-namics(MD)23–27and Monte Carlo28–30simulations.In another application,nonequilibrium molecular dynam-ics(NEMD)simulations have been useful to investigate chain deformations and rheology in?ow.8–12,17,31In par-ticular,Kr¨o ger et al.17studied the molecular mechanisms of the violations of stress-optical behavior for a melt con-sisting M=260chains with bead number N=30after application of elongational?ow.

In this paper,we will present results of very long MD simulations to study linear and nonlinear dynamics of a supercooled polymer melt in the absence and presence of shear?ow.Long simulation times are needed to calculate the terminal relaxation of G(t),which has not yet been undertaken in the literature.As a new?nding,we will show that each chain in our melt system is changing its orientation(tumbling)randomly in shear?https://www.360docs.net/doc/cd7725727.html,e will be made of techniques and concepts introduced in our previous papers on supercooled binary mixtures under shear?ow.5–7Some of our results were already published elsewhere.7,32

II.MODEL AND SIMULATION METHOD Our system is composed of M=100chains with N=10beads con?ned in a cubic box with length L=10σand volume V=L3=103σ3.The number density is?xed at n=NM/V=1/σ3,which results in severely jammed con?gurations at low T.All the bead particles interact with a truncated Lennard-Jones poten-tial de?ned by20

U LJ(r)=4? σr 6 +?(r<21/6σ).(2.1)

The right hand side is minimum at r=21/6σand the potential is truncated for larger r(U LJ(r)=0for r>21/6σ).By using the repulsive part of the Lennard-Jones potential only,we may prevent spatial overlap of the particles.20Consecutive beads on each chain are con-nected by an anharmonic spring of the form,

U F(r)=?

1

m

M

k=1N j=1p k jαp k jβ? all pairs U′LJ(ξ)ξαξβ

ξ

,(2.3)

where m is the mass of a bead,U′LJ(ξ)=dU LJ(ξ)/dξ, and U′F(ξ)=dU F(ξ)/dξ.Hereξ=(ξx,ξy,ξz)in the right hand side represents the relative vector R k j?R k′j′between the two beads,R k j and R k′j′,in the second term and the relative vector R k j?R k j+1between the two consecutive beads,R k j and R k j+1,of the same chain in the third term. To avoid cumbersome notation,we will write the bead positions simply as R j(j=1,···,N)suppressing the in-dex k.When they will appear in the statistical averages ··· ,the average over all the chains M k=1(···)/M will be implied even if not written explicitly.Furthermore, it is convenient here to introduce the usual notationσαβfor the stress tensor by

1

We will hereafter measure space and time in units of σandτ0≡(mσ2/?)1/2.The temperature T will be mea-sured in units of?/k B.The original units will also be used when confusion may occur.Our simulations cover nor-mal(T=1.0)and supercooled(T=0.2)states with and without shear?ow(˙γ=0,10?4,10?3,10?2,and10?1). Simulation data were taken after very long equilibration periods(~102τR?5×106at T=0.2)so that no ap-preciable aging(slow equilibration)e?ect was detected in the course of taking data in various quantities such as the pressure or the density time-correlation functions.(i)In quiescent cases,we impose the micro-canonical condition and integrate the Newton’s equations of motion,

d

m p j,

d

dt R j=

1

dt p j=f j?˙γp y

j

e x??ζp j,(2.6)

where e x is the unit vectors in the x(?ow)direction, R j=(X j,Y j,Z j),and p j=(p xj,p yj,p zj).The friction coe?cient?ζwas set equal to

?ζ= j(f j·p j?˙γp xj p yj) j p2j.(2.7) The temperature T(≡ j p2j/mNM)could then be kept at a desired value.The time increment was?t=0.0025. After an equilibration run in a quiescent state for t<0, we gave all the particles the average?ow velocity˙γY j e x at t=0and then imposed the Lee-Edwards boundary condition33,34to maintain the shear?ow.Steady sheared states were realized after transient relaxations.

III.DYNAMICS IN QUIESCENT STATES

Although it is highly nontrivial,it has been con?rmed by computer simulations20,23–25,28–30,35that the single-chain near-equilibrium dynamics in unentangled melts can be reasonably well described by(or mapped onto) the simple Rouse model.In the Rouse dynamics,the re-laxation time of the p-th mode of a chain is expressed in terms of a friction coe?cientζand a segment length b as36

τp=ζb2/[12k B T sin2(πp/2N)],(3.1) where1≤p≤N?1.The Rouse relaxation timeτR is the slowest relaxation time,

τR≡τ1~=N2ζb2/(3π2k B T).(3.2) The segment length b in the corresponding Rouse model may be related to the variance of the end-to-end vector of a chain P≡R N?R1in our microscopic model by

|P|2 =b2(N?1).(3.3) As a result,b is dependent on T but its dependence turns out to be weak as b=1.17,1.18,1.19for T=1.0,0.4, 0.2,respectively.Note that b is larger than the mini-mum distance b min~=0.96of the bond-potential.Let us consider the time-correlation function of P(t),

C(t)= P(t+t0)·P(t0) / |P|2 ,(3.4) which is normalized such that C(0)= 1.Here C(t) should be independent of the initial time t0in steady states in the limit of large system size.However,our system is not very large,so we took the average over the initial time t0.This statistical averaging will not be mentioned hereafter in showing our MD results of time-correlation functions.In the Rouse dynamics C(t)is cal-culated as

C R(t)=

2

2N e?t/τp,(3.5)

where the summation is over odd p but the?rst term (p=1)is dominant in the whole time region(so we may determineτR by C(τR)=e?1).As shown in Fig.1,our MD data of C(t)can be excellently?tted to C R(t).The τR thus determined increases drastically with lowering T asτR=250,1800,and6×104for T=1.0,0.4,and0.2, respectively.In the previous simulations on nonentangled polymer melts,24,25,28–30,35numerical results were con-sistent with the Rouse dynamics for small p(large-scale motions),but deviations are enhanced for large p(small-scale motions)in supercooled states.Furthermore,we here give the expression for the stress relaxation function in the Rouse model,

G R(t)=

nk B T

1

F q(t)=

M chain1b0b jβ

independent of T both in the linear (Q xy 0.05)and nonlinear (Q xy 0.05)regimes.

