Magnetic Reconnection Triggered by the Parker Instability in the Galaxy Two-Dimensional Num

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy Two-Dimensional Num
Magnetic Reconnection Triggered by the Parker Instability in the Galaxy Two-Dimensional Num

a r X i v :a s t r o -p h /0209008v 1 1 S e p 2002

Draft version February 2,2008

Preprint typeset using L A T E X style emulateapj

MAGNETIC RECONNECTION TRIGGERED BY THE PARKER INSTABILITY IN THE

GALAXY:

TWO-DIMENSIONAL NUMERICAL MAGNETOHYDRODYNAMIC SIMULATIONS AND APPLICATION TO THE ORIGIN OF X-RAY GAS IN THE GALACTIC HALO

Syuniti Tanuma

1,2,3,4,5

,Takaaki Yokoyama,4,6,Takahiro Kudoh

4,7

,

and

Kazunari Shibata 1,4,8Draft version February 2,2008

ABSTRACT

We propose the Galactic ?are model for the origin of the X-ray gas in the Galactic halo.For this purpose,we examine the magnetic reconnection triggered by Parker instability (magnetic buoyancy instability),by performing the two-dimensional resistive numerical magnetohydrody-namic simulations.As a result of numerical simulations,the system evolves as following phases:Parker instability occurs in the Galactic disk.In the nonlinear phase of Parker instability,the magnetic loop in?ates from the Galactic disk into the Galactic halo,and collides with the anti-parallel magnetic ?eld,so that the current sheets are created in the Galactic halo.The tearing instability occurs,and creates the plasmoids (magnetic islands).Just after the plasmoid ejection,further current-sheet thinning occurs in the sheet,and the anomalous resistivity sets in.Petschek reconnection starts,and heats the gas quickly in the Galactic halo.It also creates the slow and fast shock regions in the Galactic halo.The magnetic ?eld (B ~3μG),for example,can heat the gas (n ~10?3cm ?3)to temperature of ~106K via the reconnection in the Galactic halo.The gas is accelerated to Alfv′e n velocity (~300km s ?1).Such high velocity jets are the evidence of the Galactic ?are model we present in this paper,if the Doppler shift of the bipolar jet is detected in the Galactic halo.

Subject headings:Galaxy:halo —ISM:magnetic ?elds —instabilities —

magnetohydrodynamics

1.INTRODUCTION

The X-rays from hot gas are observed in the Galac-tic halo.Its luminosity and temperature are L X ~7×1039erg s ?1and T ~106K (Pietz et al.1998).The volume and thermal energy are estimated to be E ~1055erg and V ~1068cm 3.To explain such hot gas in the Galactic halo,the “Galactic foun-tains”model has been proposed (i.e.,supernova rem-nants and stellar winds heat the gas;Bregman 1980;Norman &Ikeuchi 1989;Shapiro &Benjamin 1991;Shull 1996;de Avillez 2000;Slavin,McKee,&Hol-lenbach 2000).The energy source,however,may not

be explained fully by this model because the evidence is not observed adequately (see also Birk,Lesch,&Neukirch 1998).In this paper,we propose another mechanism.It is the Galactic ?are model,i.e.,the magnetic heating in the Galactic halo.

Parker (1992)pointed out the importance of mag-netic reconnection for the heating of Galactic plas-mas.Whenever the magnetic ?ux collides with an-other ?ux,which is not exactly parallel,the current density increases,and a strong dissipation sets in (e.g.,via anomalous resistivity)to trigger fast recon-nection (e.g.,Ugai 1986).The magnetic reconnec-tion is observed in solar ?ares by the X-ray satellites

1Kwazan Observatory,Kyoto University,Yamashina,Kyoto,607-8471,Japan 2

tanuma@kwasan.kyoto-u.ac.jp 3

Solar-Terrestrial Environment Laboratory,Nagoya University,3-13Honohara,Toyokawa,Aichi 442-8507,Japan 4

National Astronomical Observatory of Japan,2-21-1Osawa,Mitaka,Tokyo 181-8588,Japan 5

Department of Astronomy,School of Science,Tokyo University 7-3-1Hongo,Bunkyo,Tokyo 113-0033,Japan 6

Nobeyama Radio Observatory,Minamimaki,Minamisaku,Nagano 384-1305,Japan :yokoyama.t@nao.ac.jp 7

Department of Physics and Astronomy,University of Western Ontario,London,Ontario N6A 3K7,Canada :

kudoh@astro.uwo.ca 8

shibata@kwasan.kyoto-u.ac.jp

1

2Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001,Submitted to Astrophysical Journal

Yohkoh(Masuda et al.1994;Shibata1996;Tsuneta 1996)and SoHO(Yokoyama et al.2001).In the solar ?are,the reconnection heats the plasma from a tem-perature of~several×106K to~several×107?8 K,and accelerates it to Alfv′e n velocity(~102?3 km s?1)(e.g.,Shibata1996).The reconnection would occur also in the Galaxy(Tanuma et al.1999a, 1999b,2001a,1999b),which may be called“Galactic ?are”(Sturrock&Stern1980;Kahn&Brett1993). Total magnetic energy is E mag~( B 2obs/8π)V G ~1054.4erg at least,where B obs(~3μG)is the mean observed?eld strength(see Beck et al.1996; Vall′e e1997),and V G(~1067cm3)is the volume of the Galaxy.The rotational energy of the Galaxy (~1058.9erg)and kinetic energy of the interstellar gas(~1058.2erg)are its origin(e.g.,Parker1971; Sturrock&Stern1980;Tanuma et al.1999a;Tanuma 2000).

The steady reconnection mechanisms were pro-posed(see Priest&Forbes2000).In Sweet(1958)-Parker(1957)type reconnection,the di?usion region is so long as to occupy whole current system.It can not be applied to the solar?are phenomena,be-cause the reconnection rate of this model is too small (~R?1/2

m)in the solar corona,where R m is the mag-netic Reynolds number(~1012).On the other hand, in Petschek(1964)type reconnection,the di?usion re-gion is localized near an X-point,and standing slow shocks occupy whole current systems.In this case, the energy conversion via slow shocks is much larger than Ohmic heating.This can hence be applicable to the solar?are phenomena,because the reconnection rate of this model is~0.1?0.01.This is called “fast reconnection”.A basic problem of Petschek model is as follows:Petschek reconnection occurs, if the anomalous resistivity sets in the current sheet (e.g.,Ugai1986;Yokoyama&Shibata1994;Tanuma 2000;Tanuma et al.1999a,2001a).The anomalous resistivity set in,when the current-sheet thickness be-comes comparable with ion Lamor radius or ion in-ertial radius.It is,however,not fully known how the current sheet becomes thin,because the typical size of solar?are(109?11cm)is much larger than these radii(102?3cm).This situation is similar to that of the Galaxy(R m>1015),where typical size of magnetic?eld(>1019cm)is much larger than the ion Lamor radius(~107cm).To solve these prob-lems,we proposed the current-sheet thinning via the “fractal tearing instability”(Tanuma2000;Shibata &Tanuma2001;Tanuma et al.2001a).

Many two-dimensional(2D)magnetohydrody-namic(MHD)numerical simulations have been car-ried out for the magnetic reconnection in the solar atmosphere(Magara&Shibata1997;Odstrˇc il&Kar-lick′y1997),and in the Galactic halo(Zimmer,Lesch,&Birk1997;Birk et al.1998),by assuming the cur-rent sheet at the initial condition(see also Nitta et al. 2001).Recently,Tanuma et al.(1999a,1999b,2001a) examined the magnetic reconnection triggered by a supernova-shock by performing the2D MHD simu-lations with a high spatial resolution,and proposed that it can generate X-ray gas in the Galactic disk (e.g.,Ebisawa et al.2001).They found that the tear-ing instability(Furth,Killeen,&Rosenbluth1963) occurs in the current sheet long after the passage of a shock wave.Petschek reconnection occurs after further current sheet thinning via secondary tearing instability.In the present model,Parker(1966)in-stability creates the current sheet by itself and trig-ger the magnetic reconnection(Tanuma et al.1999b; Tanuma2000;see also Shibata,Nozawa,&Mat-sumoto1992;Yokoyama&Shibata1996,1997). Recently,we examied three-dimensional(3D)MHD simulations of the magnetic reconnection with a low spatial resolution.Petschek reconnection occurs after the current sheet thinning by the tearing instability in both2D(Tanuma et al.1999b)and3D models (Tanuma2000;Tanuma et al.2001b),because we can not resolve the secondary tearing instability when we assume a rough grid(The similarities between2D and3D models are consistent with Ugai&Shimizu 1996).3D e?ect such as Rayleigh-Taylor instability, however,appears when reconnection jet collides with high pressure gas and magnetic loop much after the onset of Petschek reconnection.Tanuma et al.(2002) applied the results to the creation of helical magnetic ?eld and con?nement of high energy particles in the solar?are.We study the basic physics of magnetic reconnection which are common between2D and3D models,although2D model examined in this paper is a toy model of limited in2D dimension.In this paper,however,we examine the2D model under a higher spatial resolution than the3D model which we are able to do.

