Systematic bias in the estimate of cluster mass and the fluctuation amplitude from cluster

Systematic bias in the estimate of cluster mass and the fluctuation amplitude from cluster
Systematic bias in the estimate of cluster mass and the fluctuation amplitude from cluster

a r X i v :a s t r o -p h /0602015v 1 1 F e

b 2006Systemati

c bias in the estimate of cluster mass an

d th

e ?uctuation amplitude from cluster abundance statistics

Mamoru Shimizu ,1Tetsu Kitayama ,2Shin Sasaki ,3and Yasushi Suto 1

1Department of Physics,School of Science,The University of Tokyo,Tokyo 113-0033

2Department of Physics,Toho University,Funabashi,Chiba 274-8510

3Department

of Physics,Tokyo Metropolitan University,Hachioji,Tokyo 192-0397

mshimizu@utap.phys.s.u-tokyo.ac.jp,kitayama@ph.sci.toho-u.ac.jp,sasaki@phys.metro-u.ac.jp,suto@phys.s.u-tokyo.ac.jp

(Received 2005November 22;accepted 2006February 1)Abstract We revisit the estimate of the mass ?uctuation amplitude,σ8,from the obser-vational X-ray cluster abundance.In particular,we examine the e?ect of the sys-tematic di?erence between the cluster virial mass estimated from the X-ray spec-troscopy,M vir ,spec ,and the true virial mass of the corresponding halo,M vir .Mazzotta et al.(2004)recently pointed out the possibility that αM =M vir ,spec /M vir is sys-tematically lower than unity.We perform the statistical analysis combining the latest X-ray cluster sample and the improved theoretical models and ?nd that σ8~0.76±0.01+0.50(1?αM )for 0.5≤αM ≤1,where the quoted errors are sta-tistical only.Thus if αM ~0.7,the value of σ8from cluster abundance alone is now in better agreement with other cosmological data including the cosmic microwave back-ground,the galaxy power spectrum and the weak lensing data.The current study also illustrates the importance of possible systematic e?ects in mapping real clus-ters to underlying dark halos which changes the interpretation of cluster abundance

statistics.

Key words:cosmology:theory —dark matter —galaxies:clusters:general —X-rays:galaxies

1.Introduction

Recent progress in observational cosmology has made it possible to determine precise values of cosmological parameters including the matter density parameter ?M ,the cosmolog-ical constant ?Λ,the dimensionless Hubble constant h ≡H 0/(100km s ?1Mpc ?1),and the mass ?uctuation amplitude at 8h ?1Mpc,σ8.For instance,Spergel et al.(2003)obtained (?M ,?Λ,h,σ8)=(0.29±0.07,0.71±0.07,0.72±0.05,0.9±0.1)from the ?rst-year data of

the Wilkinson Microwave Anisotropy Probe(WMAP)under the assumption of a spatially?at universe,?M+?Λ=1.These estimates slightly vary when combined with other observational probes such as the galaxy power spectrum,weak lensing data and the Hubble diagram of Type Ia supernovae,but the value ofσ8,which is the main focus of the present paper,is al-ways larger than0.8.For instance,Tegmark et al.(2004)concluded thatσ8=0.89±0.02and ?M h=0.213±0.023.

Cluster abundance has been known as yet another useful probe of the value ofσ8(White, Efstathiou&Frenk1993).In a decade ago,the methodology seemed to have almost estab-lished a value ofσ8=0.9~1.0for standardΛCDM(Lambda-dominated Cold Dark Matter) cosmology(e.g.,Viana&Liddle1996;Eke et al.1996;Kitayama&Suto1996;Kitayama& Suto1997;Kitayama,Sasaki&Suto1998)when combined with a simple self-similar model mass–temperature(M-T)relation of X-ray clusters(M∝T3/2;see Kaiser1986).Seljak(2002), however,showed that the use of the observed M-T relation(Finoguenov et al.2001),rather than the simple self-similar M-T relation,leads to a much lower value:

σ8=(0.77±0.07)(?M/0.3)?0.44(Γ/0.2)0.08,(1)

whereΓis the shape parameter of the CDM power spectrum.

His result was also con?rmed later by Shimizu et al.(2003).They constructed the M-T relation from a combined analysis of X-ray luminosity-temperature relation and temperature function of clusters,and foundσ8=0.7~0.8.The derived M-T relation is marginally consistent with the observed ones(Finoguenov et al.2001;Allen et al.2001),but is in clear con?ict with the simple relation as M∝T3/2.Therefore it seems now clear that cluster abundance combined with the reliable M-T relation consistently points to a systematically lower value ofσ8than the other cosmological indications.

Given the above situation,it is important to recall that the conventional modeling of galaxy clusters in terms of their mass or temperature is oversimpli?ed;non-sphericity,inhomo-geneity and substructure in the intracluster medium would give rise to both random and sys-tematic variations to cluster properties with respect to the simple model predictions.Figure1 is the improved version of the plot presented before by one of us(Suto2002;Suto2003),which summarizes a wide range of practical,and quite di?erent,de?nitions of dark halos that are directly related to cosmology,but cannot be directly observed and of galaxy clusters.Of course they are closely related,but any simple one-to-one correspondence is unrealistic,and should be understood as a working hypothesis.One has to improve the working hypothesis continuously in order to increase the reliability of cluster abundance statistics.

In this context,it is important to note that Mazzotta et al.(2004)and Rasia et al.(2005) pointed out a potentially important source for the systematic bias in estimating temperature and mass of X-ray clusters,which motivated our current study.Indeed galaxy clusters may consist of multi-phase temperature structure,and it is not a straightforward task to de?ne the

Fig.1.Relation among dark halos and galaxy clusters.

overall single temperature which characterizes the cluster as a whole(see also Vikhlinin2005).

Usually X-ray observers estimate the temperature of a cluster by a single temperature ?t to the observed X-ray spectrum of the cluster.Let us call it the spectroscopic temperature, T spec.It is natural,and indeed has been(implicitly)assumed that T spec is equivalent to the emission-weighted temperature,T ew,in which the locally de?ned temperature T in a small region of the cluster is averaged over with a weight of its emission measure.More speci?cally, it is given by

T n2Λ(T)dV

T ew≡

T for thermal bremsstrahlung),and the integration is over the entire cluster volume.Mazzotta et al.(2004),however,noticed that T spec signi?cantly underestimates the value of T ew if clus-ters have multi-phase temperature structure.Since relatively cool clumps in a cluster exhibit many prominent emission lines,any single temperature spectroscopic?tting to the cluster naturally tends to be biased toward such low temperature clumps.In addition,Mazzotta et al.(2004)showed that the systematic underestimate occurs also in the case of thermal bremsstrahlung alone even without considering contributions of emission lines.The authors introduced a spectroscopic-like temperature T sl:

T n2T?0.75dV

T sl≡

formed a more systematic study of the relation between T ew and T sl using a sample of

clusters from SPH simulations with radiative cooling and heating,and found that T sl=

(0.70±0.01)T ew+(0.29±0.05)keV for2keV<~T ew<~13keV.We note here that Mathiesen& Evrard(2001),based on their adiabatic simulations,also noticed earlier that T spec tends to be

lower than T ew,while the systematic di?erence is somewhat smaller than that found by Rasia

et al.(2005).

As already discussed in Rasia et al.(2005),the above result should have a signi?cant

impact on the estimate ofσ8from cluster abundance.If one simply uses T sl,instead of T ew(>T sl)

in converting the temperature to the underlying halo mass,one would underestimate the true

mass and the amplitude of the halo mass function,leading to an underestimation ofσ8as

well.Furthermore,several numerical simulations indicate that the assumption of hydrostatic

equilibrium itself,applied with the use of T ew,tends to underestimate the cluster mass by~20%

(e.g.,Muanwong et al.2002;Borgani et al.2004;Rasia et al.2004).Taken together,they may

therefore account for the systematically smaller value ofσ8derived from cluster abundance

as described in the above.In reality,however,a reliable prediction requires a more careful

treatment of the selection function and the statistical analysis of the observational sample.

