基于MATLAB_Simulink的平面连杆机器人的动力学分析与动态仿真

基于MATLAB_Simulink的平面连杆机器人的动力学分析与动态仿真
基于MATLAB_Simulink的平面连杆机器人的动力学分析与动态仿真

工业机器人静力及动力学分析

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

第3章 工业机器人静力计算及动力学分析

第3章 工业机器人静力计算及动力学分析 章节题目:第3章 工业机器人静力计算及动力学分析 [教学内容] 3.1 工业机器人速度雅可比与速度分析 3.2 工业机器人力雅可比与静力计算 3.3 工业机器人动力学分析 [教学安排] 第3章安排6学时,其中介绍工业机器人速度雅可比45分钟,工业机器人速度分析45分钟,操作臂中的静力30分钟,机器人力雅可比30分钟,机器人静力计算的两类问题10分钟,拉格朗日方程20分钟,二自由度平面关节机器人动力学方程60分钟,关节空间和操作空间动力学30分钟。 通过多媒体课件结合板书的方式,采用课堂讲授和课堂讨论相结合的方法,首先讨论与机器人速度和静力有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。 [知识点及其基本要求] 1、工业机器人速度雅可比(掌握) 2、速度分析(掌握) 3、操作臂中的静力(掌握) 4、机器人力雅可比(掌握) 5、机器人静力计算的两类问题(了解) 6、拉格朗日方程(熟悉) 7、二自由度平面关节机器人动力学方程(理解) 8、关节空间和操作空间动力学(了解) [重点和难点] 重点:1、速度雅可比及速度分析 2、力雅可比 3、拉格朗日方程 4、二自由度平面关节机器人动力学方程 难点:1、关节空间和操作空间动力学 [教学法设计] 引入新课: 至今我们对工业机器人运动学方程还只局限于静态位置问题的讨论,还没有涉及力、速度、加速度等。机器人是一个多刚体系统,像刚体静力学平衡一样,整个机器人系统在外载荷和关节驱动力矩(驱动力)作用下将取得静力平衡;也像刚体在外力作用下发生运动变化一样,整个机器人系统在关节驱动力矩(驱动力)作用下将发生运动变化。 新课讲解: 第一次课 第三章 工业机器人静力计算及动力学分析 3-1 工业机器人速度雅可比与速度分析 一、工业机器人速度雅可比 假设有六个函数,每个函数有六个变量,即: ??? ???? ===),,,,,(),,,,,(),,,,,(654321666543212265432111x x x x x x f y x x x x x x f y x x x x x x f y ,可写成Y=F(X),

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

机器人系统常用仿真软件介绍

1 主要介绍以下七种仿真平台(侧重移动机器人仿真而非机械臂等工业机器人仿真): 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人,可以被用于研究和教学,除此之外,USARSim是RoboCup救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎ODE(Open Dynamics Engine),支持三维的渲染和物理模拟,较高可配置性和可扩展性,与Player兼容,采用分层控制系统,开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用UDP协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费GPL条款,多平台支持可以安装并运行在Linux、Windows和MacOS操作系统上。 1.2 Simbad Simbad是基于Java3D的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器,可定制环境和自定义配置传感器模块等功能,采用3D虚拟传感技术,支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于GNU协议,不支持物理计算,可以运行在任何支持包含Java3D库的Java客户端系统上。 1.3 Webots Webots是一个具备建模、编程和仿真移动机器人开发平台,主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人,可以自定义环境大小,环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用ODE检测物体碰撞和模拟刚性结构的动力学特性,可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可供选择的仿真传感器和驱动器,机器人的控制器可以通过内部集成化开发环境或者第三方开发环境进行编程,控制器程序可以用C,C++等编写,机器人每个行为都可以在真实世界中测试。支持大量机器人模型如khepera、pioneer2、aibo等,也可以导入自己定义的机器人。全球有超过750个高校和研究中心使用该仿真软件,但需要付费,支持各主流操作系统包括Linux, Windows和MacOS。 1.4 MRDS-Microsoft Robotics Developer Studio MRDS是微软开发的一款基于Windows环境、网络化、基于服务框架结构的机器人控制仿真平台,使用PhysX物理引擎,是目前保真度最高的仿真引擎之一,主要针对学术、爱好者和商业开发,支持大量的机器人软硬件。MRDS是基于实时并发协调同步CCR(Concurrency and Coordination Runtime)和分布式软件服务DSS(Decentralized Software Services),进行异步并行任务管理并允许多种服务协调管理获得复杂的行为,提供可视化编程语言(VPL)和可视化仿真环境(VSE)。支持主流的商业机器人,主要编程语言为C#,非商业应用免费,但只支持在Windows操作系统下进行开发。 1.5 PSG-Player/Stage/Gazebo