Parker instability is the undular mode(k B)of magnetic buoyancy instability(Parker1966),which occurs if a gas layer in a gravitational?eld is sup-ported by the horizontal magnetic?elds.Suppose that the magnetic?eld lines are disturbed and be-gin to undulate.The gas in the loop top slides down along the?eld lines,so that loop rises further,and the instability sets in.Parker instability is suggested to in?uence the motion of clouds,H II regions,and OB associations(Tosa&Sofue1974),and the dis-tribution of clouds(Mouschovias,Shu,&Woodward 1974;Vrba1977;Blitz&Shu1980;Elmegreen1982); for example,Perseus hump(Sofue&Tosa1974), Perseus arm(Appenzeller1971,1974),Barnard loop (Mouschovias,Shu,&Woodward1974),and Sofue-Handa(1984)lobe.

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy3 The linear analysis of Parker instability were made

by many researchers(Shu1974;Horiuchi et al.1988;

Hanawa et al.1992;Foglizzo&Taggar1994;Chou

et al.1997;Kamaya et al.1997).The2D MHD

simulations were performed for solar?ares(Kaisig

et al.1990;Nozawa et al.1992;Shibata et al.

1992;Yokoyama&Shibata1996),and the interstel-

lar medium(Basu et al.1997;Matsumoto et al.1998;

Santill′a n et al.2000;Steinacker&Shchekinov2001).

The three-dimensional(3D)simulations of Parker in-

stability of horizontal magnetic?eld in solar atmo-

sphere and Galaxy(Matsumoto et al.1993;Kim,

Ryu,&Jones2001;Hanasz,Otmianowska-Mazur,&

Lesch2002),and the twisted?ux tube in the solar

atmosphere(Matsumoto et al.1998;Abbett,Fisher,

&Fan2000;Fan2001;Magara2001),the Galaxy

(Hanasz&Lesch2000;France et al.2002),and accre-

tion disks(Ziegler2001)are also performed.Shibata

et al.(1989,1992)and Yokoyama&Shibata(1994,

1996,1997)examined the magnetic reconnection trig-

gered by Parker instability in the solar corona.Re-

cently,Hanasz et al.(2002)examined the3D model

of the magnetic reconnection in magnetic loop cre-

ated by Parker instability with Coriolis force in the

interstellar medium.In the present paper,we extend

Shibata et al.(1989,1992)and Yokoyama&Shibata

(1994,1996,1997)’s solar?are model to the Galaxy:

The Galactic?are as the origin of the X-ray gas in

the Galactic halo.

In this paper,we propose a possible origin of X-

ray gas in the Galactic halo.In the next section,we

describe the simulation method.In sections3and

4,we describe the results of numerical simulations,

and discuss it.In the last section,we summarize this

paper.

2.NUMERICAL SIMULATIONS

2.1.The Situation of the Problem

Figure1shows our schematic scenario.Figure1a

displays the initial condition.Parker instability oc-

curs in the Galactic disk(Fig.1b;we call this sit-

uation phase I and II in this paper).The magnetic

reconnection occurs and heats the gas(Fig.1c;phase

III).The heated gas is con?ned by the magnetic?eld

(Fig.1d).

2.2.Two-Dimensional Resistive MHD Basic

Equations

The resistive MHD basic equations are written as

follows:

?t +ρ(v·?)v+?p g=

1

?t

??×(v×B)=?c?×(ηJ),(3)

?e

g

~100T1/2

4

pc,(6)

τ≡

H

4Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001,Submitted to Astrophysical Journal

2.5.The Initial Condition of Typical Model

For the initial condition,we assume that the cool,

dense Galactic disk is between the hot,rare?ed

Galactic halo(Fig.1a;Horiuchi et al.1988;Mat-

sumoto et al.1988;Tanuma et al.1999b;Tanuma

2000).Tables1and2show the variables and param-

eters.The temperature is

T(x,z)=T0+0.5 tanh z?z c

β(z)=

1

0.5

+

1

0.5 .(10)

The value(β0=0.2)is attained in the Galactic disk, if the magnetic?eld of B~51/2 B obs~7μG,where B obs is the mean observed?eld strength(~3μG)in the Galactic disk(see Beck et al.1996;Vall′e e1997). The magnetized gas is under the MHD equilibrium;

d

8π +ρ(z)g=0.(11)

The variables areρ0=1,p g0=0.6,and B x0?8.68 at the equatorial plane.The sound and Alfv′e n ve-

locity are C s≡(γp g0/ρ0)1/2=1.0and v init

A =

B x0/(4πρ0)1/2?2.45in the Galactic disk.The Galactic disk is unstable to Parker instability.

We use the N x=403grids and N z=604grids in the horizontal and vertical directions,respectively. The intervals of grids are uniform(△x=0.30)in x-axis and nonuniform(△z≥0.075)in z-axis.We assume the top(z=+34.5)and bottom(z=?34.5) surfaces are free boundaries,and the right(x= +30.0)and left(x=?30.0)ones are periodic ones. We use the2-steps modi?ed Lax-Wendro?method. We put random perturbations(<0.05C s)on vertical velocities[v z(x,z)]in the Galactic disk.

We neglect radiation and heat conduction.The cooling times due to the conduction and radiation for the cool(T~104K),dense(n~0.1cm?3)gas in the Galactic disk are

τcond~

nkTλ2

0.1cm?3

λ104K ?5/2yr,(13)τrad~

nkT

104K

n

10?21erg cm3s?1

?1

yr,(15)

respectively,whereΛ(T)is the cooling function (Spitzer1978),andκ0is constant(=10?6erg s?1 cm?1K?1).For the hot(T~106K),rare?ed (n~10?3cm?3)gas in the Galactic halo,however, they become

τcond~109 n

3kpc 2

T

106K

n

10?23erg cm3s?1

?1

yr,(17)

respectively,whereλe?is the e?ective length of heli-cal magnetic loop.They are one order of magnitude longer than the typical time scale(~108yr;see next section)of the physical process examined in this pa-per,so that the cooling mechanisms can be neglected, once they are heated to X-ray gas in the Galactic halo.The basic properties of the magnetic recon-nection such as reconnection rate and energy release rate are not much a?ected by the heat conduction (Yokoyama&Shibata1997).

3.THE RESULTS OF NUMERICAL SIMULATIONS

3.1.The typical Model(Model A1)

Phase I:The Linear Phase of Parker Insta-bility(t<40)

Figures2-4show the time evolution of the sys-tem.The axes are in the unit of~10H~1 kpc.The magnetic?eld lines starts to bent across the plane.Figures2a,3a,and4a shows a char-acteristic feature of the odd-mode(glide-re?ection mode),which grows earlier than even-mode(mirror-symmetry mode)(Horiuchi et al.1988;Matsumoto

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy5 et al.1988;see also Tanuma et al.1999b;Tanuma

2000).The magnetic?eld in?ates toward the Galac-

tic halo by the magnetic buoyancy force.The gas

slides down along the magnetic?eld lines.

Phase II:The Nonlinear Phase of Parker In-

stability(t~40?60)

The system enters the nonlinear phase at t~40.

In the valleys of the waving?eld,the vertical dense

spurs are formed almost perpendicular to the Galac-

tic plane(Fig.3a).The dense regions are also created

in the valleys.Figure5shows the time variations of

the drift velocity and velocity.The velocity increases

to Alfv′e n velocity(~2.5?3.0)in this phase.

Figure6shows the time variation of the various en-

ergies.The magnetic,thermal,kinetic,gravitational,

and total energies are de?ned by

E mag= B x(x,z)2+B z(x,z)2

γ?1

p g(x,z)d x d z,(19) E kin= 1

β n in

dt

~2

B2

4π3/2ρ1/2

(24)

where v in(=?v A),?,and S are the in?ow velocity, reconnection rate,and reconnection region size,re-spectively.

3.2.The Parameter Survey

3.2.1.The Dependence on the Existence and

Direction of the Magnetic Field in the

Galactic Halo

We examine the e?ect of the magnetic?eld in the Galactic halo,by comparing the anti-parallel-?eld model(typical model;model A1)with the no-magnetic-?eld model(model B),parallel-magnetic-?eld model(model C),and model D(anti-parallel magnetic?eld in a Galactic halo and parallel mag-netic?eld in the other Galactic halo)(Table1).In models B and C,no magnetic reconnection occurs. In model C,the parallel magnetic?eld in the Galac-tic halo suppresses Parker instability.The velocity is ~3?6,which is larger than that of model B(Fig.

5),because the gas is compressed between the mag-netic loop and ambient magnetic?eld.In model D, the magnetic energy release rate is very small.On the other hand,the distribution of density do not depend on the magnetic reconnection.

3.2.2.The Dependence on the Magnetic Field

Strength

We examine the dependence of results on B x0[= (8πp g0/β0)1/2],i.e.,β0(models A2and F1-9;Table 1).Figure9a shows theβ0-dependence of magnetic energy release rate.It is determined by the Poynting ?ux entering the reconnection region,

?

dE mag

Sv in(25)

∝β?3/2

,(26)

6Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001,Submitted to Astrophysical Journal where S is the reconnection region size,v in[=?v A=

?B/(4πρ)1/2]is the in?ow velocity to the reconnec-

tion region,and?is the reconnection rate.It is also

shown(~4.5β?3/2

0),by assuming?~0.1,S~20,

and p g~0.6.It explains the results well.Figure 9b shows the time when maximum heating rate is at-tained.It is determined by the time scale of Parker instability,i.e.,Alfv′e n time(τA∝v?1A∝β1/2

),as

shown(~100v?1A~90β1/2

0),where we assume that

the vertical of loop is~0.1v A(Matsumoto et al. 1998)and the reconnection occurs at z~10. Figure9c shows the maximum temperature(T max). The gas is heated to

T max~ 1+1n out T in(27)

∝1+

1

(4πρ)1/2

(29)

∝β?1/2

,(30)

as shown by assuming T~25.It also explains the results well.