This is exactly what we will conduct below.

We do not attempt to?nd the best-?t set of cosmological parameters,but rather focus on

the precise determination ofσ8.Thus in this paper,we adopt a conventionalΛCDM model with

the following parameters;the matter density parameter?M=0.27,the cosmological constant

?Λ=0.73,and the dimensionless Hubble constant h70=h/0.7=1.We denote natural and

decimal logarithms by ln and log,respectively.

2.Method

The estimate ofσ8from cluster abundance requires a variety of theoretically and/or

observationally calibrated relations among mass,luminosity and temperature of clusters.Since

our main interest here is the e?ect of the di?erence between T ew and T spec,we carefully re-

examine those relations that directly involve the cluster temperature.Otherwise we adopt the

conventional modeling,following,but improving wherever possible,the procedure of Ikebe et

al.(2002).

2.1.Mass function of dark matter halos

Recent numerical simulations signi?cantly advanced the understanding of mass function

of dark matter halos,and provide several?tting formulae that are more accurate than their

analytic counterpart(Press&Schechter1974).In the present paper,we adopt the result of

Jenkins et al.(2001).The formula is based on the SO(324)halos which are identi?ed when

their spherical over-density within the virial mass,M vir,exceeds324times the mean matter

background density,ˉρ:

dn

M vir

d lnσ?1

(kR vir)3

[sin(kR vir)?kR vir cos(kR vir)],(6) where P(k)is the linear power spectrum of matter?uctuations,and R vir≡(3M vir/4πˉρ)1/3.

2.2.Mass-temperature relation of X-ray clusters

The most uncertain procedure in estimatingσ8from cluster abundance is how to relate the dark matter halos,which are not directly observable,to the actually observed X-ray clusters. Strictly speaking,there is no reason why one can rely on any one-to-one mapping between (simulated)halos and X-ray clusters;non-sphericity,substructure,and merging history,among others,should be taken into account to specify their individual properties(e.g.,Taruya& Suto2000;Komatsu et al.2001;Suto2002;Jing&Suto2002;Suto2003;Kitayama et al.2004). Nevertheless it is common to characterize halos and clusters merely as a function of their mass and temperatures,respectively,and to relate them on the basis of an empirically determined M-T relation(e.g.,Shimizu et al.2003).As described in Introduction,this procedure is fairly successful.Nevertheless the resulting conclusion should be interpreted with caution if one wants to take its precision and accuracy seriously.

Let us make clear a few di?erent de?nitions of mass and temperature of clusters in order to specify our assumptions on their mutual relation.For simulated clusters,one can compute the emission-weighted temperature,T ew(eq.[2]),and the spectroscopic temperature,T spec.The mass of observed clusters within a radius R is usually derived on the assumption of hydrostatic equilibrium:

M(R)=?k B T gas(R)R

d ln R

+

d ln T gas(R)

of simulated clusters(e.g.,Muanwong et al.2002;Borgani et al.2004;Rasia et al.2004),we simply relate M vir,spec to M vir as

M vir,spec=αM M vir,(9)

where the proportional constantαM accounts for both the di?erence of T spec and T ew and that of M vir,ew and M vir.If M vir,ew=M vir,thenαM=αT.

Incidentally it is interesting to note that equation(9)withαM~0.6accounts for the well-known systematic di?erence between M vir,spec and the lensing mass estimate in galaxy clusters(e.g.,Wu2000;Schmidt et al.2001)if the latter is equal to the actual virial mass. Another possible consequence of such a systematic di?erence in temperature may be found in the interpretation of the Sunyaev-Zel’dovich e?ect observations,where one needs to distinguish the mass-weighted temperature and the X-ray emission-weighted or spectroscopic temperature (e.g.,Yoshikawa et al.2000;Yoshikawa et al.2001;Komatsu&Seljak2001).

Next we?t the M-T relation to the cluster sample of Pointecouteau et al.(2005)using a power-law model of the form:

M vir,spec

5keV p,(10) where

h(z)=h70 M200

±?M200 in their paper to

c200,listed in Pointecouteau et al.(2005).In addition,we scale the masses by h(z),which corrects the evolutionary e?ect due to the observed redshifts of the clusters following Allen et al.(2001)and Arnaud et al.(2005).We perform the?t on the log T-log M plane,and?nd that A vir=100.829±0.018and p=1.74±0.10.The best?t M-T relation and the observational data are plotted in?gure2.

2.3.Fitting Procedure

We search for the best-?tσ8from the maximum likelihood analysis of X-ray cluster number density on the luminosity and temperature plane,following Ikebe et al.(2002).We assume that at a given spectroscopic temperature the cluster luminosity follows the log-normal distribution:

p L(log L|T spec)d log L=

1

2πσ2log L

exp ?[log L?2σ2log L d log L,(12)

around the mean of the logarithm of the luminosity,

Fig.2.Mass-temperature relation of the cluster sample by Pointecouteau et al.(2005)(symbols with error bars).Also plotted is the best-?t power-law that we adopt in the present analysis (eq.[10]).

The predicted number of clusters per unit logarithmic luminosity and unit logarithmic temperature,N (L,T spec ),is then given by

N (L,T spec )d log Ld log T spec

=dn dT spec

V max (L )p L (log L |T spec )dT spec 4π ∞0dz dV

2σ2f d f,(14)where ??=8.14sr is the total sky coverage,dV/dz is a volume element per unit redshift per unit solid angle of the sky,f lim =2.0×10?11erg s ?1cm ?2is the observational ?ux limit in the 0.1–2.4keV band,σf =10?12erg s ?1cm ?2is a typical ?ux measurement error.We set the average ?ux as f 0=L/4πd 2L (z ),where d L (z )is the luminosity distance at z .

If the number of clusters with a given luminosity and temperature obeys the Poisson distribution,the corresponding likelihood function reduces to (e.g.,Cash 1979)

ln L = i ln N (L i ,T i )? N (L,T spec )d log L d log T spec +const.,

(15)where L i and T i are the observed luminosity and spectroscopic temperature of the i -th clus-

ter,respectively.The summation is taken over the observed clusters with temperature larger than our adopted threshold T min.In practice,we consider three values,T min=1.4,3.0,and 5.0keV in order to see the extent to which our correction for the?ux-limit in the observational sample changes the conclusion(see the next section).The integration in the second term of equation(15)is performed for41.5

By maximizing the likelihood function given above,we are practically?tting the observed X-ray temperature function(XTF)and the luminosity-temperature relation simultaneously. This method has the following advantages over the conventional chi-square?tting to the XTF data alone;1)the Malmquist bias of the observed luminosity–temperature relation is corrected using the observed XTF,2)it is free from any bias arising from binning a small number of data.

The above procedure is essentially the same as that of Ikebe et al.(2002)except that we adopt the observed M-T relation(eq.[10])and the Jenkins mass function(eq.[4])in equa-tion(13).The integration over the temperature in equation(15)of Ikebe et al.(2002)is omitted because the temperature measurement errors are already incorporated in the observed M-T re-lation.We have further checked that the?tted values ofσ8will be unchanged within±0.01 even if we arti?cially introduce the intrinsic scatter of

log L0.1?2.4keV[erg s?1](T spec)=42.19+2.44log(T spec/1keV)?2log h.(16) In the above expression,

Fig.3.The luminosity–temperature relations of clusters.Symbols with error bars repre-sent the cluster sample of Ikebe et al.Solid line is our adopted power-law model (eq.[16])with the corresponding log-normal errors(shaded region).Dashed line indi-cates the direct?t to the data without taking account of the Malmquist bias.