We next consider

anisotropy of chain conformations

in

shear ?ow.In Fig.7(a),we plot the x -y cross-section (z =0)of the steady state bead distribution function,

g s (r )=

1

N 2

N

i,j =1

exp[i q ·(R i ?R j ] ,(4.4)

which is proportional to the scattering intensity from la-beled chains in shear.37In these ?gures θis the relative

angle of the ellipses with respect to the y (shear gradient)direction.These ?gures demonstrate high elongation of

the chains for ˙γ>τ?1

R .As will be shown in Fig.8below,they almost saturate into the shapes shown in Fig.7once

˙γexceeds τ?1

R .

Let us de?ne the tensor,

I αβ=

1

N

N j =1

(R jα?R G α)(R jβ?R G β) .(4.5)

For small q =(q x ,q y ,0),S (q )is expanded as S (q )=1?

1

2

a 21(q

·e 1)2

?

1

˙γσxy (t )~=

t

dt ′G (t ′).

(5.1)

In the nonlinear regime,σxy (t )/˙γtends to the non-Newtonian viscosity η(˙γ).As a guide,we also display the

linear growth function t

0dt ′G R (t ′)in the Rouse model.In the very early time region 1?t τα,the growth (~=G 0t )is much larger than the Rouse initial growth (~=k B T t ).We can see a rounded peak for ˙γ

=0.1be-fore approach to the steady state in Fig.5.More pro-nounced overshoot was already reported at high shear in MD simulation of much longer unentangled alkane chains (C 100H 202).12

In experiments,16–19the stress-optical relation is tran-siently violated at low T after application of elongational ?ow due to the enhancement of the glassy component of the stress.For shear ?ow,Fig.10displays our MD results at T =0.2after application of shear at t =0in a stress-optical diagram,where the solid lines are the averages over ten independent runs.As time goes on,the system traces the curve of a given ˙γ,passes across the dashed curve representing the steady-state universal relation in Fig.6,and ?nally comes back to the dashed curve.The deviation from the steady-state curve be-comes larger with increasing ˙γ,as in the experiments of elongational ?ow.

VI.TIME-CORRELATION FUNCTIONS AND

TUMBLING IN SHEAR FLOW

In Fig.11,we show the end-to-end vector correlation functions C (t )= P (t )·P (0) / |P |2 with and with-out shear ?ow for various ˙γat T =0.2.For ˙γ=0,it rapidly decreases,negatively overshoots,and ?nally approaches zero with dumped oscillation superimposed.This oscillatory behavior arises from random rotation of chains in shear ?ow,which is well known in dilute poly-mer solutions 38–40but has not been reported in polymer melts.This is more evidently seen in Fig.12,where we show time development of the x component of the end-to-end vector P j =R N ?R 1of one chain for ˙γ=10?3(a),10?2(b),and 10?1(c)at T =0.2.The correspond-ing Weisenberg number (4.1)is given by W i =60,600,and 6000,respectively.In Fig.12(d),we show chain con-tours projected onto the x -y plane at the points 1~8indicated in Fig.12(c).When the chains change their ori-entation,their shapes are contracted as in the case of a

single chain in solution.39The average period of tumbling is about35/˙γin our case.

We may introduce the van Hove time-correlation func-tion(2.14)even in shear?ow if the particle displacement vector is rede?ned as6

?R j(t)=R j(t+t0)?R j(t0)

?˙γ t0dt′Y G(t0+t′)e x,(6.1)

where Y G is the y-component of R G=N?1 N j=1R j. From the net displacement,the?rst term,we have sub-tracted the?ow-induced displacement,the second term. Figure13shows F q(t)with q=2πfor various˙γat T=https://www.360docs.net/doc/cd7725727.html,parison of this?gure with Fig.2suggests that applying shear is analogous to raising the tempera-ture.This tendency was already reported for the case of supercooled binary mixtures.6,41

We introduce the shear-dependent Rouse timeτR=τR(T,˙γ)and theαrelaxation timeτα=τα(T,˙γ)by

C(τR)=e?1,F q(τα)=e?1.(6.2) We may then examine how shear can accelerate the mo-tions of chains and individual beads in shear?ow.Fig-ure14showsτR andταas functions of˙γat T=0.2. In our short chain system,bothτR andταdecrease for ˙γ τR(T,0)?1?τα(T,0)?1.Our data at T=0.2are consistent with

τR(T,˙γ)?1=τR(T,0)?1[1+A R˙γ],(6.3)

τα(T,˙γ)?1=τα(T,0)?1[1+(Aα˙γ)μ],(6.4) where A R~=104~τR(T,0),Aα~=6000?20τα(T,0), andμ~=0.77.The average tumbling period in Fig.12is about4τR(T,˙γ).For simple supercooled liquids we al-ready introduced the van Hove time-correlation function in shear?ow6and obtainedτα(T,˙γ)?1=τα(T,0)?1[1+ Aα˙γ]with Aα~τα(T,0).

The sensitive shear-dependence ofτα(T,˙γ)predicted by(6.4)suggests potential importance of dielectric mea-surements in shear?ow.6As a?rst experiment,Mat-suyama et al.measured the dielectric loss function ?′′(ω,˙γ)in steady shear˙γin oligostyrene and polyiso-prene melts.19In the former melt at T=42?C,?′′(ω,˙γ) decreased nonlinearly as a function of˙γat low frequencies (ω 105s?1)in the shear-thinning regime(˙γ 15s?1). Their?nding indicates thatταdecreases as a function of ˙γin the non-Newtonian regime,consistently with(6.4), More systematic dielectric measurements in supercooled systems under shear?ow are very informative.

VII.SUMMARY

We have performed very long MD simulations of a su-percooled polymer melt composed of M=100short chains with bead number N=10in quiescent and sheared conditions.We here summarize our main sim-ulation results together with remarks.

(i)The stress relaxation function G(t)is shown to fol-low a stretched exponential decay(1.1)on the scale of theαrelaxation timeταand then the Rouse relaxation (3.6)on the scale ofτR.

(ii)The nonlinear shear regime sets in at extremely small shear rate of orderτ?1

R

in supercooled states,where marked shear-thinning and shape changes of chains are found.Scattering and birefringence experiments from weakly sheared melts near T g seem to be very promising. (iii)In the nonlinear shear regime,each chain under-goes random tumbling in our melt as in the case of iso-lated polymer chains in shear?ow.It is of great interest how this e?ect is universal in solutions and melts and how it in?uences macroscopic rheological properties.For ex-ample,we are interested in whether or not such tumbling occurs in sheared entangled polymers.