3.2.3.The Dependence on the Magnetic Field in the

Galactic Halo

We examine the position(z h)of anti-parallel mag-netic?eld(models A2and G1-3;Table1).In the near-magnetic-?eld model(model G3),the tearing in-stability occurs between the Galactic disk and halo. The magnetic?eld dissipates in an early phase(t~0?50),and the wavelength of the magnetic loops is shorter than that of the other models.

We also examine the existence of magnetic?eld in the Galactic halo,for the near-magnetic-?eld models (models G3,K,and L;Table1).In models K(the no-magnetic-?eld model)and G3,the magnetic energy is released gradually by the tearing instability or mag-netic dissipation in an early phase(t~0?35)(Figs. 10a and10b).In model L(the parallel-magnetic-?eld model),the dissipation is suppressed(Fig.10c). We,furthermore,examineβ0in the near-magnetic-?eld models(models G3and J1-8;Table1),as also shown in Figure9by△.Theβ0-dependence of these models are equal to that of high-magnetic-?eld mod-els.

3.2.

4.The Dependence on the Resistivity Model We examine the resistivity model.Figure11shows the reconnection rate,in the anomalous(model A1) and the uniform resistivity model(models M and N). In the uniform resistivity model,Sweet-Parker re-connection occurs,so that the reconnection rate is much smaller than that in the anomalous resistivity model.The reconnection rate increases transiently at t~40.It is di?erent from Yokoyama&Shibata (1996)’s results:their reconnection rate is not time-dependent.The reason is as follows;In our model, the position of magnetic?eld in the halo is lower than theirs,so that the magnetic?eld is stronger and the current density is larger at current sheet.The recon-nection rate,however,stays at nearly steady small value,which is consistent with the Sweet-Parker scal-ing:η|J|∝Re?1/2

m∝η1/2.

Table3shows the route to fast reconnection.In the anomalous resistivity model,Petschek type re-connection occurs after tearing instability and onsets of anomalous resistivity,while Sweet-Parker type re-connection occurs in the uniform resistivity model. Figure12displays the dependence on the resistivity models.It shows a characteristic patterns of two re-connection models.

4.DISCUSSION

4.1.The Origin of X-Ray Gas in the Galactic Halo Parker instability is initiated by a small pertur-bation,a supernova explosion(Kamaya et al.1997; Steinacker&Shchekinov2001),collision of the high-velocity clouds(HVCs;Santill′a n et al.2000),and cosmic rays etc.The X-ray gas can be generated,if the magnetic reconnection is triggered by Parker in-stability or the collision of HVCs(Kerp et al.1994, 1996).

The reconnection heats the gas to

T~106 n3μG 2K.(31) The reconnection also accelerates the gas to

v A~300 n3μG km s?1.(32) The duration of fast reconnection is

t~

l

100pc

?

10?3cm?3 1/2

B

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy 7

where the reconnection rate is ?(=v in /v A ).

The anomalous resistivity sets in at least when the current sheet thickness becomes comparable with ion Lamor radius [~3×107(T/104K)1/2(B/3μG)?1cm].The radius of magnetic island (i.e.,plasmoid)is larger than it.The island in 2D simulation is heli-cally twisted magnetic tube in 3D.Its volume,mass,and luminosity are V tube ~1061

r p

100pc

cm 3,

(35)M tube ~2×10

33

r p

100pc

n

10?3cm ?3 2

Λ(T )

10pc

2

l p

3μG

2

λtot

100pc

erg ,

(38)

where λ2tot

is the total area of many reconnection re-gions,and l are the typical thickness of magnetic loop.The energy release rate,then,is

d E mag

3μG 3

λtot

10?3cm ?3

?1/2

erg s ?1

.

(39)It is also derived from eq.(26).It can explain

the X-ray luminosity (~1039?40erg s ?1;Pietz et al.1998).The heated gas is con?ned for τcond ~109(n/10?3cm ?3)(λe?/3kpc)2(T/106K)?5/2yr (eq.[17]),where λe?is the e?ective length of the helical magnetic tubes.The reconnection creates the bipo-lar jet,forming the high velocity gas at Alfv′e n veloc-ity (~300km s ?1;see also Nitta et al.2001,Nitta,Tanuma,&Maezawa 2002).The Doppler shift of the bipolar jet will be the evidence of the Galactic ?are,proposed in this paper.

The plasmoid of cool gas is also created at the same time by the reconnection (Yokoyama &Shibata 1996).It is also con?ned by magnetic ?eld.The high velocity cool gas as well as hot gas will be the evi-dence of our model.

4.2.The Comparison With Other Numerical

Simulations The 2D model examined in this paper is an exten-sion from the supernova-shock driven reconnection model in the Galactic disk (Tanuma et al.1999a,1999b,2001a;Tanuma 2000).Some 2D numerical simulations were done for the reconnection in the Galaxy (Zimmer et al.1997;Birk et al.1998;Tanuma et al.1999a,2001a).They assume the current sheet for the initial condition (see also Ugai 1992;Ugai &Kondoh 2001).Di?erent from their models,Parker instability creates the current sheets spontaneously in our present model.

In our results,the tearing instability triggers Petschek reconnection.Sweet-Parker current sheet,however,would be created,and the secondary tear-ing instability will occur in the current sheet be-fore Petschek reconnection,if we use ?ne grids like Tanuma et al.(1999a,2001a)s’model (Table 3).Fur-thermore,in the actual Galaxy (>1015),as well as in solar corona (~1012),the magnetic Reynolds num-ber is much larger than that of the numerical sim-ulations (~104?5),so that the current-sheet thick-ness must become much smaller than the current-sheet length,to set in the anomalous resistivity (e.g.,through “fractal tearing instability”;Tanuma 2000;Shibata &Tanuma 2001;Tanuma et al.2001a).

A di?erent situation from the solar ?are model is the growth of odd-mode of Parker instability.Another di?erent result from Yokoyama &Shibata (1996)’s model is the time variation of reconnec-tion rate in the uniform resistivity model (studied in section 3.2.4).On the other hand,in our model,Petschek reconnection occurs in the anomalous re-sistivity model,while Sweet-Parker reconnection oc-curs in the uniform resistivity model.This result is the same with Yokoyama &Shibata (1994).We con-?rmed this in more general situation.

4.3.Turbulence and 3D E?ects

The MHD turbulence may be also important in re-connection problem (Lazarian &Vishniac 1999).The e?ective reconnection rate increases if the di?usion region is in a state of MHD turbulence.It is,how-ever,di?cult to resolve MHD turbulence (even if in 2D).

Recently,we revealed that the fast reconnection oc-curs after the current sheet thinning by the tearing instability in both 2D (Tanuma et al.1999b)and 3D models (Tanuma 2000;Tanuma et al.2001b)under a low spatial resolution and the assumption of initial current sheet.We found no di?erence between 2D and 3D models in reconnection rate,in?ow velocity,velocity of reconnection jet,temperature of heated gas,slow shock formation accompanied with Petschek

8Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001,Submitted to Astrophysical Journal

reconnection,fast shock formation due to the colli-sion between the reconnection jet and high pressure gas,and time scale of these phenomena.These re-sults do not have a large quantitative di?erence from 2D models with a high spatial resolution examined by Tanuma et al.(2001a)(see also Ugai&Shimizu 1996).Rayleigh-Taylor instability is,however,ex-cited due to the collision,which occurs much after the onset of anomalous resistivity(Tanuma et al.2002; in prep.for study of details).

We can not examine3D model with the same small grid with that of2D model,so that we examine2D model with a small grid in this paper.The secondary tearing instability,however,may be di?erent between 2D and3D,if we assume enough small grid.It is also important to study details of3D structure of di?u-sion region,the tearing instability,plasmoid ejection, heating of X-ray gas in the Galactic halo,and cre-ation of high velocity“bipolar jet”,by performing 3D simulations with enough?ne grid.It is our future work.

5.SUMMARY

We propose the Galactic?are model for the origin of the X-ray gas in the Galactic halo.We examine the magnetic reconnection triggered by Parker instability in the Galaxy,by performing the two-dimensional re-sistive MHD numerical simulations.

At the initial condition,we assume the horizontal ?ux sheet in the Galactic disk,and the anti-parallel magnetic?eld in the Galactic halo.The magnetic ?eld in?ates toward the Galactic halo,by Parker in-stability.It collides with the anti-parallel magnetic ?eld in the Galactic halo,and creates the current sheets.The tearing instability occurs in the current sheet,and creates magnetic islands.Just after the plasmoid ejection,the anomalous resistivity sets in, and Petschek reconnection occurs.In the Galactic halo,the magnetic?eld of B~severalμG can heat the gas to T~106K.If the bipolar jet of high-velocity hot gas or cool gas at Alfv′e n velocity(~300 km s?1)is observed,it is the evidence of the magnetic reconnection model in the Galactic halo.