3.Results

We perform the analysis forαM=M vir,spec/M vir=1,0.9,0.8,0.7,0.6and0.5.The values ofσ8maximizing the likelihood function are summarized in table1.The clear general trend is that the best-?tσ8systematically increases asαM decreases and T min increases;if αM becomes smaller,the mass of the corresponding halo,M vir is indeed larger than the naive estimate M vir,spec.Therefore the resulting amplitude of the observed mass function becomes larger,which requires largerσ8.This is exactly expected.On the other hand,the weak trend with respect to T min,if real,might indicate that the sample is not yet completely corrected for the Malmquist bias,and/or that the sample is still statistically limited.Table1indicates that the best-?t value for T min=3keV is roughly given as

σ8=0.76±0.01+0.50(1?αM).(17)

The quoted errors represent the statistical error only,and the systematic error due to the di?erence of T min amounts to±0.02.Thus the systematic di?erence of the spectroscopic and the true virial massαM≡M vir,spec/M vir~0.7indeed reconciles the discrepancy ofσ8between the cluster abundance and Tegmark et al.’s result,for instance.

To exhibit the goodness-of-?t of our derived parameters,we plot the cumulative number

Table1.Best-?t values ofσ8for di?erentαM and T min.

αM>1.4keV>3keV>5keV

Fig.4.Cumulative number counts of the X-ray clusters as a function of T spec;LeftαM=1, MiddleαM=0.8RightαM=0.6.The shaded histogram indicates the range of the ob-servational data of Ikebe et al.(2002)with the Poisson errors.Solid,dashed and dotted curves show the results from our best-?t models for T min=5keV,3keV and 1.4keV.

&Suto1997;Kitayama,Sasaki&Suto1998).Those previous analyses relied on(i)a simple self-similar mass-temperature relation M∝T3/2,(ii)a single phase of the intracluster temper-ature(i.e.,the spectroscopic temperature is identical to the emission-weighted temperature of clusters),(iii)the analytical Press–Schechter mass function of dark matter halos,and(iv)the limited statistics of cluster abundance(e.g.,the amplitude of temperature function at6keV alone).The above assumptions have been improved and updated for last several years,and now we know that the previous assumptions(i)and(iii)systematically increased,while the assumption(ii)decreased,the estimate of the value ofσ8,if they are compared with their latest and improved counterparts.

It is often inevitable to introduce simple,reasonable,but nevertheless inaccurate,as-sumptions in modeling and analyses of cosmological observations since cosmological objects cannot be predicted from the?rst principle of physics.Naturally we would like to conclude that those assumptions are justi?ed when they lead to the same values of the cosmological parameters derived from independent dataset and analysis.In most cases,the above procedure may not be wrong,but still one has to keep in mind that the procedure as a whole cannot be justi?ed strictly because of the mere agreement since the goal is not to determine the precise

value of parameters,but to improve the understanding of the underlying physical processes involved.

In this sense,the estimate ofσ8that we have presented in this paper is certainly in-dicative,but may not be the?nal answer.To reach more reliable conclusions,one needs to understand the quantitative degree and the physical origin of the systematic di?erence between spectroscopic and emission-weighted temperatures,in addition to the improved statistical sam-ple obviously.Furthermore,the possible di?erence between the epochs of cluster formation and observation may still be a source of systematic errors in the measuredσ8(Kitayama& Suto1997;Ikebe et al.2002).Hopefully the recent progress of numerical hydrodynamic sim-ulations in cosmology and a variety of proposals of galaxy surveys at intermediate and high redshifts will signi?cantly improve the situation in near future.For that direction,the indepen-dent careful analysis of the systematics in the Sunyaev-Zel’dovich and lensing cluster samples plays a very important and complementary role.

We thank Eiichiro Komatsu and an anonymous referee for valuable suggestions which improved the earlier manuscript of the present paper.We are also grateful to Elena Rasia and Klaus Dolag for useful comments in the early phase of this work,and to Gus Evrard and Joe Mohr for discussions.This research was partly supported by Grant-in-Aid for Scienti?c Research of Japan Society for Promotion of Science(Nos.14102004,14740133,15740157, 16340053).

References

Allen,S.W.,Schmidt,R.W.,&Fabian,A.C.2001,MNRAS,328,L37

Arnaud,M.,Pointecouteau,E.,&Pratt,G.W.2005,A&A,441,893

Borgani,S.,et al.2004,MNRAS,348,1078

Cash,W.1979,ApJ,228,939

Eke,V.R.,Cole,S.,&Frenk,C.S.1996,MNRAS,282,263

Finoguenov,A.,Reiprich,T.H.,&B¨o hringer,H.2001,A&A,368,749

Ikebe,Y.,Reiprich,T.H.,B¨o hringer,H.,Tanaka,Y.,&Kitayama,T.2002,A&A,383,773 Jenkins,A.Frenk,C.S.,White,S.D.M.,Colberg,J.M.,Cole,S.,Evrard,A.E.,Couchman,H.M.

P.,&Yoshida,N.2001,MNRAS,321,372

Jing,Y.P.,&Suto,Y.2002,ApJ,574,538

Kitayama,T.,et al.2004,PASJ,56,17

Kitayama,T.,Sasaki,S.,&Suto,Y.1998,PASJ,50,1

Kitayama,T.,&Suto,Y.1996,ApJ,469,480

Kitayama,T.,&Suto,Y.1997,ApJ,490,557

Komatsu,E.,et al.2001,PASJ,53,57

Komatsu,E.,&Seljak,U.2001,MNRAS,327,1353

Mathiesen,B.F.,&Evrard,A.E.2001,ApJ,546,100

Mazzotta,P.,Rasia,E.,Moscardini,L.,&Tormen,G.2004,MNRAS,354,10

Muanwong,O.,Thomas,P.A.,Kay,S.T.,&Pearce,F.R.2002,MNRAS,336,527 Pointecouteau,E.,Arnaud,M.,&Pratt,G.W.2005,A&A,435,1

Press,W.H.,&Schechter,P.1974,ApJ,187,425

Rasia,E.,Tormen,G.,&Moscardini,L.2004,MNRAS,351,237

Rasia,E.,Mazzotta,P.,Borgani,S.,Moscardini,L.,Dolag,K.,Tormen,G.,Diaferio,A.,&Murante,

G.2005,ApJL,618,L1

Schmidt,R.W.,Allen,S.W.,&Fabian,A.C.2001,MNRAS,327,1057

Seljak,U.2002,MNRAS,337,769

Shimizu,M.,Kitayama,T.,Sasaki,S.,&Suto,Y.2003,ApJ,590,197.

Spergel,D.N.et al.2003,ApJS,148,175

Suto,Y.2002,“AMiBA2001:High-z Clusters,Missing Baryons,and CMB Polarization”,edited by L.-W.Chen,C.-P.Ma,K.-W.Ng,&U.-L.Pen(San Francisco:A.D.P.CONF.SER.),257,195 Suto,Y.2003,“Matter and Energy in Clusters of Galaxies”,edited by S.Bowyer&C.-Y.Hwang (San Francisco:A.D.P.CONF.SER.),301,379

Taruya,A.,&Suto,Y.2000,ApJ,542,559

Tegmark,M.et al.2004,ApJ,606,702

Viana,P.T.P.,&Liddle,A.R.1996,MNRAS,281,323

Vikhilinin,A.2005,ApJ,accepted(astro-ph/0504098)

White,S.D.M.,Efstathiou,G.,&Frenk,C.S.1993,MNRAS,262,1023

Wu,X.P.2000,MNRAS,316,299

Yoshikawa,K.,Jing,Y.P.,&Suto,Y.2000,ApJ,535,593

Yoshikawa,K.,Taruya,A.,Jing,Y.P.,&Suto,Y.2001,ApJ,558,520

The way常见用法

The way 的用法 Ⅰ常见用法: 1)the way+ that 2)the way + in which(最为正式的用法) 3)the way + 省略(最为自然的用法) 举例:I like the way in which he talks. I like the way that he talks. I like the way he talks. Ⅱ习惯用法: 在当代美国英语中,the way用作为副词的对格,“the way+ 从句”实际上相当于一个状语从句来修饰整个句子。 1)The way =as I am talking to you just the way I’d talk to my own child. He did not do it the way his friends did. Most fruits are naturally sweet and we can eat them just the way they are—all we have to do is to clean and peel them. 2)The way= according to the way/ judging from the way The way you answer the question, you are an excellent student. The way most people look at you, you’d think trash man is a monster. 3)The way =how/ how much No one can imagine the way he missed her. 4)The way =because

乖离率Bias经典使用方法.