(iv)Transient stress divided by˙γafter application of shear?ow obeys the linear growth t0dt′G(t′)?G0t for strain less than0.1and then saturates into a non-Newtonian steady-state viscosity.This initial growth is much steeper than that predicted by the Rouse model. As a result,the stress-optical relation does not hold tran-siently under deformation even in the linear(zero-shear) limit.Its violation is more enhanced for larger shear rates.These are consistent with the experiments.

(v)The time-correlation functions in shear?ow are cal-culated for the end-to-end vector and the modi?ed par-ticle displacement in(6.1).The former represents the relaxation of chain conformations,while the latter the monomeric relaxation on the spatial scale of the particle distance.We can then determine the shear-dependent relaxation times,τR(T,˙γ)andτα(T,˙γ).They decrease nonlinearly and behave di?erently as functions of˙γin the nonlinear shear regime as in(6.3)and(6.4).It is then of great interest how these times behave in strong shear for much larger N.We conjecture that if N is su?ciently large,shear should?rst in?uence the overall chain conformations,while it does not much a?ect the monomeric relaxations.We propose dielectric measure-ments in shear?ow,which should give information of τα(T,˙γ).19In addition,as demonstrated in Fig.13,the e?ect of shear on the van Hove self-correlation function is analogous to raising the temperature above T g as in supercooled binary mixtures.6,41

ACKNOWLEDGMENTS

We would like to thank T.Inoue for valuable discus-sions on the stress-optical relation.This work is sup-ported by Grants in Aid for Scienti?c Research from the Ministry of Education,Science,Sports and Culture of https://www.360docs.net/doc/cd7725727.html,putations have been performed at the Hu-man Genome Center,Institute of Medical Science,Uni-

versity of Tokyo.

1010

t

C (t ), C R (t )

FIG.1.Normalized end-to-end vector time-correlation function C (t )in (3.4)for T =1.0,0.4,and 0.2.The dot-ted lines are the results of the Rouse model (3.5).The Rouse time τR in (3.2)is indicated by arrows.

t

F q (t )

FIG.2.The van Hove self-correlation function F q (t )at q =2πfor T =1.0,0.4,and 0.2on a semi-logarithmic scale.The dotted line represents the stretched exponential decay ∝exp[?(t/τα)0.64].

1010

10

t

G (t ), G R (t )

FIG.3.The stress relaxation function G (t )in (3.10)(thin-solid lines)at T =0.2in a supercooled state and T =1in a normal liquid state.For T =0.2,it can be ?tted to the stretched exponential form,exp[?(t/τs )0.5]with τs =90,(dotted line)for 1 t 103and tends to the Rouse relax-ation function G R (t )(bold-dashed lines)at later times.

10

-2

10

-1

10

10

1

102

10

3

10

4

10

5

10-3

10

-2

10

-1

10

10

1

10

2

T = 0.2

T = 1.0

t

G b (t ), G R (t )

https://www.360docs.net/doc/cd7725727.html,parison of the time-correlation function G b (t )in (3.14)(thin-solid lines)and the Rouse relaxation function G R (t )in (3.6)(bold-dashed lines).

γ

.

η(γ )

.

FIG.5.The steady-state viscosity η(˙γ)vs shear ˙γfor T =0.2,0.4,and 1.A line of slope ?0.7is a view

guide.

1010

10

Q xy (γ )

.

σx y (γ ) / T

.

FIG.6.Universal stress-optical relation σxy /T vs Q xy in steady states under shear ?ow for T =0.2,0.4,and 1.

FIG.7.(a)Isointensity curves of g s (r )in (4.3)in the x -y plane (?3.75

1010

1010γ τR

.

FIG.8.tan θ,1?a 1/a 2,and Q xy vs ˙γτR in steady states.

1010

t / τ R

σx y (t ) / γ

.

FIG.9.Shear stress divided by shear rate σxy (t )/˙γvs t/τR

for ˙γ=10?1,10?2,10?3,10?4

(thin-solid lines)at T =0.2where τR =6×104.The curves follow the linear viscosity growth function (bold-solid line)for ˙γt 0.1,but depart from it for ˙γt 0.1.The linear growth function in the Rouse model is also plotted(bold-dashed line).The arrows indicate onset of the nonlinear behavior.

0.02

0.04

0.060.080.10.12

0123

4

56Q xy (t )

σx y (t ) / T

γ = 10

-2

γ = 10

-3

.

.

γ = 10

-4

γ = 10

-1

.

.

FIG.10.Parametric plots of σxy (t )/T vs Q xy (t )after ap-plication of shear at t =0for T =0.2.The curves initially de-viate from the universal steady-state curve obtained in Fig.6(dashed line)but approach it ultimately.The deviations in-crease with increasing ˙γ.

10-1

10010110210310410510610

7

-0.20

0.20.40.60.81t

C (t )

γ = 10

-1

γ = 0

.

.

FIG.11.Normalized time-correlation function of the end-to-end vector C (t )in (3.4)at T =0.2for ˙γ=0,10?4,10?3,10?2,and 10?1from right to left on a semi-logarithmic scale.The negative overshoot for ˙γ>0arises from rotational motions of chains.

–10010 t

.–100

10

.(b)–10010.(a)P x ( t )

γ = 10

-3γ = 10-2γ123456

78

γ = 10

-1.(c)12345678

(d)

FIG.12.Time-evolution of the x component of the end-to-end vector P x (t )=X N (t )?X 1(t .Here T =0.2

and ˙γ=10?3(a),10?2(b),and 10?1

(c)from above.Typical tumbling motions at the points 1~8indicated in (c)are shown in (d),where the chain conformations are projected on the x -y plane.

10-2

10-110010110210310410510

6

00.2

0.4

0.6

0.8

1

t

F s (q ,t )

γ = 0

γ = 0.1

.

.

T = 0.2q = 2π

FIG.13.The van Hove self correlation function (3.7)with (6.1)at T =0.2for ˙γ=0,10?4,10?3,10?2,and 10?1from right to left on a semi-logarithmic

scale.

1010

1010101010γ

.

FIG.14.Two relaxation times τR (˙γ)and τα(˙γ)as func-tions of shear ˙γat T =0.2determined from (6.2).Both these times decrease for ˙γ τR (0)?1~N ?2τα(0)?1in our short chain system.The solid and dashed lines represent (6.3)and (6.4),respectively.The slopes of the curves at high shear are ?1for τR (˙γ)and ?0.77for τα(˙γ).