The authors thank R.Matsumoto in Chiba Univer-sity and K.Makishima in Tokyo University for fruit-ful discussions.The authors also gratefully acknowl-edge the constructive advice and useful comments of our referee toward improving our manuscript. The numerical computations were carried out on VPP5000at the Astronomical Data Analysis Cen-ter of the National Astronomical Observatory,Japan, which is an inter-university research institute of as-tronomy operated by Ministry of Education,Culture, Sports,Science and Technology.This work was par-tially supported by Japan Science and Technology Cooperation(ACT-JST).

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy9

REFERENCES

Abbett,W.P.,Fisher,G.H.,&Fan,Y.2000,ApJ,540,548 Appenzeller,I.1971A&A,12,313

Appenzeller,I.1974A&A,36,99

Basu,S.,Mouschovias,T.Ch.,&Paleologou,E.V.1997,ApJ, 480,L55

Beck,R.,Brandenburg,A.,Moss,D.,Shukurov,A.,&Sokolo?, D.1996,ARA&A,34,155

Birk,G.T.,Lesch,H.,&Neukirch,T.1998,MNRAS,296,165 Blitz,L.,&Shu,F.H.1980,ApJ,238,148

Bregman,J.N.1980,ApJ,236,577

Chou,W.,Tajima,T.,Matsumoto,R.,&Shibata,K.1997, PASJ,49,389

de Avillez,M.A.2000,MNRAS,315,479

Ebisawa,K.,Maeda,Y.,Kaneda,H.,&Yamauchi,S.2001, Science,293,1633

Elmegreen,B.G.1982,ApJ,253,655

Fan Y.2001,ApJ,554,L111

Foglizzo,T.,&Tagger,M.1994,A&A,287,297

Franco,J.,Kim,J.,Alfaro,E.J.,&Hong,S.S.2002,ApJ,570, 647

Furth,H.P.,Killeen,J,&Rosenbluth,M.N.1963,Phys.of Fluid,6,459

Hanawa,T.,Matsumoto,R.,&Shibata,K.1992,ApJ,393, L71

Hanasz,M.,&Lesch,H.1998,A&A,332,77

Hanasz,M.,&Lesch,H.2000,ApJ,543,235

Hanasz,M.,Otmianowska-Mazur,K.,&Lesch H.,2002, A&A386,347

Horiuchi,T.,Matsumoto,R.,Hanawa,T.,&Shibata,K.1988, PASJ,40,147

Kahn,F.D.,&Brett,L.1993,MNRAS,263,37

Kaisig,M.,Tajima,T.,Shibata,K.,Nozawa,S.,&Matsumoto, R.,1990,ApJ,358,698

Kamaya,H,Horiuchi,T.,Matsumoto,R.,Hanawa,T.,Shibata, K.,&Mineshige,S.1997,ApJ,486,307

Kerp,J.,Lesch,H.,&Mack,K.-M.1994,A&A,286,L13 Kerp,J.,Mack,K.-H.,Egger,R.,Pietz,J.,Zimmer,F.,Mebold, U.,Burton,W.B.,&Hartmann,D.1996,A&A,312,67 Kim,E.,Ryu,D.,&Jones,T.W.2001,ApJ,,557,464 Lazarian,A.&Vishniac,E.T.1999,ApJ,517,700 Magara,T.&Shibata,K.1997,ApJ,514,456

Magara,T.2001,ApJ,549,608

Masuda,S.,Kosugi,T.,Hara,H.,Tsuneta,S.,&Ogawara,Y. 1994,Nature,371,495

Matsumoto,R.,Horiuchi,T.,Shibata,K.,&Hanawa,T.1988, PASJ,40,171

Matsumoto,R.,Tajima,T.,Shibata,K.,&Kaisig,M.1993, ApJ,414,357,

Matsumoto,R.,Tajima,T.,Chou,W.,Okubo,A.,Shibata,K. 1998,ApJ,493,43

Mouschovias,T.C.,Shu,F.H.,&Woodward,P.R.1974,A&A, 33,73

Nitta,S.,Tanuma,S.,Shibata,K.,&Maezawa,K.2001,ApJ, 550,1119

Nitta,S.,Tanuma,S.,&Maezawa,K.2002,ApJ,in press (astro-ph/0208121)

Norman,C.A.,&Ikeuchi,S.1989,ApJ,345,372, Nozawa,S.,Shibata,K.,Matsumoto,R.,Sterling, A. C., Tajima,T.,Uchida,Y.,Ferrari,A.,&Rosner,R.1992,ApJS, 78,267

Odstrˇc il,D.,&Karlick′y,M.1997,A&A,326,1252

Parker,E.N.1957,J.Geophys.Res.,62,509

Parker,E.N.1966,ApJ,145,811

Parker,E.N.1971,ApJ,163,255Parker,E.N.1990,IAU Symp.,140,169

Parker,E.N.1992,ApJ,401,137

Petschek,H.E.1964,in AAS-NASA Symp.on the Physics of Solar Flares,ed.W.N.Hess(Washington DC:NASA),425 Pietz,J.,Kerp,J.,Kalberla,P.M.W.,Burton,W. B., Hartmann,D.&Mebold,U.1998,A&A,332,55

Priest,E.&Forbes,T.2000,Magnetic reconnection:MHD theory and applications,(New York:Cambridge University Press)

Raymond,J.C.1992,ApJ,384,502

Santill′a n,A.,Kim,J.,Franco,J.,Martos,M.,Hong,S.S.,& Ryu,D.2000,ApJ,545,353

Shapiro P.R.,&Benjamin,R.A.1991,PASP,103,923 Shibata,K.,Tajima,T.,Steinolfson,R.S.,&Matsumoto,R., 1989,ApJ,345,584

Shibata,K.&Matsumoto,R.1991,Nature,353,633 Shibata,K.,Nozawa,S.,&Matsumoto,R.1992,PASJ,44,265 Shibata,K.1996,Adv.Space Res.,17,9

Shibata,K.,&Tanuma,S.2001,Earth,Planet and Space,53, 473

Shu,F.1974,A&A,33,55

Shull,J.M.1996,Nature,380,668

Slavin,J.D.,McKee,C.F.,&Hollenbach,D.J.2000ApJ, 541,218

Sofue,Y.,&Handa,T.1984,Nature,310,568

Sofue,Y.,Klein,U.,Beck,R.,&Wielebinski,R.1986,ARA&A, 24.456

Sofue,Y.,&Tosa,M.1974,A&A,36,237

Spitzer,L.1978,Physical Processes in the Interstellar Medium (New York:John Wiley&Sons),ch6

Steinacker,A.&Shchekinov,Y.A.2001,MNRAS,325,208 Sturrock,P.A.,&Stern,R.1980,ApJ,238,98

Sweet,P.A.1958,in Electromagnetic Phenomena in Cosmical Physics,IAU Symp.6,ed.B.Lehnert(Boston:Kluwer),123 Tanuma,S.,Yokoyama,T.,Kudoh,T.,Matsumoto,R., Shibata,K.,&Makishima,K.1999a,PASJ,51,161 Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.1999b, in Numerical Astrophysics,ed.S.M.Miyama,K.Tomisaka, &T.Hanawa(New York:Kluwer),119

Tanuma,S.2000,Ph.D.thesis,Univ.Tokyo

Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001a, ApJ,551,312

Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001b, J.Korean Astron.Soc.,34,309

Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2002, COSPAR Corolquia Ser.13,ed.P.C.H.Martens&D. Cau?man,in press

Tosa,M.,&Sofue,Y.1974,A&A,1974,32,461

Tsuneta,S.1996,ApJ,456,L63

Ugai,M.1986,Phys.of Fluid,29,3659

Ugai,M.1992,Phys.of Fluid,4,2953

Ugai,M.&Shimizu,T.1996,Phys.of Plasmas,3,853 Ugai,M.&Kondoh,K.2001,Phys.of Plasmas,8,1545

Vall′e e,J.P.1997,Fund.Cosmic Phys.,19,1

Vrba,F.J.1977,ApJ,82,198

Yokoyama,T.,&Shibata,K.1994,ApJ,436,L97 Yokoyama,T.,&Shibata,K.1996,PASJ,48,353 Yokoyama,T.,&Shibata,K.1997,ApJ,474,L61 Yokoyama,T.,Akita,K.,Morimoto,T.,Inoue,K.,&Newmark, J.2001,ApJ,546,L69

Zimmer,F.,Lesch,H.,&Birk,G.T.1997,A&A,320,746 Ziegler,U.2001,A&A,367,170

10Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001,Submitted to Astrophysical Journal

Table1

Parameters.The typical model is named A1.The unit of length is~100pc.

modelβ0a z h b z c c B u d B l e△x f×△z g N x h×N z i L x j×L z kηl

a The ratio of the gas to magnetic pressure

b The position of magnetic?eld in the Galacti

c halo

c The position of hot gas in the Galactic halo(z c=z h+1)

d Th

e magnetic?eld in the upper corona(↑↑:parallel,↑↓:anti-parallel)

e The magnetic?eld in the lower corona(↑↑:parallel,↑↓:anti-parallel)

f The grid size in x-axis(uniform)

g Minimum grid size in z-axis

h The number of grids in x-axis

i The number of grids in z-axis

j The simulation region size in x-axis

k The simulation region size in z-axis

l The resistivity model

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy11

Table2

V ariables at the initial condition for the typical model(model A1).

variable cool dense disk hot rare?ed halo

12Tanuma,S.,Yokoyama,T.,Kudoh,T.,&Shibata,K.2001,Submitted to Astrophysical Journal

Table3

The route to the fast reconnection.Parker instability trigger model is examined in this paper.In this case,resistivity model determines the route.The supernova shock trigger

model is examined in Tanuma et al.(2001a).