乖离率Bias经典使用方法 2011-5-10 14:33:02 来源:不详佚名 一、什么是BIAS指标 判断原则 这里的乖离,具体是指收盘价格(或指数,下略)与某一移动平均价格的差距,而乖离率则用以表征这种差距的程度。将各BIAS值连成线,则得到一条以零值为中轴波动伸延的乖离率曲线。N日BIAS 的N值通常取6、10、30、72及以上,分别用以研判短期、中期、中长期以及长期的市势。一般而言,当BIAS过高或由高位向下时为卖出信号, 当BIAS过低或由低位向上时为买入信号。在中长期多方市场里, BIAS在0上方波动,0是多方市场调整回档的支持线, BIAS在0附近掉头向上为买入信号。在中长期空方市场里, BIAS在0下方波动, 0是空方市场调整.反弹的压力线,BIAS在0附近掉头向下为卖出信号。BIAS若有效上穿或下穿0,则是中长线投资者入场或离场的信号。采用N值小的快速线与N值大的慢速线作比较观察,若两线同向上, 升势较强;若两线同向下,跌势较强;若快速线上穿慢速线为买入信号;若快速线下穿慢速线为卖出信号。 乖离率指标是根据葛蓝碧移动平均线八原则推演而来,其原则提到,当股价突然暴跌或是暴涨,距离移动平均线很远,乘离过大时,就是买进或卖出的时机。BIAS也是移动平均线的使用功能的具体量化表现,同时也是对移动平均线的不足之处起到弥补的作用。股市从大致的方面而言是始终在两个领域中循环反复往来的,这两个区域,一个是大多数人赚钱的时期,另一个是大多数人赔钱的时期。所以,股市投资中最简明的策略就是:在大多数人赔钱的时候买入,(文章由捜股中国收藏整理)在大多数人赚钱的时候卖出。而BIAS的设计正是建立在这种战略思想基础上的,它假设某一周期的移动平均线是该段时间内多空双方的盈亏平衡点,再以现价距离平衡点的远近判定目前处于哪个区域。然后根据偏离程度,做出买卖决定。其计算公式为: BIAS=(当日指数或收盘价-N日平均指数或收盘价)÷N日平均指数或收盘价×100% N的参数一般确定为6日、12日、24日,并且同时设置成三条线。

The way的用法及其含义(二)

The way的用法及其含义(二) 二、the way在句中的语法作用 the way在句中可以作主语、宾语或表语: 1.作主语 The way you are doing it is completely crazy.你这个干法简直发疯。 The way she puts on that accent really irritates me. 她故意操那种口音的样子实在令我恼火。The way she behaved towards him was utterly ruthless. 她对待他真是无情至极。 Words are important, but the way a person stands, folds his or her arms or moves his or her hands can also give us information about his or her feelings. 言语固然重要,但人的站姿,抱臂的方式和手势也回告诉我们他(她)的情感。 2.作宾语 I hate the way she stared at me.我讨厌她盯我看的样子。 We like the way that her hair hangs down.我们喜欢她的头发笔直地垂下来。 You could tell she was foreign by the way she was dressed. 从她的穿著就可以看出她是外国人。 She could not hide her amusement at the way he was dancing. 她见他跳舞的姿势,忍俊不禁。 3.作表语 This is the way the accident happened.这就是事故如何发生的。 Believe it or not, that's the way it is. 信不信由你, 反正事情就是这样。 That's the way I look at it, too. 我也是这么想。 That was the way minority nationalities were treated in old China. 那就是少数民族在旧中

乖离率 详解

乖离率 编辑 股票术语 乖离率(BIAS)是测量股价偏离均线大小程度的指标。 当股价偏离市场平均成本太大时,都有一个回归的过 程,即所谓的“物极必反”。 乖离率是指股价与平均移动线之间的偏离程度,通过百 分比的形式来表示股价与平均移动线之间的差距。如果 股价在均线之上,则为正值;如果股价在均线之下,则 为负值。乖离率最早来源于葛兰维的平均线定律,它的 理论基础主要从投资者心理角度来分析。因为均线可以 代表平均持仓成本,利好利空的刺激,造成股价出现暴 涨暴跌。 乖离率是一种简单而又有效的分析工具,但在使用过程 中基期的选择十分重要。如果基期太短,反应过于敏感, 如果基期太长,反应过于迟钝。 中文名 乖离率 外文名

词条1定义 2应用范围 3根据 4计算公式 5应用分析 6应用法则

7运用原则 8心理分析 9大盘研判 10指标运用 定义编辑 在乖离率的应用时,应该结合不同情况灵活运用才能提高盈利机会。第一,对于风险不同的股票应区别对待。有业绩保证且估值水平合理的个股,在下跌情况下乖离率通常较低时就开始反弹。这是由于持有人心态稳定不愿低价抛售,同时空仓投资者担心错过时机而及时买入的结果。反之,对绩差股而言,其乖离率通常在跌至绝对值较大时,才开始反弹。 第二,要考虑流通市值的影响。流通市值较大的股票,不容易被操纵,走势符合一般的市场规律,适宜用乖离率进行分析。而流通市值较小的个股或庄股由于容易被控盘,因此在使用该指标时应谨慎。第三,在股价的低位密集成交区,由于筹码分散,运用乖离率指导操作时成功率较高,而在股价经过大幅攀升后,在机构的操纵下容易暴涨暴跌,此时成功率则相对较低。

(完整版)the的用法

定冠词the的用法: 定冠词the与指示代词this ,that同源,有“那(这)个”的意思,但较弱,可以和一个名词连用,来表示某个或某些特定的人或东西. (1)特指双方都明白的人或物 Take the medicine.把药吃了. (2)上文提到过的人或事 He bought a house.他买了幢房子. I've been to the house.我去过那幢房子. (3)指世界上独一无二的事物 the sun ,the sky ,the moon, the earth (4)单数名词连用表示一类事物 the dollar 美元 the fox 狐狸 或与形容词或分词连用,表示一类人 the rich 富人 the living 生者 (5)用在序数词和形容词最高级,及形容词等前面 Where do you live?你住在哪? I live on the second floor.我住在二楼. That's the very thing I've been looking for.那正是我要找的东西. (6)与复数名词连用,指整个群体 They are the teachers of this school.(指全体教师) They are teachers of this school.(指部分教师) (7)表示所有,相当于物主代词,用在表示身体部位的名词前 She caught me by the arm.她抓住了我的手臂. (8)用在某些有普通名词构成的国家名称,机关团体,阶级等专有名词前 the People's Republic of China 中华人民共和国 the United States 美国 (9)用在表示乐器的名词前 She plays the piano.她会弹钢琴. (10)用在姓氏的复数名词之前,表示一家人 the Greens 格林一家人(或格林夫妇) (11)用在惯用语中 in the day, in the morning... the day before yesterday, the next morning... in the sky... in the dark... in the end... on the whole, by the way...