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

二自由度机械臂动力学分析培训资料

二自由度机械臂动力 学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日 (Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机器人动力学汇总

机器人动力学研究的典型方法和应用 (燕山大学 机械工程学院) 摘 要:本文介绍了动力学分析的基础知识,总结了机器人动力学分析过程中比较常用的动力学分析的方法:牛顿—欧拉法、拉格朗日法、凯恩法、虚功原理法、微分几何原理法、旋量对偶数法、高斯方法等,并且介绍了各个方法的特点。并通过对PTl300型码垛机器人弹簧平衡机构动力学方法研究,详细分析了各个研究方法的优越性和方法的选择。 前 言:机器人动力学的目的是多方面的。机器人动力学主要是研究机器人机构的动力学。机器人机构包括机械结构和驱动装置,它是机器人的本体,也是机器人实现各种功能运动和操作任务的执行机构,同时也是机器人系统中被控制的对象。目前用计算机辅助方法建立和求解机器人机构的动力学模型是研究机器人动力学的主要方法。动力学研究的主要途径是建立和求解机器人的动力学模型。所谓动力学模指的是一组动力学方程(运动微分方程),把这样的模型作为研究力学和模拟运动的有效工具。 报告正文: (1)机器人动力学研究的方法 1)牛顿—欧拉法 应用牛顿—欧拉法来建立机器人机构的动力学方程,是指对质心的运动和转动分别用牛顿方程和欧拉方程。把机器人每个连杆(或称构件)看做一个刚体。如果已知连杆的表征质量分布和质心位置的惯量张量,那么,为了使连杆运动,必须使其加速或减速,这时所需的力和力矩是期望加速度和连杆质量及其分布的函数。牛顿—欧拉方程就表明力、力矩、惯性和加速度之间的相互关系。 若刚体的质量为m ,为使质心得到加速度a 所必须的作用在质心的力为F ,则按牛顿方程有:ma F = 为使刚体得到角速度ω、角加速度εω= 的转动,必须在刚体上作用一力矩M , 则按欧拉方程有:εωI I M += 式中,F 、a 、M 、ω、ε都是三维矢量;I 为刚体相对于原点通过质心并与刚

简单串联机器人ADAMS仿真

机械系统动力学 简化串联机器人的运动学与动力学仿真分析 学院:机械工程学院 专业:机械设计制造 及其自动化 学生: 学号: 指导教师: 完成日期:2015.01.09

摘要 在机器人研究中,串联机器人研究得较为成熟,其具有结构简单、成本低、控制简单、运动空间大等优点,已成功应用于很多领域。本文在ADAMS 中用连杆模拟两自由度的串联机器人(机械臂),对其分别进行运动学分析、动力学分析。得出该机构在给出工作条件下的位移、速度、加速度曲线和关节末端的运动轨迹。 关键词:机器人;ADAMS;曲线;轨迹 一、ADAMS软件简介 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.) (现已并入美国MSC公司)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。 二、简化串联机器人的运动学仿真 (1)启动ADAMS/View。 在欢迎对话框中选择新建模型,模型取名为robot,并将单位设置为MMKS,然后单击OK。 (2)打开坐标系窗口。 按下F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗口。当鼠标在图形区移动时,在坐标窗口中显示了当前鼠标所在位置的坐标值。