Parker instability trigger Parker instability trigger supernova shock trigger evolution down?ow along rising loop down?ow along rising loop tearing instability

sheet thinning sheet thinning sheet thinning

↓Sweet-Parker sheet Sweet-Parker sheet

tearing instability–secondary tearing

further sheet thinning–further sheet thinning

anomalous resistivity–anomalous resistivity

Petschek reconnection–Petschek reconnection

Magnetic Reconnection Triggered by the Parker Instability in the Galaxy13 Fig. 1.—Schematic illustration of our numerical simulations.(a)As the initial condition,we assume the horizontal,parallel magnetic?eld and cool,dense gas in the Galactic disk,and the nearly uniform magnetic?eld which is anti-parallel to the disk ?eld and hot,rare?ed gas in the Galactic halo.The anti-parallel?eld is created,for example,by Coliori’s force.(b)Parker instability is initiated by the random perturbations in the Galactic disk.The magnetic?eld in the Galactic disk bends across the equatorial plane.(c)The in?ating magnetic loop collides with the anti-parallel magnetic?eld in the Galactic halo.The magnetic reconnection occurs.(d)The heated gas is con?ned by the magnetic?eld in the Galactic halo for a long time.

Fig. 2.—The temperature(T)in the unit of T0~104K,magnetic?eld lines,and velocity vectors,for a typical model (model A1),The units of length,velocity,and time are1kpc,10km s?1,107yr,respectively.(a)Parker instability occurs in the Galactic disk.The magnetic?eld of the Galactic disk in?ates to the Galactic halo.(b)The in?ating magnetic loop collides with anti-parallel magnetic?eld in the Galactic halo.The current sheets are created.(c)The magnetic reconnection occurs at t~62, and heats the gas to T max~125.(d)The heated gas is con?ned by the magnetic?eld in the Galactic halo.

Fig.3.—Same with Figure2,but the density(ρ)in the unit of10?25g.(b)The gas,which is initially between the Galactic disk and halo,are raised by the in?ating magnetic loops.(d)The large high-density clouds are created at the valleys of magnetic loops,and will become star forming regions.

Fig.4.—Same with Figure2,but the current density(J).(b)Eight magnetic loops collide with anti-parallel magnetic?eld in the Galactic halo,so that the current density increases there.(d)The magnetic?eld con?nes the high-current-density regions at the valleys of magnetic loops near the Galactic plane.

Fig. 5.—Time variations of(a)drift velocity(v d=|J|/ρ)and(b)velocity(|v x|),for model A1(solid lines;typical model, i.e.,anti-parallel-magnetic-?eld model),model B(dotted lines;the no-magnetic-?eld model),model C(dashed lines;the parallel-magnetic-?eld model),and model D(dashed and dotted lines;the anti-parallel magnetic?eld in a halo and parallel magnetic?eld in the other halo).(a)In models A1and D,the drift velocity increases steeply above the threshold(v c=400)of anomalous resistivity at t~62?65.(b)In all models,the velocity increases gradually by Parker instability to~2.5?3(t~40?62).In models A1and D,by the magnetic reconnection(t>62),the velocity increases steeply to~8?13,which is equal to the local Alfv′e n velocity in the Galactic halo.

Fig.6.—Time variations of the various energies.(a)The gravitational energy is released by Parker instability in its nonlinear phase(t~40?62).The magnetic energy is released mainly by the magnetic reconnection(t>62).(b)The magnetic energy release rate increases to?dE mag/dt~75by the magnetic reconnection(t~70).

Fig.7.—The pro?le of the variables in x=?13.8at t=70.The magnetic reconnection occurs around(x,z)~(?26,7.8). The fast reconnection such as Petschek model is accompanied by two slow shock regions along the reconnection jets.The pro?le of current density(|J|)has two peaks at two slow shock regions.

Fig.8.—Same with Figure7,but z=6.5.The gas is accelerated,by magnetic tension force,to the local Alfv′e n velocity in the Galactic halo,and collides with the ambient gas.The fast shock region is created around x~?10.

Fig.9.—The dependence of the results onβ0,i.e.,the magnetic?eld strength[B x=(8πp g/β0)1/2](models A2,F1-0,G3, and J1-8).The results of the far-magnetic-?eld models(models A2and F1-9)and the near-magnetic-?eld models(models G3and J1-8)are shown by?(with the dashed lines)and△(with the solid lines),respectively.(a)The maximum magnetic energy release rate(?dE mag/dt).It is determined by Poynting?ux(∝β?3/2

;the dashed line).(b)The time when the maximum magnetic

energy release rate is attained.The time scales of these phenomena depend on Alfv′e n time(∝v?1

A ∝β1/2

;the dashed lines).(c)

The maximum temperature(T max)of heated gas.It is determined by the released magnetic energy(∝1+1/β0;the dashed line).

(d)Maximum v x,which is determined by Alfv′e n velocity(v A∝β?1/2

;the dashed line).

Fig.10.—Time variations of the various energies,for the near-magnetic-?eld models(models G3,K,and L).(a)In model G3 (the anti-parallel-magnetic-?eld model),the magnetic?eld dissipates by the tearing instability or magnetic dissipation(t~0?40). The wavelength of the magnetic loops is shorter than that of the typical model.(b)In model K(the no-magnetic-?eld model), the magnetic dissipation occurs in an early phase.(c)In model L(the parallel-magnetic-?eld model),the magnetic?eld does not dissipate in an early phase,because the parallel?eld of the Galactic halo suppresses the dissipation.

Fig.11.—The time variation of the reconnection rate(η|J|),in the anomalous resistivity model(model A1)and the uniform resistivity model(η=0.05[the dashed line;model M]andη=0.10[the dotted line;model N]).Petschek reconnection occurs in the anomalous resistivity model.On the other hand,Sweet-Parker reconnection occurs,in the uniform resistivity model.

Fig.12.—The current density,magnetic?eld lines,and velocity vectors,for(a)the anomalous resistivity model(model A1) and(b)the uniform resistivity model(η=0.05;model M]).(a)Petschek reconnection occurs in the anomalous resistivity model. The small dissipation region and slow shock regions are the characteristics of Petschek reconnection.(b)In the uniform resistivity model,the long current sheet forms because Sweet-Parker reconnection occurs.

This figure "f1.jpg" is available in "jpg" format from: https://www.360docs.net/doc/c77774101.html,/ps/astro-ph/0209008v1

This figure "f2.jpg" is available in "jpg" format from: https://www.360docs.net/doc/c77774101.html,/ps/astro-ph/0209008v1

This figure "f3.jpg" is available in "jpg" format from: https://www.360docs.net/doc/c77774101.html,/ps/astro-ph/0209008v1

This figure "f4.jpg" is available in "jpg" format from: https://www.360docs.net/doc/c77774101.html,/ps/astro-ph/0209008v1

This figure "f5.jpg" is available in "jpg" format from: https://www.360docs.net/doc/c77774101.html,/ps/astro-ph/0209008v1

This figure "f6.jpg" is available in "jpg" format from: https://www.360docs.net/doc/c77774101.html,/ps/astro-ph/0209008v1

This figure "f7.jpg" is available in "jpg" format from: https://www.360docs.net/doc/c77774101.html,/ps/astro-ph/0209008v1

旧版《标准日本语》初级下 单词

《标准日本语》初级下册 第26课 词汇Ⅰ 空港 (くうこう) (0) [名] 机场 両替する (りょうがえする) (0) [动3] 换钱,兑换 忘れる (わすれる) (0) [动2] 忘记 出迎える (でむかえる) (0) [动2] 迎接 全部 (ぜんぶ) (1) [名] 一共 出迎え (でむかえ) (0) [名] 来迎接 見つける (みつける) (0) [动2] 找,找到 歓迎 (かんげい) (0) [名] 欢迎 訪日 (ほうにち) (0) [名] 访日,访问日本 出口 (でぐち) (1) [名] 出口 背 (せ) (1) [名] 个子 ほか (0) [名] 以外 紹介する (しょうかいする) (0) [动3] 介绍 よろしくお願いします (よろしくおねがいします) (0 + 6) [寒暄] 请多关照楽しみ (たのしみ) (4) [名] 盼望,期待,乐于 言葉 (ことば) (3) [名] 语言,词,话语,词语 覚える (おぼえる) (3) [动2] 记住,学会 来日 (らいにち) (0) [名] 来日,来到日本 目的 (もくてき) (0) [名] 目的 展示場 (てんじじょう) (0) [名] 展览会,展览现场 自動車 (じどうしゃ) (2) [名] 汽车 見学 (けんがく) (0) [名] 参观 ホテル (1) [名] 饭店,旅馆 だいじょうぶだ (3) [形动] 不要紧,没关系 李 (り) (1) [专] 李 ~団 (だん) ~目 (め) ~場 (じょう) 词汇Ⅱ おもしろさ (3) [名] 趣味,乐趣 おもしろみ (0) [名] 趣味,妙趣 苦しい (くるしい) (3) [形] 苦 苦しさ (くるしさ) (3) [名] 痛苦 苦しみ (くるしみ) (0) [名] 痛苦 甘さ (あまさ) (0) [名] 甜味,甜头 甘み (あまみ) (0) [名] 甜味 片づける (かたづける) (4) [动2] 收拾,整理 酒 (さけ) (0) [名] 酒 結婚する (けっこんする) (0) [动3] 结婚 火事 (かじ) (1) [名] 着火,火灾 ストーブ (2) [名] 炉子 消す (けす) (0) [动1] 熄,灭