“the way+从句”结构的意义及用法

“theway+从句”结构的意义及用法 首先让我们来看下面这个句子: Read the followingpassageand talkabout it wi th your classmates.Try totell whatyou think of Tom and ofthe way the childrentreated him. 在这个句子中,the way是先行词,后面是省略了关系副词that或in which的定语从句。 下面我们将叙述“the way+从句”结构的用法。 1.the way之后,引导定语从句的关系词是that而不是how,因此,<<现代英语惯用法词典>>中所给出的下面两个句子是错误的:This is thewayhowithappened. This is the way how he always treats me. 2.在正式语体中,that可被in which所代替;在非正式语体中,that则往往省略。由此我们得到theway后接定语从句时的三种模式:1) the way+that-从句2)the way +in which-从句3) the way +从句 例如:The way(in which ,that) thesecomrade slookatproblems is wrong.这些同志看问题的方法

不对。 Theway(that ,in which)you’re doingit is comple tely crazy.你这么个干法,简直发疯。 Weadmired him for theway inwhich he facesdifficulties. Wallace and Darwingreed on the way inwhi ch different forms of life had begun.华莱士和达尔文对不同类型的生物是如何起源的持相同的观点。 This is the way(that) hedid it. I likedthe way(that) sheorganized the meeting. 3.theway(that)有时可以与how(作“如何”解)通用。例如: That’s the way(that) shespoke. = That’s how shespoke.

BIAS指标详解及运用

BIAS指标详解及运用 简介:1、乖离率是移动平均原理派生的一项技术指标,它的功能在于测算股价在波动过程中与移动平均线出现的偏离程度,从而得出股价在剧烈波动时因偏离移动平均趋势而造成可能的回档与反弹。乖离率分为正值和负值,当股价在移动平均线之上时,为正值;当股价在移动平均线之下时,为负值;当股价与移动平均线一致时,为零。 2、乖离率的基本研判原理是:如果股价离移动平均线太远,都不会持续太长时间,而会很快再次趋近平均线: (1)一般说来,在弱势市场5日乖离率>6为超买现象,是卖出时机。当其达到-6以下时为超卖现象,是买入时机。 (2)在强势市场,5日乖离率>8时为超买现象,当其到达-3时为超卖现象,是买入时机。 (3)在大势上升时,会出现多次高价,可于先前高价的正乖离点出现时抛出。在大势下跌时,也会出现多次低价,可于前次低价的负乖离点买进。 (4)盘局中正负乖离不易判断,应和其它技术指标综合分析研判。 (5)大势上升时如遇负乖离率,可以趁跌势买进。 (6)大势下跌时如遇正乖离率,可以趁回升高价抛出。 乖离率(BIAS)又称为y值,是反映股价在波动过程中与移动平均线偏离程度的技术指标。它的理论基础是:不论股价在移动平均线之上或之下,只要偏离距离过远,就会向移动平均线趋近,据此计算股价偏离移动平均线百分比的大小来判断买卖时机。对于大多数散户而言,如果对各种指标不能熟练运用,要么离开要么就必须运用各种短线选股软件与庄共舞!目前,最有效的有两种选股软件:1、涨停王盘中预警软件(适合速战速决)2、【短线操盘王】智能选股软件(适合波段操作) 判断原则这里的乖离,具体是指收盘价格(或指数,下略)与某一移动平均价格的差距,而乖离率则用以表征这种差距的程度。将各BIAS值连成线,则得到一条以零值为中轴波动伸延的乖离率曲线。N日BIAS的N值通常取6、10、30、72及以上,分别用以研判短期、中期、中长期以及长期的市势。一般而言,当BIAS过高或由高位向下时为卖出信号, 当BIAS过低或由低位向上时为买入信号。在中长期多方市场里, BIAS在0上方波动,0是多方市场调整回档的支持线, BIAS在0附近掉头向上为买入信号。在中长期空方市场里, BIAS在0下方波动, 0是空方市场调整.反弹的压力线,BIAS在0附近掉头向下为卖出信号。BIAS若有效上穿或下穿0,则是中长线投资者入场或离场的信号。采用N值小的快速线与N值大的慢速线作比较观察,若两线同向上, 升势较强;若两线同向下,跌势较强;若快速线上穿慢速线为买入信号;若快速线下穿慢速线为卖出信号。 乖离率指标是根据葛蓝碧移动平均线八原则推演而来,其原则提到,当股价突然暴跌或是暴涨,距离移动平均线很远,乘离过大时,就是买进或卖出的时机。BIAS也是移动平均线的使用功能的具体量化表现,同时也是对移动平均线的不足之处起到弥补的作用。股市从大致的方面而言是始终在两个领域中循环反复往来的,这两个区域,一个是大多数人赚钱的时期,另一个是大多数人赔钱的时期。所以,股市投资中最简明的策略就是:在大多数人赔钱的时候买入,在大多数人赚钱的时候卖出。而BIAS的设计正是建立在这种战略思想基础上的,它假设某一周期的移动平均线是该段时间内多空双方的盈亏平衡点,再以现价距离平衡点

way 用法

表示“方式”、“方法”,注意以下用法: 1.表示用某种方法或按某种方式,通常用介词in(此介词有时可省略)。如: Do it (in) your own way. 按你自己的方法做吧。 Please do not talk (in) that way. 请不要那样说。 2.表示做某事的方式或方法,其后可接不定式或of doing sth。 如: It’s the best way of studying [to study] English. 这是学习英语的最好方法。 There are different ways to do [of doing] it. 做这事有不同的办法。 3.其后通常可直接跟一个定语从句(不用任何引导词),也可跟由that 或in which 引导的定语从句,但是其后的从句不能由how 来引导。如: 我不喜欢他说话的态度。 正:I don’t like the way he spoke. 正:I don’t like the way that he spoke. 正:I don’t like the way in which he spoke. 误:I don’t like the way how he spoke. 4.注意以下各句the way 的用法: That’s the way (=how) he spoke. 那就是他说话的方式。 Nobody else loves you the way(=as) I do. 没有人像我这样爱你。 The way (=According as) you are studying now, you won’tmake much progress. 根据你现在学习情况来看,你不会有多大的进步。 2007年陕西省高考英语中有这样一道单项填空题: ——I think he is taking an active part insocial work. ——I agree with you_____. A、in a way B、on the way C、by the way D、in the way 此题答案选A。要想弄清为什么选A,而不选其他几项,则要弄清选项中含way的四个短语的不同意义和用法,下面我们就对此作一归纳和小结。 一、in a way的用法 表示:在一定程度上,从某方面说。如: In a way he was right.在某种程度上他是对的。注:in a way也可说成in one way。 二、on the way的用法 1、表示:即将来(去),就要来(去)。如: Spring is on the way.春天快到了。 I'd better be on my way soon.我最好还是快点儿走。 Radio forecasts said a sixth-grade wind was on the way.无线电预报说将有六级大风。 2、表示:在路上,在行进中。如: He stopped for breakfast on the way.他中途停下吃早点。 We had some good laughs on the way.我们在路上好好笑了一阵子。 3、表示:(婴儿)尚未出生。如: She has two children with another one on the way.她有两个孩子,现在还怀着一个。 She's got five children,and another one is on the way.她已经有5个孩子了,另一个又快生了。 三、by the way的用法

(完整word版)乖离率指标(BIAS)的原理及用法

乖离率指标(BIAS)的原理及用法 乖离率指标(BIAS)是从移动平均线指标(MA)中派生、分离出来的一个单独使用的指标。乖离率实际上反映的是股价在波动过程中与移动平均线偏离远近程度大小的常规技术指标。它的理论基础是:不论股价在移动平均线之卜或之下,只要偏离均线过远,成本的向心力作用就会将股价往移动平均线附近回拉根据此原理,我们就可以计算股价偏离移动平均线百分比的大小来判断买进与卖出的时机。 其计算公式如下: 乖离率二(当日收盘价一N日内移动平均价)/N日内移动平均价x 100%。 5日乖离率二(当日收盘价一5日内移动平均价)巧日内移动平均价x 100%。 公式中的N日按照选定的移动平均线周期参数来确定,实战中将分析软件中的原有参数改为5、10、30、60日即可。 从上面的计算公式可以看出,当股价在移动平均线之上波动时,其BIAS数值为正数,称为正乖离率,反之称为负乖离率;当股价与移动平均线重合,乖离率为零。在股价的升降过程中,乖离率反复在零点两侧变化,数值的大小对未来股价的走势分析具有一定的预测功能。正乖离率超过一定数值时,显示短期内多头获利较大,获利回吐的可能性也大,