工业机器人剖析

总评成绩:《机器人应用技术》实验报告 专业:机电一体化 班级:机电141班 学号:140212107 姓名:刘宗成 河南工学院 机电工程系

实验一工业机器人机械结构 实验目的:1、认识机器人的基本结构和组成 2、熟悉工业机器人基本工作原理 3、了解工业机器人技术参数 实验原理: 六自由度机械手本体结构图 实验器材:1、FANUC M-6i六自由度机械手二台 2、FANUC M-6iB六自由度机械手一台 3、ABB IRB-2400六自由度机械手一台 4、实验设备使用说明书各一本 实验步骤:1、学习ABB和FANUC六自由度机械手基本构成控制柜与机械本体 2、学习六自由度机械手本体各关节的作用 3、学习六自由度机械手本体中定位关节与姿态关节 4、学习六自由度机械手本体各关节驱动机构与传动机构 5、学习典型工业机器人机械本体质量分布,以及各关节中质量平衡和力矩平衡 6、学习六自由度机械手各关节运动范围及运动速度控制 7、学习工业机器人重复定位精度的定义,并且了解相应机器人的重复定位精度 8、学习工业机器人最大负载 9、学习工业机器人最大运动范围 实验报告:课后每位同学按照要求完成实验报告。 思考题:1、画出六自由度机械手的结构简图 2、分析各关节机械手臂的运动范围 注意事项:1、实验开始之前认真学习工业机器人机械本体结构。 2、实验过程认真阅读实验设备说明书。

实验报告

实验二 机器人运动学实验 实验目的:1、了解四自由机械臂的开链结构 2、掌握机械臂运动关节之间的坐标变换原理 3、学会机器人运动方程的正反解方法 实验原理: 机器人运动学只涉及到物体的运动规律,不考虑产生运动的力和力矩。机器人正运动学所研究的内容是:给定机器人各关节的角度或位移,求解计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程)为 : 432140 A A A A T ==????? ???????10 00 z z z z y y y y x x x x p a o n p a o n p a o n 其中:z 向矢量处于手爪入物体的方向上,称之为接近矢量a ,y 向矢量的方向从一个 指尖指向另一个指尖,处于规定手爪方向上,称为方向矢量o ;最后一个矢量叫法线矢量n , 它与矢量o 和矢量a 一起构成一个右手矢量集合,并由矢量的叉乘所规定:a o n ?=。 上式表示了机器人变换矩阵40T ,它描述了末端连杆坐标系{4}相对基坐标系{0}的位姿,是机械手运动分析和综合的基础。 实验器材: 1、RBT-4T03S 机器人一台; 2、RBT-4T03S 机器人控制柜一台; 3、装有运动控制卡和控制软件的计算机一台。 实验步骤: 1、 根据机器人坐标系的建立中得出的A 矩阵,相乘后得到T 矩阵,根据一一对应的关系,写出机器人正解的运算公式,并填入表6-1中; 表6-1机器人的正运动学的参数