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

(完整版)初级语法总结(标准日本语初级上下册)

1.名[场所]名[物/人]力*笳◎去歹/「仮歹 名[物/人]总名[场所]笳◎去歹/「仮歹 意思:“ ~有~ ”“~在~”,此语法句型重点在于助词“心‘ 例:部屋忙机力?笳◎去歹。 机总部屋 2.疑问词+哲+动(否定) 意思:表示全面否定 例:教室忙疋沁o 3?“壁①上”意思是墙壁上方的天棚,“壁才是指墙壁上 例:壁 4. ( 1)名[时间]动 表示动作发生的时间时,要在具体的时间词语后面加上助词“V”,这个一个时间点 例:森总心比7時V 起吉去To 注意:只有在包含具体数字的时间时后续助词“V”,比如“ 3月14 日V, 2008年V”;星期后面可加V,比如“月曜日V” ,也可以不加V;但是“今年、今、昨日、明日、来年、去年”等词后面不能加V。 此外:表示一定时间内进行若干次动作时,使用句型“名[时间]V 名[次数]+动” 例:李1週間V2回7°-^^行吉去T。 (2)名[时间段]动:说明动作、状态的持续时间,不能加“ V” 例:李毎日7時間働^^L^o (PS: “V”的更多用法总结请看初级上第15课) ( 3)名V 【用途】【基准】 表示用途时,前接说明用途的名词,后面一般是使"去T等动词 表示基准时,前名词是基准,后面一般是表示评价的形容词。 例:--乙①写真总何V使"去T力、。「用途」 --申請V使"去T。「用途」 乙①本总大人V易L^^ToL力'L、子供V总難L^^To 「基准」 X —X—力*近乙買⑴物V便利^To 「基准」 (4)动(基本形) OV 【用途】【基准】:使用与上述( 3)一样 例:乙O写真求一卜总申請T^OV 使"去T。 ^OV>^3>^ 買“物T^OV 便利^To (5)小句1 (简体形)OV,小句2:名/形動+肚+OV 表示在“小句1 ”的情况下发生“小句2”的情况不符合常识常理,翻译为“尽管…还是…,虽

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

新版标准日本语初级下册语法总结

▲ cn^明日会議疋使刁資料(这是明天会议要用的资料) ▲b^L^明日乗召飛行機总中国航空^To (我明天乘坐的飞机是中国航空公司的) ▲中国買二尢CD总友達忙貸L^L^o (我把在中国买的CD借给朋友了)操作力?簡単欲LUPT。(我想要操作简单的个人电脑) ▲自転車忙2人疋乗危肚S^To (骑自行车带人很危险) ▲李絵总力y①力*好吉^T相。(小李你喜欢画画啊) ▲手紙总出TO^忘n去L尢。(我忘了寄信) ▲明日①朝总大雨(明天早晨会下大雨吧) ▲森今日会社总休住力、哲Ln去乜人。(森先生今天也许不来公司上班了) ▲子供O時,大吉肚地震力?笳◎去L尢。(我小的时候,发生过大地震。) ▲李亍"丄总見肚力食事^LT^^To (小李边看电视边吃饭) ▲李^人,明日八一亍彳一忙行(小李,你明天参加联欢会吧。) 森^人、昨日駅前O喫茶店森先生,昨天你在车站附近的咖啡店来着吧? 2.映画总見召時後30席忙座◎去To 看电影时,(我)经常坐在最后 的座位。 ▲馬尢LQ地図^

电源磁芯尺寸功率参数.doc

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC 功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

新标准日本语初级下册25-48课单词中文对照默写版

1 25 [名]数学 [名]专门 [名]女演员 [名]营业科 [名]市内,市街,繁华街道 [名]道路,马路 [名]交通流量,通行量 [名]机场 [名]高速公路 [名]零件制造厂 [名]电梯 [名]图画书,连环画 [名]大自然 [名]工资 [名]今天晚上 [名]伤 [动1]住,过夜,住宿 [动1]连接,系 [动1]印,记下 [动2]出生,诞生 [动3]倒闭,破产 [动3]堵车,停滞 [动3]确认 [形2]充裕,丰富 [连体]大的 [连体]小的 [副]并不 [专]戴 [专]周 [专]唐 [专]中国航空 [专]天安饭店 [专]三环路 _____________________________________________ 这一带,这附近 26 [名]大雨 [名]樱花 [名]风 [名]月亮 [名]表 [名]握手 [名]习惯 [名]鞠躬 [名]寒暄 [名]手 [名]顾客,客人 [名]一般,普通 [名]这回,下面,下回 [名]超市 [名]费用 [名]会费 [名]降价出售 [名]信用卡 [名]彩色铅笔 [名]丰收 [名]关系,友情,友谊 [名]忘记的东西,遗忘的物品 [动1]防御,防备,防守 [动1]走访;转;绕弯 [动1]跑,奔跑 [动1]吹 [动2]举,举起 [动2]足,够 [动3]素描,写生 [动3]发言 [动3]得冠军 [动3]及格,合格 [副]也许 [动3]约定 [副]不知不觉地,无意中 [副]就要,立刻,马上 [副]大部分,几乎 [连]因此 [专]铃木 [专]杨 [专]加藤 [专]叶子 [专]阳光百货商店 [专]北京猛虎队<棒球队名称> _________________________________________ 寒暄拜访 不行,不好,不可以 社 27 [名]经济 [名]国际关系学 [名]许多,众多 [名]高中

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

新版中日交流标准日本语初级上下册

新版中日交流标准日本语初级上下册单词测试

初级上册 第1课 〔名〕中国人〔名〕日本人〔名〕韩国人〔名〕美国人〔名〕法国人〔名〕(大)学生 〔名〕老师〔名〕留学生〔名〕教授〔名〕职员〔名〕公司职员 〔名〕店员〔名〕进修生〔名〕企业〔名〕大学(我)父亲〔名〕科长〔名〕总经理,社长 〔名〕迎接〔名〕那个人〔代〕我〔代〕你〔副〕非常,很 〔叹〕哎,是(应答);是的〔叹〕不,不是 〔叹〕哎,哎 呀 〔专〕李 〔专〕王 〔专〕张 〔专〕森 〔专〕林 〔专〕小野 〔专〕吉田 〔专〕田中 〔专〕中村 〔专〕太郎 〔专〕金 〔专〕迪蓬 〔专〕史密斯 〔专〕约翰逊 〔专〕中国 〔专〕东京大 学 〔专〕北京大 学 〔专〕日中商 社 --------------- ------ 你好 对不起,请问 请 请多关照 初次见面 我才要(请您 ~) 是(这样) 不是 不知道 实在对不起 ~さん∕~ち ゅん∕~君く ん 第2课 〔名〕书 〔名〕包,公 文包 〔名〕笔记本, 本子 〔名〕铅笔 〔名〕伞 〔名〕鞋 〔名〕报纸 〔名〕杂志 〔名〕词典 〔名〕照相机 〔名〕电视机 〔名〕个人电 脑 〔名〕收音机 〔名〕电话 〔名〕桌子, 书桌 〔名〕椅子 〔名〕钥匙, 锁 新版中日交流标准日本语初级上、下册单词汇总

〔名〕钟,表〔名〕记事本〔名〕照片〔名〕车〔名〕自行车〔名〕礼物〔名〕特产,名产 〔名〕丝绸〔名〕手绢〔名〕公司〔名〕(敬称)位,人 〔名〕人〔名〕家人,家属 〔名〕(我)母亲 〔名〕母亲〔名〕日语〔名〕汉语,中文 〔代〕这,这个 〔代〕那,那个 〔代〕那,那个 〔疑〕哪个〔疑〕什么〔疑〕谁〔疑〕哪位〔连体〕这,这个〔连体〕那, 那个 〔连体〕那, 那个 〔连体〕哪个 〔叹〕啊 〔叹〕哇 〔叹〕(应答) 嗯,是 〔专〕长岛 〔专〕日本 〔专〕汕头 〔专〕伦敦 --------------- ------ 谢谢 多大 何なん~∕~ 歳さい 第3课 〔名〕百货商 店 〔名〕食堂 〔名〕邮局 〔名〕银行 〔名〕图书馆 〔名〕(高级) 公寓 〔名〕宾馆 〔名〕便利店 〔名〕咖啡馆 〔名〕医院 〔名〕书店 〔名〕餐馆, 西餐馆 〔名〕大楼, 大厦 〔名〕大楼, 建筑物 〔名〕柜台, 出售处 〔名〕厕所, 盥洗室 〔名〕入口 〔名〕事务所, 办事处 〔名〕接待处 〔名〕降价处 理大卖场 〔名〕自动扶 梯 〔名〕衣服 〔名〕风衣, 大衣 〔名〕数码相 机 〔名〕国,国 家 〔名〕地图 〔名〕旁边 〔名〕附近,