呈卖出信号;负乖离率超过一定数值时,说明空头回补的可能性较大,呈买入信号。 乖离率指标的常规应用法则: 乖离率究竟达到何种程度才是买卖时机?这并没有统一的原则,而月股价与各种短中期移动平均线的乖离率都有不同的乖离程度,根据不同品种的波动特性,使用者只能靠自己的经验判断一段行情的强势或弱势,作为买卖股票的依据,下面列举的常规应用法则仅提供参考: (1)5日乖离率小于-4%是买进时机,大于4.5%卖出时机; (2)10日乖离率小于-5.5%是买进时机,大于6%卖出时机; (3)30日乖离率小于-8%是买进时机,大于9%卖出时机; (4)60日乖离率小于-12%是买进时机,大于13%卖出时机 二、单根BIAS曲线的分析 在任何股市分析软件上,我们都可以把一根BIAS曲线设为主要研判曲线,其它BIAS曲线的参数都设为0,这样我们也可以用这一根曲线的形态对行情进行分析判断。以12日BIAS指标为例,具体分析如下:1、BIAS曲线的形态

乖离率:简单有效的分析工具

乖离率:简单有效的分析工具 今天给大家带来一个简单有效的大盘分析工具。绝大多数投资者在买卖股票时都会参考大盘走势,大盘走势差,强势股也会调整,大盘走势好,滞涨股也会上涨。如能对大盘走势做一个精准的预判,各股操作成功率也会相应增加,而乖离率指标就是最常见也最实用的大盘走势预判工具。 乖离率指标的定义 1、乖离率是指“股价”与“平均移动线”之间的偏离程度,通过百分比的形式来 表示它们之间的差距(例:今日大盘3060点,6日均线3000点,则乖离率=(3060-3000)/3000=2%,即乖离率值为2)。 2、它的理论基础主要从投资者心理角度来分析,当股价偏离市场平均成本太大时, 都有一个回归的过程,即所谓的“物极必反”,因为均线可以代表平均持仓成本。 3、从上文可以得出乖离率也有正负之分,如果股价在均线之上,则乖离率为正值, 大盘短线有回调倾向。如果股价在均线之下,则乖离率为负值,大盘短线有上涨动力。 乖离率指标的设置 1、在软件中调出乖离率指标就像打股票代码一样,直接输入BIAS(有些软件会有 多种乖离率指标,大家注意选择只有文字“乖离率”的这个名称,它是由三条线组成的)。

2、软件下方会显示出BIAS这个指标的三根线条,常用的为六天乖离率(结合实际 经验,6日乖离率相对短线最为准确,它的含义为指数相对于6日移动平均线的偏离程度) 3、大家在使用乖离率的过程中也可以将均线系统的5日均线设为6日均线,则看 盘时更能与乖离率统一 4、乖离率指标适合把握大盘短线或小波段行情,尤其以震荡行情最为适用,极端 情况,如股灾期间或熔断期间,指标会失效(几乎所有的技术指标都失效)。乖离率指标的实战应用: 大盘乖离一般以0轴为中心,正2%到负2%之间波动。大盘的正乖离率一旦超过2%的时候,也就意味着短线大盘的获利会吐的压力比较大,即大盘是有调整需求的,应该卖出股票。相反乖离率达到负2%的时候,也就意味着短线大盘的反弹需求比较大,往往是一个非常好的抄底机会。

The way的用法及其含义(一)

The way的用法及其含义(一) 有这样一个句子:In 1770 the room was completed the way she wanted. 1770年,这间琥珀屋按照她的要求完成了。 the way在句中的语法作用是什么?其意义如何?在阅读时,学生经常会碰到一些含有the way 的句子,如:No one knows the way he invented the machine. He did not do the experiment the way his teacher told him.等等。他们对the way 的用法和含义比较模糊。在这几个句子中,the way之后的部分都是定语从句。第一句的意思是,“没人知道他是怎样发明这台机器的。”the way的意思相当于how;第二句的意思是,“他没有按照老师说的那样做实验。”the way 的意思相当于as。在In 1770 the room was completed the way she wanted.这句话中,the way也是as的含义。随着现代英语的发展,the way的用法已越来越普遍了。下面,我们从the way的语法作用和意义等方面做一考查和分析: 一、the way作先行词,后接定语从句 以下3种表达都是正确的。例如:“我喜欢她笑的样子。” 1. the way+ in which +从句 I like the way in which she smiles. 2. the way+ that +从句 I like the way that she smiles. 3. the way + 从句(省略了in which或that) I like the way she smiles. 又如:“火灾如何发生的,有好几种说法。” 1. There were several theories about the way in which the fire started. 2. There were several theories about the way that the fire started.

bias乖离率的应用

乖离率(BIAS)的应用 一、概念 乖离率(BIAS):也称为Y值,是用股价指数与移动平均线的比值关系,来描述股票价格与移动平均线之间的偏离程度。 二、公式 * BIAS(n)=(当日股市收盘价-n日移动平均值)÷n日移动平均值 * N为特定天数,我现在使用的“大智慧”软件中系统默认n值为6、12、24,应该是用以研判短期、中期、中长期的市势。 三、BIAS分析要领 正乖离率值越大,说明股价向上偏离移动平均线的程度越大,有可能回档下调;反之负乖离值越小,表明股价向下偏离移动平均线的程度越大,随时可能反弹。 一般而言: 当BIAS过高或由高位向下时为卖出信号; 当BIAS过低或由低位向上时为买入信号。 在中长期多方市场里: BIAS在0上方波动,0是多方市场调整回档的支持线,BIAS在0附近掉头向上为买入信号。 在中长期空方市场里: BIAS在0下方波动, 0是空方市场调整反弹的压力线,BIAS在0附近掉头向下为卖出信号。 BIAS若有效上穿或下穿0,则是中长线投资者入场或离场的信号。 采用N值小的快速线与N值大的慢速线作比较观察: 若两线同向上, 升势较强; 若两线同向下,跌势较强; 若快速线上穿慢速线为买入信号; 若快速线下穿慢速线为卖出信号。 四、BIAS的应用法则