从实践的角度探讨在日语教学中多媒体课件的应用

从实践的角度探讨在日语教学中多媒体课件的应用 在今天中国的许多大学,为适应现代化,信息化的要求,建立了设备完善的适应多媒体教学的教室。许多学科的研究者及现场教员也积极致力于多媒体软件的开发和利用。在大学日语专业的教学工作中,教科书、磁带、粉笔为主流的传统教学方式差不多悄然向先进的教学手段而进展。 一、多媒体课件和精品课程的进展现状 然而,目前在专业日语教学中能够利用的教学软件并不多见。比如在中国大学日语的专业、第二外語用教科书常见的有《新编日语》(上海外语教育出版社)、《中日交流标准日本語》(初级、中级)(人民教育出版社)、《新编基础日语(初級、高級)》(上海译文出版社)、《大学日本语》(四川大学出版社)、《初级日语》《中级日语》(北京大学出版社)、《新世纪大学日语》(外语教学与研究出版社)、《综合日语》(北京大学出版社)、《新编日语教程》(华东理工大学出版社)《新编初级(中级)日本语》(吉林教育出版社)、《新大学日本语》(大连理工大学出版社)、《新大学日语》(高等教育出版社)、《现代日本语》(上海外语教育出版社)、《基础日语》(复旦大学出版社)等等。配套教材以录音磁带、教学参考、习题集为主。只有《中日交流標準日本語(初級上)》、《初級日语》、《新编日语教程》等少数教科书配备了多媒体DVD视听教材。 然而这些试听教材,有的内容为日语普及读物,并不适合专业外语课堂教学。比如《新版中日交流标准日本语(初级上)》,有的尽管DVD视听教材中有丰富的动画画面和语音练习。然而,课堂操作则花费时刻长,不利于教师重点指导,更加适合学生的课余练习。比如北京大学的《初级日语》等。在这种情形下,许多大学的日语专业致力于教材的自主开发。 其中,有些大学的还推出精品课程,取得了专门大成绩。比如天津外国语学院的《新编日语》多媒体精品课程为2007年被评为“国家级精品课”。目前已被南开大学外国语学院、成都理工大学日语系等全国40余所大学推广使用。

新视野大学英语全部课文原文

Unit1 Americans believe no one stands still. If you are not moving ahead, you are falling behind. This attitude results in a nation of people committed to researching, experimenting and exploring. Time is one of the two elements that Americans save carefully, the other being labor. "We are slaves to nothing but the clock,” it has been said. Time is treated as if it were something almost real. We budget it, save it, waste it, steal it, kill it, cut it, account for it; we also charge for it. It is a precious resource. Many people have a rather acute sense of the shortness of each lifetime. Once the sands have run out of a person’s hourglass, they cannot be replaced. We want every minute to count. A foreigner’s first impression of the U.S. is li kely to be that everyone is in a rush -- often under pressure. City people always appear to be hurrying to get where they are going, restlessly seeking attention in a store, or elbowing others as they try to complete their shopping. Racing through daytime meals is part of the pace

新视野大学英语第三版第二册课文语法讲解 Unit4

新视野三版读写B2U4Text A College sweethearts 1I smile at my two lovely daughters and they seem so much more mature than we,their parents,when we were college sweethearts.Linda,who's21,had a boyfriend in her freshman year she thought she would marry,but they're not together anymore.Melissa,who's19,hasn't had a steady boyfriend yet.My daughters wonder when they will meet"The One",their great love.They think their father and I had a classic fairy-tale romance heading for marriage from the outset.Perhaps,they're right but it didn't seem so at the time.In a way, love just happens when you least expect it.Who would have thought that Butch and I would end up getting married to each other?He became my boyfriend because of my shallow agenda:I wanted a cute boyfriend! 2We met through my college roommate at the university cafeteria.That fateful night,I was merely curious,but for him I think it was love at first sight."You have beautiful eyes",he said as he gazed at my face.He kept staring at me all night long.I really wasn't that interested for two reasons.First,he looked like he was a really wild boy,maybe even dangerous.Second,although he was very cute,he seemed a little weird. 3Riding on his bicycle,he'd ride past my dorm as if"by accident"and pretend to be surprised to see me.I liked the attention but was cautious about his wild,dynamic personality.He had a charming way with words which would charm any girl.Fear came over me when I started to fall in love.His exciting"bad boy image"was just too tempting to resist.What was it that attracted me?I always had an excellent reputation.My concentration was solely on my studies to get superior grades.But for what?College is supposed to be a time of great learning and also some fun.I had nearly achieved a great education,and graduation was just one semester away.But I hadn't had any fun;my life was stale with no component of fun!I needed a boyfriend.Not just any boyfriend.He had to be cute.My goal that semester became: Be ambitious and grab the cutest boyfriend I can find. 4I worried what he'd think of me.True,we lived in a time when a dramatic shift in sexual attitudes was taking place,but I was a traditional girl who wasn't ready for the new ways that seemed common on campus.Butch looked superb!I was not immune to his personality,but I was scared.The night when he announced to the world that I was his girlfriend,I went along