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

一种自行车机器人动力学分析和仿真

一种自行车机器人的动力学分析与仿真 邹俊 (北京邮电大学自动化学院,北京100876) 摘要:自行车是一种高效而且环保的交通工具。但自行车动力学特征较为复杂,从控制学角度说,其本身就是一个欠驱动的不稳定系统。行驶中的自行车的动力学模型相对复杂,受外界因素干扰很大,如不同的地面情况和风速的影响,很难完全模拟。因此,自行车的自动控制的发展是一项具有挑战意义的主题。本文提出了一种自行车机器人的建模方法并设计了车把控制器,并用仿真实验验证了其正确性。 关键词:自行车机器人;自动控制;稳定性 中国图书分类号:TP273.5 Modeling and Simulation of Autonomous Bicycle Abstract: Bicycle is an efficient and environment-friendly transport. However, the dynamics of bicycle is complicated. From the control point of view, it is an under actuated nonholonomic system. The dynamics of bicycle is relatively complicated, and very susceptible to disturbance from outside, such as different ground conditions and wind speed, and it is difficult to fully simulate. Thus, the development of automatic control for driving a bicycle is a challenging theme. This paper presents a dynamic model of bicycle and designs a steer controller. Simulation is performed to prove the validity of this controller. Key words: Autonomous Bicycle; Automatic Control; Stability 0引言 自行车是一种高效而且环保的交通工具。自从1818年,德国人德莱斯(Baron Karivon Drais)在法国巴黎发明了带车把的木制两轮自行车以来,自行车给人类的生活带来了极大的便利,同时,人们也在对其进行不断的改进[1][2]。2006年,日本著名的机器人“村田顽童”更是向人们展示了行走坡道和S型平衡木、倒车行走,检测障碍物,进入车库,手机遥控操作,发声、播放音乐等功能。到目前为止,自行车机器人已经取得一定的研究成果,其研究内容主要围绕动力学建模和提出新的控制算法两方面内容展开的。 自行车与倒立摆有很大的相似性,然而前者动力学特性更加复杂,可以利用模糊神经网络控制、非线性控制等控制方法来建模和设计控制器。同时,自行车机器人还涉及到传感器技术、自适应控制、机械力学、无线通信等众多学科。因此,无论在理论和实践中都具有十分重要的意义。 1动力学分析及建模

空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建 模 及其动态过程仿真 作者:td 一引言 1.机器人机械臂的运动学与动力学分析方法 目录 空间二连杆机器人的动力学建模 (1) 及其动态过程仿真 (1) 作者:td (1) 一引言 (1) 1.1用户界面模块(ADAMS/View) (4) 1.2求解器模块(ADAMS/Solver) (5) 1.3后处理模块(ADAMS/PostProcessor) (6) 二.空间二连杆机器人adams建模仿真 (6) 2.1空间二连杆串联机器人 (6) 在ADAMS中用长方形连杆模拟机械臂,对两自由度的机械臂分别进行运动学分析动力学分析。 (6) 2.1.1运动学分析 (6) 2.1.2运动学分析 (9)

机器人的运动学和动力学既包含有一般机械的运动学、动力学内容,又反映了机器人的独特内容。工业机器人的运动学主要讨论了运动学的正问题和逆问题。假设一个构型已知的机器人,即它的所有连杆长度和关节角度()1q t ,()2q t ,()3q t …()n q t ,…都是已知的,其中n 为自由度数,那么计算机器人末端执行器相对于参考坐标系的位姿就称为运动学的正问题分析。换言之,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。然而,如果希望机器人的末端执行器到达一个期望的位姿,就必须要知道机器人操作臂每一个连杆的几何参数和所有关节的角矢量()12,,T n q q q q =???利用操作臂连杆几何参数和末端执行器期望的位姿来求解关节角矢量是运动学逆问题。运动学正问题可以利用齐次变换法来求解。设i 杆坐标系相对于基座坐标系的位姿齐次变换矩阵是b i T ,则 1231b i n n T A A A A A -=?????? ()11- 式中i A 为i 杆坐标系相对于1i -杆坐标系的坐标变换矩阵。相对于正运动学方程,机器人逆运动学方程显得更为重要。由于按给定末端执行器的位姿求解关节变量是在关节空间中进行非线性方程的求解,其中涉及多值性和奇异现象,因此,这一逆问题成为机器人运动学中的一个重要内容。机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。机器人逆问题可有多种解法,如逆变换法、旋量代数法、数值迭代法、几何法等,其中Jaeobian 矩阵的速算法占有重要的地位。机器人作为多自由度可编程的工作系统,在运动学中研究的内容还有末端操作器运动规划、工作空间确定、位姿精度分析与补偿等。目前,对于一般机器人运动学的逆问题大部分都得到了解决,但是,对于有任意结构和有冗余自由度机器人的运动学逆问题,研究得还不够充分。 机器人操作臂的动力学建模主要是研究各主动关节的驱动力与操作臂运动的关系。机器人操作臂是一个十分复杂的动力学系统。机器人动力学方程的非线性特点和强耦合性使得对它的研究十分困难和复杂。目前人们已经提出了许多种动力学建模方法,分别基于不同的力学方程和原理。C .T .Lin ,Calafiore 等对Newton —Euler 动力学建模方法和Lagrange 方法在简化递推过程及减少运算次数上做了不少有益的工作;有些学者从计算机符号代数方向推导并行算法来进行研究;T .R .Kane 等发展了利用偏速度和广义力建模的Kane 方程法;有些学者利用广义d ’Alembert 原理来进行建模;还有人研究用图论进行机器人动力学分析的方法。其中以Newton —Euler 动力学建模方法及d ’Alembert 建模方法(或以这两种方法为基础)应用最为普遍。Newton —Euler 方法具有递推的形式,非常适合于数值计算,与