BIAS的原理是离得太远了就该回头,因为股价天生就有向心的趋向,这主要是人们心理的因素造成的。另外,经济学中价格与需求的关系也是产生这种向心作用的原因。股价低需求就大,需求一大,供不应求,股价就会上升。反之,股价高需求就小,供过于求,股价就会下降,最后达到平衡,平衡位置就是中心。 BIAS的应用法则主要是从两个方面考虑: (1) 从BIAS的取值大小方面考虑 这个方面是产生的BIAS的最初的想法。找到一个正数或负数,只要BIAS 一超过这个正数,我们就应该感到危险而考虑抛出;只要BIAS一低于这个负数,我们就感到机会可能来了而考虑买入。这样看来问题的关键就成了如何找到这个正数或负数,它们是采取行动与保持沉默的分界线。 应该说明的是这条分界线与三个因素有关。 a. BIAS选择的参数和大小。 b. 选择的具体是那支股票。 c. 不同的时期,分界线的高低也可能不同。 一般说来,参数越大,采取行动的分界线就越大。股票越活跃,选择的分界线也越大。 在一些介绍BIAS的书籍中,给出了这些分界线选择的参考数字。注意,仅仅是参考,我们应该根据具体情况对它们进行适当的调整。下面仅举一例: a. BIAS(5)>3.5%、BIAS(10)>5%、BIAS(20)>8%以及BIAS(60)>10%是卖出时机。 b. BIAS(5)>-3%、BIAS(10)<-4.5%、BIAS(20)<-7%以及BIAS(60)<-10%是买入时机。 从上面的数字中可看出,正数和负数的选择不是对称的,一般说来,正数的绝对值要比负数的绝对值大一些。例如3.5>3和5>4.5等。这种正数的绝对值偏大是进行分界线选择的一般规律。 如果遇到由于突发的利多或利空消息产生的暴涨暴跌的情况,以上的那些参考数字肯定不管用,应该考虑别的应急措施。按作者的经验,暴涨暴跌时: a. 对于综合指数, BIAS (10)>30%为抛出时机, BIAS (10)<-10%为买入时机。

way 的用法

way 的用法 【语境展示】 1. Now I’ll show you how to do the experiment in a different way. 下面我来演示如何用一种不同的方法做这个实验。 2. The teacher had a strange way to make his classes lively and interesting. 这位老师有种奇怪的办法让他的课生动有趣。 3. Can you tell me the best way of working out this problem? 你能告诉我算出这道题的最好方法吗? 4. I don’t know the way (that / in which) he helped her out. 我不知道他用什么方法帮助她摆脱困境的。 5. The way (that / which) he talked about to solve the problem was difficult to understand. 他所谈到的解决这个问题的方法难以理解。 6. I don’t like the way that / which is being widely used for saving water. 我不喜欢这种正在被广泛使用的节水方法。 7. They did not do it the way we do now. 他们以前的做法和我们现在不一样。 【归纳总结】 ●way作“方法,方式”讲时,如表示“以……方式”,前面常加介词in。如例1; ●way作“方法,方式”讲时,其后可接不定式to do sth.,也可接of doing sth. 作定语,表示做某事的方法。如例2,例3;

乖离率BIAS指标使用详解(熊市抄底绝技)

乖离率BIAS指标使用详解(熊市抄底绝技) 乖离率BIAS指标使用详解 1、乖离率的由来 乖离率(Bias)是依附在移动平均在线的指标,无移动平均线,则无乖离率,可算是移动平均线衍生的指标。移动平均线只能用来判断趋势,无法预测股价高低点,而乖离率(Bias)即可用来测试高低点。尤其对于短线进出,有相当高的准确性。 葛南维(jogepsb ganvle)教授八大法则中,提到:股价若离移动平均线(MA)太远,则未来股价会朝移动平均线靠近,此为「磁线」效应;而股价与移动平均线的距离即为乖离。 公式:P - (T)MA (T)MA T:代表天数,也就是几日的移动平均线 P:当天收盘价

P-(T)MA:为股价与移动平均线的距离,即为乖离。 若为涨势,乖离是正数,因股价必在移动平均线之上,是为正乖离;同理,若为跌势,乖离是负数,是为负乖离。 2、乖离率的特性 区间性:预测股价波段的高低点 趋势性:Bias加上一移动平均线,可看出股价趋势 领先性:把Bias看成k线与移动平均的关系,可领先k线出现买 卖讯号 强弱性:依Bias之背离,可测多空力道的强弱 3、如何发挥Bias的特性 区间性 (1)。由于股价是由人类行为所创造,既是人类的行为,就会

不断重复一定的模式。表现于股价上,即是涨越高,追高买盘越少,而持股者已有一定的获利水准,会有卖出的动作;跌越深,持股者杀低意愿降低,卖压减轻,而逢低买盘渐增。而Bias即在测此临界点, 也就是股价反转点。 (2)。而Bias自移动平均线而来,而移动平均线葛兰碧八大法 则中,有四法则与Bias有关: A. 股价涨高,会朝移动平均线拉回。 B. 股价跌深,会朝移动平均线靠近。 C. 当涨势中,拉回触及上升的移动平均线,是买点。 D. 当跌势中,反弹触及下跌的移动平均线,是卖点。 上述四点,即是「磁线」效应,而A.B.二点即是乖离率的应用; C.点于“拉回触及移动平均线”和 D.点“反弹触及移动平均线”表现在公式中,即分子部分为P-(T)MA = 0,可得乖离率为零,Bias触及零轴。即C.涨势中,拉回至零轴是买点;D.跌势中,反弹至零轴是 卖点。

the-way-的用法讲解学习

t h e-w a y-的用法

The way 的用法 "the way+从句"结构在英语教科书中出现的频率较高, the way 是先行词, 其后是定语从句.它有三种表达形式:1) the way+that 2)the way+ in which 3)the way + 从句(省略了that或in which),在通常情况下, 用in which 引导的定语从句最为正式,用that的次之,而省略了关系代词that 或 in which 的, 反而显得更自然,最为常用.如下面三句话所示,其意义相同. I like the way in which he talks. I like the way that he talks. I like the way he talks. 一.在当代美国英语中,the way用作为副词的对格,"the way+从句"实际上相当于一个状语从句来修饰全句. the way=as 1)I'm talking to you just the way I'd talk to a boy of my own. 我和你说话就象和自己孩子说话一样. 2)He did not do it the way his friend did. 他没有象他朋友那样去做此事. 3)Most fruits are naturally sweet and we can eat them just the way they are ----all we have to do is clean or peel them . 大部分水果天然甜润,可以直接食用,我们只需要把他们清洗一下或去皮.

BIAS指标使用详解

BIAS指标使用详解(附图) 2008-09-11 BIAS 的判断与应用 乖离率(BIAS) 乖离率,简称Y值,是移动平均原理派生的一项技术指标,其功能主要是通过测算股价在波动过程中与移动平均线出现偏离的程度,从而得出股价在剧烈波动时因偏离移动平均趋势而造成可能的回档或反弹,以及股价在正常波动范围内移动而形成继续原有势的可信度。 乖离度的测市原理是建立在:如果股价偏离移动平均线太远,不管股份在移动平均线之上或之下,都有可能趋向平均线的这一条原理上。而乖离率则表示股价偏离趋向指标斩百分比值。 一.计算公式 Y值=(当日收市价-N日内移动平均收市价)/N日内移动平均收市价×100% 其中,N日为设立参数,可按自己选用移动平均线日数设立,一般分定为6日,12日,24日和72日,亦可按10日,30日,75日设定。 二.运用原则 乖离率分正乖离和负乖离。当股价在移动平均线之上时,其乖离率为正,反之则为负,当股价与移动平均线一致时,乖离率为0。随着股价走势的强弱和升跌,乖离率周而复始地穿梭于0点的上方和下方,其值的高低对未来走势有一定的测市功能。一般而言,正乘离率涨至某一百分比时,表示短期间多头获利回吐可能性也越大,呈卖出讯号;负乘离率降到某一百分比时,表示空头回补的可能性也越大,呈买入讯号。对于乘离率达到何种程度方为正确之买入点或卖出点,目前并没有统一原则,使用者可赁观图经验力对行情强弱的判断得出综合结论。一般来说,在大势上升市场,如遇负乘离率,可以行为顺跌价买进,因为进场风险小;在大势下跌的走势中如遇正乖离,可以待回升高价时,出脱持股。 由于股价相对于不同日数的移动平均线有不同的乖离率,除去暴涨或暴跌会使乖离率瞬间达到高百分比外,短、中、长线的乖离率一般均有规律可循。下面是国外不同日数移动平均线达到买卖讯事号要求的参考数据: 6日平均值乖离:-3%是买进时机,+3.5是卖出时机; 12日平均值乖离:-4.5%是买进时机,+5%是卖出时机; 24日平均值乖离:-7%是买进时机,+8%是卖出时机; 72日平均值乖离:-11%是买进时机,+11%是卖出时机;