新视野大学英语读写教程第一册课文翻译及课后答案

Unit 1 1学习外语是我一生中最艰苦也是最有意义的经历之一。虽然时常遭遇挫折,但却非常有价值。 2我学外语的经历始于初中的第一堂英语课。老师很慈祥耐心,时常表扬学生。由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。两年中,我的成绩一直名列前茅。 3到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!”没有多久,我便不再渴望回答问题了。我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 4好在这种情况没持续多久。到了大学,我了解到所有学生必须上英语课。与高中老师不。大学英语老师非常耐心和蔼,而且从来不带教鞭!不过情况却远不尽如人意。由于班大,每堂课能轮到我回答的问题寥寥无几。上了几周课后,我还发现许多同学的英语说得比我要好得多。我开始产生一种畏惧感。虽然原因与高中时不同,但我却又一次不敢开口了。看来我的英语水平要永远停步不前了。 5直到几年后我有机会参加远程英语课程,情况才有所改善。这种课程的媒介是一台电脑、一条电话线和一个调制解调器。我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 6网上学习并不比普通的课堂学习容易。它需要花许多的时间,需要学习者专心自律,以跟上课程进度。我尽力达到课程的最低要求,并按时完成作业。 7我随时随地都在学习。不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。我学习中出过许多错,有时是令人尴尬的错误。有时我会因挫折而哭泣,有时甚至想放弃。但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 8学习外语对我来说是非常艰辛的经历,但它又无比珍贵。它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。学习一门外语最令人兴奋的收获是我能与更多的人交流。与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。由于我已能说英语,别人讲英语时我不再茫然不解了。我能够参与其中,并结交朋友。我能与人交流,并能够弥合我所说的语言和所处的文化与他们的语言和文化之间的鸿沟。 III. 1. rewarding 2. communicate 3. access 4. embarrassing 5. positive 6. commitment 7. virtual 8. benefits 9. minimum 10. opportunities IV. 1. up 2. into 3. from 4. with 5. to 6. up 7. of 8. in 9. for 10.with V. 1.G 2.B 3.E 4.I 5.H 6.K 7.M 8.O 9.F 10.C Sentence Structure VI. 1. Universities in the east are better equipped, while those in the west are relatively poor. 2. Allan Clark kept talking the price up, while Wilkinson kept knocking it down. 3. The husband spent all his money drinking, while his wife saved all hers for the family. 4. Some guests spoke pleasantly and behaved politely, while others wee insulting and impolite. 5. Outwardly Sara was friendly towards all those concerned, while inwardly she was angry. VII. 1. Not only did Mr. Smith learn the Chinese language, but he also bridged the gap between his culture and ours. 2. Not only did we learn the technology through the online course, but we also learned to communicate with friends in English. 3. Not only did we lose all our money, but we also came close to losing our lives.

新大学日语简明教程课文翻译

新大学日语简明教程课文翻译 第21课 一、我的留学生活 我从去年12月开始学习日语。已经3个月了。每天大约学30个新单词。每天学15个左右的新汉字,但总记不住。假名已经基本记住了。 简单的会话还可以,但较难的还说不了。还不能用日语发表自己的意见。既不能很好地回答老师的提问,也看不懂日语的文章。短小、简单的信写得了,但长的信写不了。 来日本不久就迎来了新年。新年时,日本的少女们穿着美丽的和服,看上去就像新娘。非常冷的时候,还是有女孩子穿着裙子和袜子走在大街上。 我在日本的第一个新年过得很愉快,因此很开心。 现在学习忙,没什么时间玩,但周末常常运动,或骑车去公园玩。有时也邀朋友一起去。虽然我有国际驾照,但没钱,买不起车。没办法,需要的时候就向朋友借车。有几个朋友愿意借车给我。 二、一个房间变成三个 从前一直认为睡在褥子上的是日本人,美国人都睡床铺,可是听说近来纽约等大都市的年轻人不睡床铺,而是睡在褥子上,是不是突然讨厌起床铺了? 日本人自古以来就睡在褥子上,那自有它的原因。人们都说日本人的房子小,从前,很少有人在自己的房间,一家人住在一个小房间里是常有的是,今天仍然有人过着这样的生活。 在仅有的一个房间哩,如果要摆下全家人的床铺,就不能在那里吃饭了。这一点,褥子很方便。早晨,不需要褥子的时候,可以收起来。在没有了褥子的房间放上桌子,当作饭厅吃早饭。来客人的话,就在那里喝茶;孩子放学回到家里,那房间就成了书房。而后,傍晚又成为饭厅。然后收起桌子,铺上褥子,又成为了全家人睡觉的地方。 如果是床铺的话,除了睡觉的房间,还需要吃饭的房间和书房等,但如果使用褥子,一个房间就可以有各种用途。 据说从前,在纽约等大都市的大学学习的学生也租得起很大的房间。但现在房租太贵,租不起了。只能住更便宜、更小的房间。因此,似乎开始使用睡觉时作床,白天折小能成为椅子的、方便的褥子。

新视野大学英语第一册Unit 1课文翻译

新视野大学英语第一册Unit 1课文翻译 学习外语是我一生中最艰苦也是最有意义的经历之一。 虽然时常遭遇挫折,但却非常有价值。 我学外语的经历始于初中的第一堂英语课。 老师很慈祥耐心,时常表扬学生。 由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。 两年中,我的成绩一直名列前茅。 到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。 以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。 每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!” 没有多久,我便不再渴望回答问题了。 我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 好在这种情况没持续多久。 到了大学,我了解到所有学生必须上英语课。 与高中老师不同,大学英语老师非常耐心和蔼,而且从来不带教鞭! 不过情况却远不尽如人意。 由于班大,每堂课能轮到我回答的问题寥寥无几。 上了几周课后,我还发现许多同学的英语说得比我要好得多。 我开始产生一种畏惧感。 虽然原因与高中时不同,但我却又一次不敢开口了。 看来我的英语水平要永远停步不前了。 直到几年后我有机会参加远程英语课程,情况才有所改善。 这种课程的媒介是一台电脑、一条电话线和一个调制解调器。 我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 网上学习并不比普通的课堂学习容易。 它需要花许多的时间,需要学习者专心自律,以跟上课程进度。 我尽力达到课程的最低要求,并按时完成作业。 我随时随地都在学习。 不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。 我学习中出过许多错,有时是令人尴尬的错误。 有时我会因挫折而哭泣,有时甚至想放弃。 但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。 突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。 尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 学习外语对我来说是非常艰辛的经历,但它又无比珍贵。 它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。 学习一门外语最令人兴奋的收获是我能与更多的人交流。 与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。 由于我已能说英语,别人讲英语时我不再茫然不解了。 我能够参与其中,并结交朋友。

新大学日语阅读与写作1 第3课译文

习惯与礼仪 我是个漫画家,对旁人细微的动作、不起眼的举止等抱有好奇。所以,我在国外只要做错一点什么,立刻会比旁人更为敏锐地感觉到那个国家的人们对此作出的反应。 譬如我多次看到过,欧美人和中国人见到我们日本人吸溜吸溜地出声喝汤而面露厌恶之色。过去,日本人坐在塌塌米上,在一张低矮的食案上用餐,餐具离嘴较远。所以,养成了把碗端至嘴边吸食的习惯。喝羹匙里的东西也象吸似的,声声作响。这并非哪一方文化高或低,只是各国的习惯、礼仪不同而已。 日本人坐在椅子上围桌用餐是1960年之后的事情。当时,还没有礼仪规矩,甚至有人盘着腿吃饭。外国人看见此景大概会一脸厌恶吧。 韩国女性就座时,单腿翘起。我认为这种姿势很美,但习惯于双膝跪坐的日本女性大概不以为然,而韩国女性恐怕也不认为跪坐为好。 日本等多数亚洲国家,常有人习惯在路上蹲着。欧美人会联想起狗排便的姿势而一脸厌恶。 日本人常常把手放在小孩的头上说“好可爱啊!”,而大部分外国人会不愿意。 如果向回教国家的人们劝食猪肉和酒,或用左手握手、递东西,会不受欢迎的。当然,饭菜也用右手抓着吃。只有从公用大盘往自己的小盘里分食用的公勺是用左手拿。一旦搞错,用黏糊糊的右手去拿,