(完整版)《中日交流标准日本语》初级下册_所有课文译文1

《中日交流标准日本语》初级下册所有课文译文 第26课学日语很愉快 (1) 小李说:" 学日语很愉快。" 小李日语说得好。 小李忘记在飞机场换钱了。 (2) 今天,田中在机场迎接中国来的代表团。代表团一共5人。机场里人多而且拥挤。抵达机场的人要马上找到来迎接的人很不容易。田中拿着写有"欢迎中国访日代表团"的大纸,在出口等候。 一位高个子的男人说道:"您是田中先生吗回?我是代表团的,姓李。"小李日语说得好。他用汉语向其他4人介绍了田中。小李用日语对田中说:"请多关照。我们期望学到日本的"先进科学技术." (3) 田中:您日语讲得不错啊,来日本几次了? 李:第一次,是听广播学的日语,学会外语很愉快。 田中:是吗?这次来日本的目的是参观机器人展览会和汽车制造厂吧。 李:对。我们期望学到先进的科学技术。 田中:从明天开始就忙了。今天在饭店好好休息吧。 李:在机场忘了兑换日元,不要紧吧? 田中:不要紧,在饭店也能换。

第27课日本人吃饭时用筷子 (1) 日本人吃饭时用筷子。进屋时脱鞋。 田中说:"边吃边谈好不好,大家肚子都饿了吧。" (2) 今晚,田中领小李一行人去饭店附近的一家日本餐馆。小李还一次也没吃过日本饭菜。 田中说:"这是家有名的餐馆,顾客总是很多。今天大概也很拥挤吧"。 餐馆的服务员一面上菜,一面逐个说明菜的名称和吃法。小李他们边喝啤酒边吃饭。 日本人吃饭前要说:"那我吃了",吃完后说:"我吃好了"。小李他们也按照日本的习惯那样说了。 (3) 田中:饭菜怎么样? 李:很好吃。代表团的各位大概都很满意的。 田中:那太好了。 李:而且餐具非常雅致。 田中:是的,日本饭菜很讲究餐具和装盘。有人说:"是用眼睛欣赏的饭菜。" 李:哎,日本人吃饭时不怎么说话啊。田中:是的,中国的情况如何? 李:平时安安静静地吃。不过,喜庆的时候很热闹。吃饭时大家有说有笑。

标准日本语旧版 初级上册课文

第一課私は田中です 私は田中です。 田中さんは日本人です。 田中さんは会社員です。 私は王です。 王さんは日本人ではありません。 王さんは中国人です。 王さんは会社員ではありません。 王さんは学生です。 王さんは東京大学の留学生です。 田中:初めまして。 王:初めまして。わたしは王です。 田中:わはしは田中です。 王:田中さんは会社員です。 田中:はい,そうです。会社員です。旅行社の社員です。 あなたは会社員ですか? 王:いいえ、そうではありません。

第二課これは本です (1) これは本です。 これは雑誌ではありません。 それは王さんの万年筆です。 それは私の万年筆ではありませうん。 あれは中国語の辞書です。 あれは日本語の辞書ではありません。 (2) この新聞は日本の新聞ですか。 はい、それは日本の新聞です。 その本は科学の本ですか。 いいえ、これは科学の本はありません。歴史の本です。あの人はだれでうか。 あの人は私の友達です。 あの人は張さんです。 (3) 田中:こんにちは。 王:こんにちは。 田中:それは何ですか。 王:これは辞書です。 田中:それは英語の辞書ですか

王:いいえ、英語の辞書ではありません。これはフランス語の辞書です。 田中:その辞書は王さんのですか。 王:いいえ、そうではありません。友達のです。これは張さんの辞書です。 第三課ここは学校です (1) ここは学校です。 ここは王さんの学校です。 そこは教室です。 そこは日本語の教室です。 あそこは体育館です。 あそこは図書館です。 (2) 郵便局はここです。 映画館はそこです。 駅はあそこです。 デパートはどこですか。 デパートはあそこです。 デパートは駅の前です。

标准日本语初级总结下册

1、動詞ます形去ます+ ①方~的方法この漢字の読み方を教えてください。「2」 ②やすい易于~ 秋は天気が変わりやすいです。「2」 ③にくい难于~ 法律の文章はわかりにくいです。「2」 ④すぎます做··过头昨日食べ過ぎて、お腹が痛くなりました。「9」 ⑤出します·出来/·起来 テーブルにぶつけたので、拓哉は泣き出しました。「13」 ⑥始めます开始做··田中さんはスポーツジムに通い始めました。「16」 ⑦続けます坚持做··田中さんは学生のときから日記を書き続けています。「16」 ⑧終わります做完·· 張さんはやっと新製品のマニュアルを書き終わりました。「16」 2、動詞て形+ ①てもいい表示许可,可以··明日の試験は辞書を使ってもいいです。「3」てもかまいません表示许可,·也没关系 わたしのパソコンでゲームをしてもかまいません。「3」②てはいけません 不准··不行··不许テスト中は、話してはいけません。「3」③ても/でも 名词+でも表示同类相中列举出的一项 二次会はカラオケでも行きませんか。「2」 動詞て形+も い形形容詞去い变くて+も な形形容詞詞干でも 名詞でも 表示“即使··也··” 雨が降っても、試合は中止しません。「8」疑问词+でも 无论· 席はどこでもいいです。「7」④てみます。 试着做·· 上海に行ったら、リニアモーターカーに乗ってみます。「9」⑤ておきます 事先做某事或暂且防止不管 友達が来るので、部屋を掃除しておきます。「9」⑥てきます 某动作由远及近会議のとき、虫が会議室に飛んできました。「12」做完某事再回来今からさっそく10箱を買ってきます。「12」某状态从过去发展到现在 最近、中国へ留学に来る外国人留学生がだんだん増えてきました。「12」⑦ていきます 某动作由近及远子供が走っていきました。「12」做完某事再离开毎朝、わたしは駅でサンドイッチを買っていきます。「12」

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.360docs.net/doc/c77774101.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.360docs.net/doc/c77774101.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.360docs.net/doc/c77774101.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.360docs.net/doc/c77774101.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.360docs.net/doc/c77774101.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.360docs.net/doc/c77774101.html,

【默写版】新版标准日本语单词表

第1课〔名〕中国人 〔名〕日本人 〔名〕韩国人 〔名〕美国人 〔名〕法国人 〔名〕(大)学生 〔名〕老师 〔名〕留学生 〔名〕教授 〔名〕职员 〔名〕公司职员 〔名〕店员 〔名〕进修生 〔名〕企业 〔名〕大学 (我)父亲 〔名〕科长 〔名〕总经理,社长 〔名〕迎接 〔名〕那个人 〔代〕我 〔代〕你 〔副〕非常,很 〔叹〕哎,是(应答);是的〔叹〕不,不是 〔叹〕哎,哎呀〔专〕王 〔专〕张 〔专〕森 〔专〕林 〔专〕小野 〔专〕吉田 〔专〕田中 〔专〕中村 〔专〕太郎 〔专〕金 〔专〕迪蓬 〔专〕史密斯 〔专〕约翰逊 〔专〕中国 〔专〕东京大学 〔专〕北京大学 〔专〕 JC策划公司 〔专〕北京旅行社 〔专〕日中商社 _____________________________________ 你好 对不起,请问 请 请多关照 初次见面 (请您~) (这样)

不知道 实在对不起 ~さん∕~ちゃん∕~君くん 第2课〔名〕书 〔名〕包,公文包 〔名〕笔记本,本子 〔名〕铅笔 〔名〕伞 〔名〕鞋 〔名〕报纸 〔名〕杂志 〔名〕词典 〔名〕照相机 〔名〕电视机 〔名〕个人电脑 〔名〕收音机 〔名〕电话 〔名〕桌子,书桌 〔名〕椅子 〔名〕钥匙,锁 〔名〕钟,表 〔名〕记事本 〔名〕照片 〔名〕车 〔名〕自行车〔名〕特产,名产〔名〕丝绸 〔名〕手绢 〔名〕公司 〔名〕(敬称)位,人〔名〕人 〔名〕家人,家属〔名〕(我)母亲〔名〕母亲 〔名〕日语 〔名〕汉语,中文〔代〕这,这个〔代〕那,那个〔代〕那,那个〔疑〕哪个 〔疑〕什么 〔疑〕谁 〔疑〕哪位 〔连体〕这,这个〔连体〕那,那个〔连体〕那,那个〔连体〕哪个 〔叹〕啊 〔叹〕哇 〔叹〕(应答)嗯,是〔专〕长岛 〔专〕日本