乖离率BIAS指标使用详解

乖离率BIAS指标使用详解 2007年04月20日星期五 18:20 1、乖离率的由来 乖离率(Bias)是依附在移动平均在线的指标,无移动平均线,则无乖离率,可算是移动平均线衍生的指标。移动平均线只能用来判断趋势,无法预测股价高低点,而乖离率(Bias)即可用来测试高低点。 葛南维(jogepsb ganvle)教授八大法则中,提到:股价若离移动平均线(MA)太远,则未来股价会朝移动平均线靠近,此为「磁线」效应;而股价与移动平均线的距离即为乖离。 公式: P - (T)MA (T)MA T:代表天数,也就是几日的移动平均线 P:当天收盘价 P-(T)MA:为股价与移动平均线的距离,即为乖离。 若为涨势,乖离是正数,因股价必在移动平均线之上,是为正乖离;同理,若为跌势,乖离是负数,是为负乖离。 2、乖离率的特性 区间性:预测股价波段的高低点 趋势性:Bias加上一移动平均线,可看出股价趋势 领先性:把Bias看成k线与移动平均的关系,可领先k线出现买卖讯号 强弱性:依Bias之背离,可测多空力道的强弱 3、如何发挥Bias的特性 区间性 (1). 由于股价是由人类行为所创造,既是人类的行为,就会不断重复一定的模式。表现于股价上,即是涨越高,追高买盘越少,而持股者已有一定的获利水准,会有卖出的动作;跌越深,持股者杀低意愿降低,卖压减轻,而逢低买盘渐增。而Bias即在测此临界点,也就是股价反转点。 (2). 而Bias自移动平均线而来,而移动平均线葛兰碧八大法则中,有四法则与Bias有关: A. 股价涨高,会朝移动平均线拉回。 B. 股价跌深,会朝移动平均线靠近。 C. 当涨势中,拉回触及上升的移动平均线,是买点。 D. 当跌势中,反弹触及下跌的移动平均线,是卖点。 上述四点,即是「磁线」效应,而A.B.二点即是乖离率的应用;C.点于“拉回触及移动平均线”和D.点“反弹触及移动平均线”表现在公式中,即分子部分为P-(T)MA = 0,可得乖离率为零,Bias触及零轴。即C.涨势中,拉回至零轴是买点;D.跌势中,反弹至零轴是卖点。 (3). 依过去的Bias的极大值、极小值来预测股价未来之高低点,也就是源于过去的历史轨迹来做高低点的预测,而这历史的轨迹即是该股的乖离区间。

way的用法总结大全

way的用法总结大全 way的用法你知道多少,今天给大家带来way的用法,希望能够帮助到大家,下面就和大家分享,来欣赏一下吧。 way的用法总结大全 way的意思 n. 道路,方法,方向,某方面 adv. 远远地,大大地 way用法 way可以用作名词 way的基本意思是“路,道,街,径”,一般用来指具体的“路,道路”,也可指通向某地的“方向”“路线”或做某事所采用的手段,即“方式,方法”。way还可指“习俗,作风”“距离”“附近,周围”“某方面”等。 way作“方法,方式,手段”解时,前面常加介词in。如果way前有this, that等限定词,介词可省略,但如果放在句首,介词则不可省略。

way作“方式,方法”解时,其后可接of v -ing或to- v 作定语,也可接定语从句,引导从句的关系代词或关系副词常可省略。 way用作名词的用法例句 I am on my way to the grocery store.我正在去杂货店的路上。 We lost the way in the dark.我们在黑夜中迷路了。 He asked me the way to London.他问我去伦敦的路。 way可以用作副词 way用作副词时意思是“远远地,大大地”,通常指在程度或距离上有一定的差距。 way back表示“很久以前”。 way用作副词的用法例句 It seems like Im always way too busy with work.我工作总是太忙了。 His ideas were way ahead of his time.他的思想远远超越了他那个时代。 She finished the race way ahead of the other runners.她第一个跑到终点,远远领先于其他选手。 way用法例句

BIAS 乖离率指标的应用

BIAS 乖离率指标的应用 2009-07-11 11:15 BIAS 乖离率 乖离率(BIAS)又称为y值,是反映股价在波动过程中与移动平均线偏离程度的技术指标。它的理论基础是:不论股价在移动平均线之上或之下,只要偏离距离过远,就会向移动平均线趋近,据此计算股价偏离移动平均线百分比的大小来判断买卖时机。 [编辑本段]判断原则 这里的乖离,具体是指收盘价格(或指数,下略)与某一移动平均价格的差距,而乖离率则用以表征这种差距的程度。将各BIAS值连成线,则得到一条以零值为中轴波动伸延的乖离率曲线。N日BIAS的N值通常取6、10、30、72及以上,分别用以研判短期、中期、中长期以及长期的市势。一般而言,当BIAS过高或由高位向下时为卖出信号, 当BIAS过低或由低位向上时为买入信号。在中长期多方市场里, BIAS在0上方波动,0是多方市场调整回档的支持线, BIAS在0附近掉头向上为买入信号。在中长期空方市场里, BIAS在0下方波动, 0是空方市场调整.反弹的压力线,BIAS在0附近掉头向下为卖出信号。BIAS若有效上穿或下穿0,则是中长线投资者入场或离场的信号。采用N值小的快速线与N值大的慢速线作比较观察,若两线同向上, 升势较强;若两线同向下,跌势较强;若快速线上穿慢速线为买入信号;若快速线下穿慢速线为卖出信号。 乖离率指标是根据葛蓝碧移动平均线八原则推演而来,其原则提到,当股价突然暴跌或是暴涨,距离移动平均线很远,乘离过大时,就是买进或卖出的时机。BIAS也是移动平均线的使用功能的具体量化表现,同时也是对移动平均线的不足之处起到弥补的作用。股市从大致的方面而言是始终在两个领域中循环反复往来的,这两个区域,一个是大多数人赚钱的时期,另一个是大多数人赔钱的时期。所以,股市投资中最简明的策略就是:在大多数人赔钱的时候买入,在大多数人赚钱的时候卖出。而BIAS的设计正是建立在这种战略思想基础上的,它假设某一周期的移动平均线是该段时间内多空双方的盈亏平衡点,再以现价距离平衡点的远近判定目前处于哪个区域。然后根据偏离程度,做出买卖决定。其计算公式为:BIAS=(当日指数或收盘价-N日平均指数或收盘价)÷N日平均指数或收盘价×100% N的参数一般确定为6日、12日、24日,并且同时设置成三条线。 1、乖离率可分为正乖离率与负乖离率,若股价大于平均线,则为正乖离;股价小于平均线,则为负乖离;当股价与平均线相等时,则乖离率为零。正的乖离率越大,表示短期超买越大,则越有可能见到阶段性顶部;负的乖离率越大,表示短期超卖越大,则越有可能见到阶段性底部; 2、股价与6日平均线乖离率达+5%以上为超买现象,是卖出时机;当其达-5%以下时为超卖现象,为买入时机。 3、股价与12日平均线乖离率达+7%以上为超买现象,是卖出时机;当其达-7%以下时为超卖现象,为买入时机。 4、股价与24日平均线乖离率达+11%以上为超买现象,是卖出时机;当其达-11%以下为超卖现象,为买入时机。 5、指数和股价因受重大突发事件的影响产生瞬间暴涨与暴跌,股价与各种平均线的乖离率有时会出奇的过高或过低,但发生概率极少,仅能视为特例,不能做为日常研判标准。 6、每当股价与平均线之间的乖离率达到最大百分比时,就会向零值靠拢,这是葛兰碧八大法则中第四条和第五条法则所揭示的股价运行规律。 7、在趋势上升阶段股价如出现负乖离,正是逢低买入的有利时机。

相关文档
最新文档