会遭人厌恶。 在欧美,对不受欢迎的客人不说“请脱下外套”,所以电视剧中的侦探哥隆波总是穿着外套。访问日本家庭时,要在门厅外脱掉外套后进屋。穿到屋里会不受欢迎的。 这些习惯只要了解就不会出问题,如果因为不知道而遭厌恶、憎恨,实在心里难受。 过去,我曾用色彩图画和简短的文字画了一本《关键时刻的礼仪》(新潮文库)。如今越发希望用各国语言翻译这本书。以便能对在日本的外国人有所帮助。同时希望有朝一日以漫画的形式画一本“世界各国的习惯与礼仪”。 练习答案 5、 (1)止める並んでいる見ているなる着色した (2)拾った入っていた行ったしまった始まっていた

新视野大学英语(第三版)读写教程第二册课文翻译(全册)

新视野大学英语第三版第二册读写课文翻译 Unit 1 Text A 一堂难忘的英语课 1 如果我是唯一一个还在纠正小孩英语的家长,那么我儿子也许是对的。对他而言,我是一个乏味的怪物:一个他不得不听其教诲的父亲,一个还沉湎于语法规则的人,对此我儿子似乎颇为反感。 2 我觉得我是在最近偶遇我以前的一位学生时,才开始对这个问题认真起来的。这个学生刚从欧洲旅游回来。我满怀着诚挚期待问她:“欧洲之行如何?” 3 她点了三四下头,绞尽脑汁,苦苦寻找恰当的词语,然后惊呼:“真是,哇!” 4 没了。所有希腊文明和罗马建筑的辉煌居然囊括于一个浓缩的、不完整的语句之中!我的学生以“哇!”来表示她的惊叹,我只能以摇头表达比之更强烈的忧虑。 5 关于正确使用英语能力下降的问题,有许多不同的故事。学生的确本应该能够区分诸如their/there/they're之间的不同,或区别complimentary 跟complementary之间显而易见的差异。由于这些知识缺陷,他们承受着大部分不该承受的批评和指责,因为舆论认为他们应该学得更好。 6 学生并不笨,他们只是被周围所看到和听到的语言误导了。举例来说,杂货店的指示牌会把他们引向stationary(静止处),虽然便笺本、相册、和笔记本等真正的stationery(文具用品)并没有被钉在那儿。朋友和亲人常宣称They've just ate。实际上,他们应该说They've just eaten。因此,批评学生不合乎情理。 7 对这种缺乏语言功底而引起的负面指责应归咎于我们的学校。学校应对英语熟练程度制定出更高的标准。可相反,学校只教零星的语法,高级词汇更是少之又少。还有就是,学校的年轻教师显然缺乏这些重要的语言结构方面的知识,因为他们过去也没接触过。学校有责任教会年轻人进行有效的语言沟通,可他们并没把语言的基本框架——准确的语法和恰当的词汇——充分地传授给学生。

新视野大学英语1课文翻译

新视野大学英语1课文翻译 1下午好!作为校长,我非常自豪地欢迎你们来到这所大学。你们所取得的成就是你们自己多年努力的结果,也是你们的父母和老师们多年努力的结果。在这所大学里,我们承诺将使你们学有所成。 2在欢迎你们到来的这一刻,我想起自己高中毕业时的情景,还有妈妈为我和爸爸拍的合影。妈妈吩咐我们:“姿势自然点。”“等一等,”爸爸说,“把我递给他闹钟的情景拍下来。”在大学期间,那个闹钟每天早晨叫醒我。至今它还放在我办公室的桌子上。 3让我来告诉你们一些你们未必预料得到的事情。你们将会怀念以前的生活习惯,怀念父母曾经提醒你们要刻苦学习、取得佳绩。你们可能因为高中生活终于结束而喜极而泣,你们的父母也可能因为终于不用再给你们洗衣服而喜极而泣!但是要记住:未来是建立在过去扎实的基础上的。 4对你们而言,接下来的四年将会是无与伦比的一段时光。在这里,你们拥有丰富的资源:有来自全国各地的有趣的学生,有学识渊博又充满爱心的老师,有综合性图书馆,有完备的运动设施,还有针对不同兴趣的学生社团——从文科社团到理科社团、到社区服务等等。你们将自由地探索、学习新科目。你们要学着习惯点灯熬油,学着结交充满魅力的人,学着去追求新的爱好。我想鼓励你们充分利用这一特殊的经历,并用你们的干劲和热情去收获这一机会所带来的丰硕成果。 5有这么多课程可供选择,你可能会不知所措。你不可能选修所有的课程,但是要尽可能体验更多的课程!大学里有很多事情可做可学,每件事情都会为你提供不同视角来审视世界。如果我只能给你们一条选课建议的话,那就是:挑战自己!不要认为你早就了解自己对什么样的领域最感兴趣。选择一些你从未接触过的领域的课程。这样,你不仅会变得更加博学,而且更有可能发现一个你未曾想到的、能成就你未来的爱好。一个绝佳的例子就是时装设计师王薇薇,她最初学的是艺术史。随着时间的推移,王薇薇把艺术史研究和对时装的热爱结合起来,并将其转化为对设计的热情,从而使她成为全球闻名的设计师。 6在大学里,一下子拥有这么多新鲜体验可能不会总是令人愉快的。在你的宿舍楼里,住在你隔壁寝室的同学可能会反复播放同一首歌,令你头痛欲裂!你可能喜欢早起,而你的室友却是个夜猫子!尽管如此,你和你的室友仍然可能成