标准日本语初级单词(下册)

标准日本语初级单词(下册) 第25课 すうがく(数学)[名] 数学 せんもん(専門)[名] 专门 じょゆう(女優)[名] 女演员 えいぎょうか(営業課)[名]营业科 しがい(市街)[名]市内,市街,繁华街道 どうろ(道路)[名]道路,马路 こうつうりょう(交通量)[名]交通流量,通行量くうこう(空港)[名]机场 こうそくどうろ(高速道路)[名]高速公路 ぶひんこうじょう(部品工場)[名]零件制造厂エレベーター[名]电梯 えほん(絵本)[名]图画书,连环画 しぜん(自然)[名]大自然 きゅうりょう(給料)[名]工资 こんや(今夜)[名]今天晚上 けが[名]伤 とまります(泊まります)[动1]住,过夜,住宿むすびます(結びます) [动1]连接,系 とります(取ります)[动1]印,记下 うまれます(生まれます)[动2]出生,诞生

とうさんします(倒産~)[动3]倒闭,破产 じゅうたいします(渋滞~)[动3]堵车,停滞チエックします[动3]确认 ゆたか(豊か)[形2]充裕,丰富 おおきな(大きな)[连体]大的 ちいさな(小さな)[连体]小的 べつに(別に)[副]并不 たい(戴)[专]戴 しゅう(周)[专]周 とう(唐)[专]唐 ちゅうごくこうくう(中国航空)[专]中国航空てんあんはんてん(天安飯店)[专]天安饭店さんかんろ(三環路)[专]三环路 このあたり这一带,这附近 第26课 おおあめ(大雨)[名]大雨 さくら(桜)[名]樱花 かぜ(風)[名]风 つき(月)[名]月亮 ひょう(表)[名]表 あくしゅ(握手)[名]握手 しゅうかん(習慣)[名]习惯 おじぎ(お辞儀)[名]鞠躬

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

新版标准日本语

新版标准日本语 《新版中日交流标准日本语初级上、下》(以下简称"新版")于2005年4月出版,是1988年出版的《中日交流标准日本语初级上、下》(以下简称"旧版")的修订本。旧版自发行以来受到了广大读者的喜爱,发行量已逾500万套。为了使这套教材能够充分地体现日语教育以及社会、文化等方面的发展、变化,人民教育出版社与日本光村图书出版株式会社经过3年的努力,策划、编写了这套"新版",此次推出的是初级上、下。 1.李りさんは中国人ちゅうごくじんです。 2.森もりさんは学生がくせいではありません。 3.林はやしさんは日本人にほんじんですか。 4.李りさんはJCジェーシー企画きかくの社員しゃいんです。解析 1.李りさんは中国人ちゅうごくじんです。【名词】は【名词】です。は提示主题,做助词、读作わ。です前为谓语。….是…..。小李是中国人。 2.森もりさんは学生がくせいではありません。【名词】は【名词】ではありません。は同1 。ではありません是です的否定。..不是..。森不是学生。 3.林はやしさんは日本人にほんじんですか。~ですか。~か表示疑问,读作がga 。日语中完整疑问句不用“?”而是用“。”,以“か”表示疑问。は同1 。….吗?小林是日本人吗?3-2疑问句的应答。肯定回复。はい、そうです。(そうです可省略)否定回复。いいえ、ちがいます。(ちがいます可省略)不知道:分かりません。 4.李りさんはJC

ジェーシー企画きかくの社員しゃいんです。は同1(此后不再赘述)【名词】の【名词】表从属,后面的名词是从属于前面机构、国家或者属性的。…的…。小李是JC策划的员工。A甲:わたしは李りです。小野おのさんですか乙:はい、そうです。小野おのです。 B 甲:森もりさんは学生がくせいですか乙:いいえ、学生がくせいではありません。会社員かいしゃいんです。 C 甲:吉田よしださんですか。乙:いいえ、ちがいます。森もりです。 D 甲:李りさんはJCジェーシー企画きかくの社員しゃいんですか。乙:はい、そうです。解析:ABCD四组练习是上述几个基本句子的拓展。重复内容就不赘述了。Aわたしは李りです。小野おのさんですかはい、そうです。小野おのです。【わたし】第一人称,【あなた】第二人称,【あの人】第三人称小野おのさんですか这里省略了主语“あなた”,在日语中可以通过上下文了解到主语,或者出现过一次的内容,为了避免句子累赘,往往会被省略。另外日语中的“あなた”有亲爱的意思,还有直接用“あなた”来称呼对方有时不太礼貌,所以一般不怎么使用这个“あなた”【你】来称呼第二人称,可以用【姓+さん】来表示。在职场也可以用职位来称呼别人。比如課長かちょう、社長しゃちょう。在日语中称呼别人无论男女都用さん,而且只能用于别人名字后面表礼貌,不可用于自己名字后面,所以出现了はい、そうです。小野おのです。(称呼小孩子可以在名字后面+ちゃん。与自己年龄相当、或比自己年轻

标准日本语初级课文词汇(上下册)

第1课 ちゅうごくじん(中国人)〔名〕中国人 にほんじん(日本人)〔名〕日本人 かんこくじん(韓国人)〔名〕韩国人 アメリカじん(~人)〔名〕美国人 フランスじん(~人)〔名〕法国人 がくせい(学生)〔名〕(大)学生 せんせい(先生)〔名〕老师 りゅうがくせい(留学生)〔名〕留学生 きょうじゅ(教授)〔名〕教授 しゃいん(社員)〔名〕职员 かいしゃいん(会社員)〔名〕公司职员 てんいん(店員)〔名〕店员 けんしゅうせい(研修生)〔名〕进修生 きぎょう(企業)〔名〕企业 だいがく(大学)〔名〕大学 ちち(父)〔名〕(我)父亲 かちょう(課長)〔名〕科长 しゃちょう(社長)〔名〕总经理,社长 でむかえ(出迎え)〔名〕迎接 あのひと(あの人)〔名〕那个人 をたし〔代〕我 あなた〔代〕你 どうも〔副〕非常,很 はい〔叹〕哎,是(应答);是的 いいえ〔叹〕不,不是 あっ〔叹〕哎,哎呀 り(李)〔专〕李 おう(王)〔专〕王 ちょう(張)〔专〕张 もり(森)〔专〕森 はやし(林)〔专〕林 おの(小野)〔专〕小野 よしだ(吉田)〔专〕吉田 たなか(田中)〔专〕田中 なかむら(中村)〔专〕中村 たろう(太郎)〔专〕太郎 キム(金)〔专〕金 デュポン〔专〕迪蓬 スミス〔专〕史密斯 ジョンソン〔专〕约翰逊 ちゅうごく(中国)〔专〕中国 とうきょうだいがく(東京大学)〔专〕东京大学ペキンだいがく(北京大学)〔专〕北京大学 ジェーシーきかく(JC企画)〔专〕JC策划公司 ペキンりょこうしゃ(北京旅行社) 〔专〕北京旅行社 にっちゅうしょうじ(日中商事)〔专〕日中商社-------------------------------------------- こんにちは你好 すみません对不起,请问 どうぞ请 よろしくおねがいします(~お願いします) 请多关照はじめまして初次见面 こちらこそ我才要(请您~) そうてす是(这样) ちがいます不是 わかりません(分かりません)不知道 どうもすみません实在对不起 ~さん∕~ちゅん∕~君くん 第2课 ほん(本)〔名〕书 かばん〔名〕包,公文包 ノート〔名〕笔记本,本子 えんぴつ(鉛筆)〔名〕铅笔 かさ(傘)〔名〕伞 くつ(靴)〔名〕鞋 しんぶん(新聞)〔名〕报纸 ざっし(雑誌)〔名〕杂志 じしょ(辞書)〔名〕词典 カメラ〔名〕照相机 テレビ〔名〕电视机 パソコン〔名〕个人电脑 ラジオ〔名〕收音机 でんわ(電話)〔名〕电话 つくえ(机)〔名〕桌子,书桌 いす〔名〕椅子 かぎ〔名〕钥匙,锁 とけい(時計)〔名〕钟,表 てちょう(手帳)〔名〕记事本 しゃしん(写真)〔名〕照片 くるま(車)〔名〕车 じてんしゃ(自転車)〔名〕自行车 おみやげ(お土産)〔名〕礼物 めいさんひん(名産品)〔名〕特产,名产シルク〔名〕丝绸 ハンカチ〔名〕手绢 かいしゃ(会社)〔名〕公司 かた(方)〔名〕(敬称)位,人 ひと(人)〔名〕人 かぞく(家族)〔名〕家人,家属 はは(母)〔名〕(我)母亲 おかあさん(お母さん)〔名〕母亲 にほんご(日本語)〔名〕日语 ちゅうごくご(中国語)〔名〕汉语,中文これ〔代〕这,这个 それ〔代〕那,那个 あれ〔代〕那,那个 どれ〔疑〕哪个 なん(何)〔疑〕什么 だれ〔疑〕谁 どなた〔疑〕哪位 この〔连体〕这,这个 その〔连体〕那,那个 あの〔连体〕那,那个 どの〔连体〕哪个 えっ〔叹〕啊

相关文档
最新文档