第十四章流变学基础

第十四章流变学基础 一、概念与名词解释 1、流变学 2、变形 3、内应力 4、弹性 5、弹性变形 6、塑性变形 7、剪切速度 8、剪切力和剪切应力 9、牛顿流体 10、非牛顿流体 11、塑性流动 12、假塑性流动 13、胀性流动 14、触变性 15、黏弹性 二、填空题 1、___________是研究物质在外力作用下的变形和流动的一门科学。 2、对于外力而产生的固体变形,当去除其应力时恢复原状的形变称为_________,而非可逆性的形变称为____________。 3、影响乳剂流动性的处方因素包括_________、___________和______________等。 4、根据流动和变形的形式不同,将物质分为_________和____________。后者的流动曲线可分为__________,______________和_________________三种。 5、假塑性流动的特点是液体黏度随着剪切力的增大而______________,而具有胀性流动特点的液体黏度随着剪切力的增大而______________。 三、选择题 (一)单项选择题 1、假塑性流体的流动公式是()。 A.D=S/η B D=S/ηa C. D=S n /η a (n>1) D.D=S-S0/η E. D=S n /η a (n<1) 2、甘油属于何种流体()。 A.胀性流体 B.触变流体 C.牛顿流体 D.假塑性流体 E.塑性流体 3、对黏弹体施加一定的作用力而变形,使其保持一定的形变时,应力随时间而减小,这种现象称为()。

A.应力缓和 B.蠕变性 C.触变性 D.假塑性流动 E.塑性流动 (二)多项选择题 1、有关流变学的正确表述有:() A.牛顿流动是切变应力S与切变速度D成正比(D=S/η)、黏度η保持不变的流动现象 B.塑性流动的流动曲线具有屈服值(或称为致流值)、不经过原点 C.假塑性流体具有切稀性质,即黏度随着切变应力的增加而下降 D.胀性流体具有切稠性质,即黏度随着切变应力的增加而增加 E.触变流体的上行线与下行线不重合,所包围成的面积越小,其触变性越大 2、以下关于乳剂流变学的描述正确的是()。 A.分散相体积比较低时,体系表现为非牛顿流动 B.随着分散体体积比增加,系统流动性下降,转变成假塑性流动或塑性流动 C.乳化剂浓度越高,制剂黏度越大,流动性越差 D.平均粒度相同的条件下,粒度分布宽的系统比粒度分布窄的系统黏度低 3、非牛顿流体的流动曲线类型有()。 A.塑性流动 B.假塑性流动 C.层流 D.胀性流动 4、测定牛顿流体的黏度常用仪器为()。 A.落球黏度计 B.双重圆筒型黏度计 C.毛细管黏度计 D.平行圆板型黏度计 E.圆锥平板黏度计 四、问答题 1、什么是牛顿流动和非牛顿流动,有何特征? 牛顿流体、非牛顿流动面包括塑性、假塑性、胀性 2、分别以混悬液、乳剂、软膏为例说明流变学在药剂中的应用。 3、什么是黏弹性?常见的理论模型有哪些?

新视野大学英语2课文翻译

新视野大学英语2课文翻译(Unit1-Unit7) Unit 1 Section A 时间观念强的美国人 Para. 1 美国人认为没有人能停止不前。如果你不求进取,你就会落伍。这种态度造就了一个投身于研究、实验和探索的民族。时间是美国人注意节约的两个要素之一,另一个是劳力。 Para. 2 人们一直说:“只有时间才能支配我们。”人们似乎是把时间当作一个差不多是实实在在的东西来对待的。我们安排时间、节约时间、浪费时间、挤抢时间、消磨时间、缩减时间、对时间的利用作出解释;我们还要因付出时间而收取费用。时间是一种宝贵的资源,许多人都深感人生的短暂。时光一去不复返。我们应当让每一分钟都过得有意义。 Para. 3 外国人对美国的第一印象很可能是:每个人都匆匆忙忙——常常处于压力之下。城里人看上去总是在匆匆地赶往他们要去的地方,在商店里他们焦躁不安地指望店员能马上来为他们服务,或者为了赶快买完东西,用肘来推搡他人。白天吃饭时人们也都匆匆忙忙,这部分地反映出这个国家的生活节奏。工作时间被认为是宝贵的。Para. 3b 在公共用餐场所,人们都等着别人吃完后用餐,以便按时赶回去工作。你还会发现司机开车很鲁莽,人们推搡着在你身边过去。你会怀念微笑、简短的交谈以及与陌生人的随意闲聊。不要觉得这是针对你个人的,这是因为人们非常珍惜时间,而且也不喜欢他人“浪费”时间到不恰当的地步。 Para. 4 许多刚到美国的人会怀念诸如商务拜访等场合开始时的寒暄。他们也会怀念那种一边喝茶或咖啡一边进行的礼节性交流,这也许是他们自己国家的一种习俗。他们也许还会怀念在饭店或咖啡馆里谈生意时的那种轻松悠闲的交谈。一般说来,美国人是不会在如此轻松的环境里通过长时间的闲聊来评价他们的客人的,更不用说会在增进相互间信任的过程中带他们出去吃饭,或带他们去打高尔夫球。既然我们通常是通过工作而不是社交来评估和了解他人,我们就开门见山地谈正事。因此,时间老是在我们心中的耳朵里滴滴答答地响着。 Para. 5 因此,我们千方百计地节约时间。我们发明了一系列节省劳力的装置;我们通过发传真、打电话或发电子邮件与他人迅速地进行交流,而不是通过直接接触。虽然面对面接触令人愉快,但却要花更多的时间, 尤其是在马路上交通拥挤的时候。因此,我们把大多数个人拜访安排在下班以后的时间里或周末的社交聚会上。 Para. 6 就我们而言,电子交流的缺乏人情味与我们手头上事情的重要性之间很少有或完全没有关系。在有些国家, 如果没有目光接触,就做不成大生意,这需要面对面的交谈。在美国,最后协议通常也需要本人签字。然而现在人们越来越多地在电视屏幕上见面,开远程会议不仅能解决本国的问题,而且还能通过卫星解决国际问题。

新视野大学英语第三版课文翻译

新视野大学英语3第三版课文翻译 Unit 1 The Way to Success 课文A Never, ever give up! 永不言弃! As a young boy, Britain's great Prime Minister, Sir Winston Churchill, attended a public school called Harrow. He was not a good student, and had he not been from a famous family, he probably would have been removed from the school for deviating from the rules. Thankfully, he did finish at Harrow and his errors there did not preclude him from going on to the university. He eventually had a premier army career whereby he was later elected prime minister. He achieved fame for his wit, wisdom, civic duty, and abundant courage in his refusal to surrender during the miserable dark days of World War II. His amazing determination helped motivate his entire nation and was an inspiration worldwide. Toward the end of his period as prime minister, he was invited to address the patriotic young boys at his old school, Harrow. The headmaster said, "Young gentlemen, the greatest speaker of our time, will be here in a few days to address you, and you should obey whatever sound advice he may give you." The great day arrived. Sir Winston stood up, all five feet, five inches and 107 kilos of him, and gave this short, clear-cut speech: "Young men, never give up. Never give up! Never give up! Never, never, never, never!" 英国的伟大首相温斯顿·丘吉尔爵士,小时候在哈罗公学上学。当时他可不是个好学生,要不是出身名门,他可能早就因为违反纪律被开除了。谢天谢地,他总算从哈罗毕业了,在那里犯下的错误并没影响到他上大学。后来,他凭着军旅生涯中的杰出表现当选为英国首相。他的才思、智慧、公民责任感以及在二战痛苦而黑暗的时期拒绝投降的无畏勇气,为他赢得了美名。他非凡的决心,不仅激励了整个民族,还鼓舞了全世界。 在他首相任期即将结束时,他应邀前往母校哈罗公学,为满怀报国之志的同学们作演讲。校长说:“年轻的先生们,当代最伟大的演说家过几天就会来为你们演讲,他提出的任何中肯的建议,你们都要听从。”那个激动人心的日子终于到了。温斯顿爵士站了起来——他只有5 英尺5 英寸高,体重却有107 公斤。他作了言简意赅的讲话:“年轻人,要永不放弃。永不放弃!永不放弃!永不,永不,永不,永不!” Personal history, educational opportunity, individual dilemmas - none of these can inhibit a strong spirit committed to success. No task is too hard. No amount of preparation is too long or too difficult. Take the example of two of the most scholarly scientists of our age, Albert Einstein and Thomas Edison. Both faced immense obstacles and extreme criticism. Both were called "slow to learn" and written off as idiots by their teachers. Thomas Edison ran away from school because his teacher whipped him repeatedly for asking too many questions. Einstein didn't speak fluently until he was almost nine years old and was such a poor student that some thought he was unable to learn. Yet both boys' parents believed in them. They worked intensely each day with their sons, and the boys learned to never bypass the long hours of hard work that they needed to succeed. In the end, both Einstein and Edison overcame their childhood persecution and went on to achieve magnificent discoveries that benefit the entire world today. Consider also the heroic example of Abraham Lincoln, who faced substantial hardships, failures and repeated misfortunes in his lifetime. His background was certainly not glamorous. He was raised in a very poor family with only one year of formal education. He failed in business twice, suffered a nervous breakdown when his first love died suddenly and lost eight political

新视野大学英语读写教程2-(第三版)-unit-2-课文原文及翻译

Text A 课文 A The humanities: Out of date? 人文学科:过时了吗? When the going gets tough, the tough takeaccounting. When the job market worsens, manystudents calculate they can't major in English orhistory. They have to study something that booststheir prospects of landing a job. 当形势变得困难时,强者会去选学会计。当就业市场恶化时,许多学生估算着他们不能再主修英语或历史。他们得学一些能改善他们就业前景的东西。 The data show that as students have increasingly shouldered the ever-rising c ost of tuition,they have defected from the study of the humanities and toward applied science and "hard"skills that they bet will lead to employment. In oth er words, a college education is more andmore seen as a means for economic betterment rather than a means for human betterment.This is a trend that i s likely to persist and even accelerate. 数据显示,随着学生肩负的学费不断增加,他们已从学习人文学科转向他们相信有益于将来就业的应用科学和“硬”技能。换言之,大学教育越来越被看成是改善经济而不是提升人类自身的手段。这种趋势可能会持续,甚至有加快之势。 Over the next few years, as labor markets struggle, the humanities will proba bly continue theirlong slide in succession. There already has been a nearly 50 percent decline in the portion of liberal arts majors over the past generatio n, and it is logical to think that the trend is boundto continue or even accel erate. Once the dominant pillars of university life, the humanities nowplay li ttle roles when students take their college tours. These days, labs are more vi vid and compelling than libraries. 在未来几年内,由于劳动力市场的不景气,人文学科可能会继续其长期低迷的态势。在上一代大学生中,主修文科的学生数跌幅已近50%。这种趋势会持续、甚至加速的想法是合情合理的。人文学科曾是大学生活的重要支柱,而今在学生们参观校园的时候,却只是一个小点缀。现在,实验室要比图书馆更栩栩如生、受人青睐。 Here, please allow me to stand up for and promote the true value that the h umanities add topeople's lives. 在这儿,请允许我为人文学科给人们的生活所增添的真实价值进行支持和宣传。

流变学基础(一)

流变测量学基础(一) 一、流变学的基本概念 1. 流变学研究内容 流变学—Rheology ,来源于希腊的Rheos=Sream (流动)词语,是Bingham 和Crawford 为了表示液体的流动和固体的变形现象而提出来的概念。流变学主要是研究物质的流动和变形的一门科学。 流动是液体和气体的主要性质之一,流动的难易程度与流体本身的粘性(viscosity )有关,因此流动也可视为一种非可逆性变形过程。变形是固体的主要性质之一,对某一物体外加压力时,其内部各部分的形状和体积发生变化,即所谓的变形。对固体施加外力,固体内部存在一种与外力相对抗的内力使固体保持原状。此时在单位面积上存在的内力称为内应力(stress )。对于外部应力而产生的固体的变形,当去除其应力时恢复原状的性质称为弹性(elasticity )。把这种可逆性变形称为弹性变形(elastic deformation ),而非可逆性变形称为塑形变形(plastic deformation )。 实际上,多数物质对外力表现为弹性和粘性双重特性,我们称之为粘弹性,具有这种特性的物质我们称之为粘弹性物质。 2. 剪切应力与剪切速度 观察河道中流水,水流方向一致,但水流速度不同,中心处的水流最快,越靠近河岸的水流越慢。因此在流速不太快时可以将流动着的液体视为由若干互相平行移动的液层所组成的,这种流动方式叫层流,如图1。由于各层的速度不同,便形成速度梯度dv/dh ,或称剪切速率。流动较慢的液层阻滞着流动较快液层的运动,使各液层间产生相对运动的外力叫剪切力,在单位液层面积(A )上所需施加的这种力称为剪切应力,简称剪切力(Shear Stress ),单位为N ·m -2,即Pa ,以τ表示。剪切速度(Shear Rate ),单位为s -1,以γ? 表示。剪切速率与剪切应力是表征体系流变性质的两个基本参数。 图1 流动时形成的速度梯度

相关文档
最新文档