基于SIMULINK悬架系统动力学仿真分析

研究生课程论文答题本科目:汽车动力学 授课教师:乔维高 年级专业: 学生姓名: 学生学号: 是否进修生?是□否■

基于SIMULINK 悬架系统动力学仿真分析 (武汉理工大学汽车工程学院) 摘 要:汽车行驶平顺性的优劣直接影响到乘员的乘坐舒适性,并影响车辆动力性和经济性的发挥,是车辆在市场竞争中争夺优势的一项重要性能指标。因而如何最大限度地降低汽车在行驶过程中所产生的振动,成为汽车行业的研究重点。本文以某轿车为例,对其进行力学分析,建立四自由度半振动微分方程,以不同等级路面和不同车速下的随机路面激励谱作为输入,利用Matlab/Simulink 仿真软件建立了动态模型,进行计算机仿真,并分析了动力学参数的改变对汽车行驶平顺性影响。 关键词:悬架系统;平顺性;仿真 Suspension System dynamic simulation analysis Based on SIMULINK Abstract: Car Ride will directly affect occupant comfort and affect vehicle dynamics and economy of the play, is a vehicle to compete for advantage in the market competition is an important performance indicators. So how to minimize vibration during driving cars produced, became the focus of the automotive industry research. Taking a car, for example, its mechanics analysis, four and a half degrees of freedom vibration differential equations, random road pavement and different levels of excitation spectra under different speed as the input, using Matlab/Simulink simulation software to establish a dynamic model for computer simulation and analysis of the changing dynamics of the parameters affecting the car ride comfort. Key words: Suspension System ;riding comfort; dynamic simulation 1 汽车动力学振动模型的建立 四自由度半车模型既能表征车身的质心加速度和速度的变化,又能表征车身绕其质心轴的俯仰角加速度和角速度的变化,结构也不太复杂,因此其仿真结果具有一定的代表性。四自由度半车模型的建立,必须作如下假设:整个系统为线性系统;前轴与前轮质量之和为前簧下质量;后轴与后轮质量之和为后簧下质量;非悬挂分布质量由集中质量块m 1 f 、m 1r 代替,车轮的力学特性简化为一个无质量的弹簧,不计阻尼;汽车对称于其纵轴线,且左、右车辙的不平度函数相等。车身振动的四自由度模型如图1所示。车身质量根据动力学等效的原则分为前轴上后轴上及质心上的三个集中质量m 2 f 、 m 2r 、m 2c ,三个质量由无质量的刚性杆连接。 图1 四自由度汽车模型 1.1 四自由度半车模型自由振动方程 (1)采用 z 2 f 、z 2r 坐标系的自由振动方程 以车身为研究对象,对前、后端取力矩平衡,得: 222221221/L (z z )(z )0f f c c f f f f f f m z m z b K C z ++-+-= (1) 222221221/L (z z )(z z )0r r c c r r r r r r m z m z a K C ++-+-= (2) 式中:z 2f 、z 2r 、z c 、z 1 f 、z 1r 分别表示前、后轴上集中质量、车身质心、前、后轴非悬挂分布质量的垂直振动位移;K 2 f 、 K 2r 分别为前、后轴悬架刚度;C 2 f 、C 2r 是前、后悬架减振器阻尼系数;L 、a 、b 为轴距及质心至前、后轴的距离。 以前、后非悬挂质量为研究对象得:

第3章 工业机器人静力计算及动力学分析

第3章工业机器人静力计算及动力学分析 章节题目:第3章工业机器人静力计算及动力学分析 [教学内容] 3.1 工业机器人速度雅可比与速度分析 3.2 工业机器人力雅可比与静力计算 3.3 工业机器人动力学分析 [教学安排] 第3章安排6学时,其中介绍工业机器人速度雅可比45分钟,工业机器人速度分析45分钟,操作臂中的静力30分钟,机器人力雅可比30分钟,机器人静力计算的两类问题10分钟,拉格朗日方程20分钟,二自由度平面关节机器人动力学方程60分钟,关节空间和操作空间动力学30分钟。 通过多媒体课件结合板书的方式,采用课堂讲授和课堂讨论相结合的方法,首先讨论与机器人速度和静力有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。 [知识点及其基本要求] 1、工业机器人速度雅可比(掌握) 2、速度分析(掌握) 3、操作臂中的静力(掌握) 4、机器人力雅可比(掌握) 5、机器人静力计算的两类问题(了解) 6、拉格朗日方程(熟悉) 7、二自由度平面关节机器人动力学方程(理解) 8、关节空间和操作空间动力学(了解) [重点和难点] 重点:1、速度雅可比及速度分析 2、力雅可比

3、拉格朗日方程 4、二自由度平面关节机器人动力学方程 难点:1、关节空间和操作空间动力学 [教学法设计] 引入新课: 至今我们对工业机器人运动学方程还只局限于静态位置问题的讨论,还没有涉及力、速度、加速度等。机器人是一个多刚体系统,像刚体静力学平衡一样,整个机器人系统在外载荷和关节驱动力矩(驱动力)作用下将取得静力平衡;也像刚体在外力作用下发生运动变化一样,整个机器人系统在关节驱动力矩(驱动力)作用下将发生运动变化。 新课讲解: 第一次课 第三章工业机器人静力计算及动力学分析 3-1 工业机器人速度雅可比与速度分析 一、工业机器人速度雅可比 假设有六个函数,每个函数有六个变量,即:,可写成 Y=F(X,将其微分,得:,也可简写成 。该式中(6×6)矩阵叫做雅可比矩阵。 在工业机器人速度分析和以后的静力分析中都将遇到类似的矩阵,称之为机器人雅可比矩阵,或简称雅可比矩阵。 二自由度平面关节机器人,端点位置x,y与关节θ1、θ2的关系为:

第3章工业机器人静力计算及动力学分析

第 3 章工业机器人静力计算及动力学分析 章节题目:第 3 章工业机器人静力计算及动力学分析 [教学内容 ] 3.1工业机器人速度雅可比与速度分析 3.2工业机器人力雅可比与静力计算 3.3工业机器人动力学分析 [教学安排 ] 第 3 章安排 6 学时,其中介绍工业机器人速度雅可比45 分钟,工业机器人速度分析45分钟,操作臂中的静力30 分钟,机器人力雅可比30 分钟,机器人静力计算的两类问题10分钟,拉格朗日方程20 分钟,二自由度平面关节机器人动力学方程60 分钟,关节空间和操作空间动力学30 分钟。 通过多媒体课件结合板书的方式,采用课堂讲授和课堂讨论相结合的方法,首先讨论与机器人速度和静力有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。 [知识点及其基本要求] 1、工业机器人速度雅可比(掌握) 2、速度分析(掌握) 3、操作臂中的静力(掌握) 4、机器人力雅可比(掌握) 5、机器人静力计算的两类问题(了解) 6、拉格朗日方程(熟悉) 7、二自由度平面关节机器人动力学方程(理解) 8、关节空间和操作空间动力学(了解) [重点和难点 ] 重点: 1、速度雅可比及速度分析 2、力雅可比 3、拉格朗日方程 4、二自由度平面关节机器人动力学方程 难点: 1、关节空间和操作空间动力学 [教学法设计 ] 引入新课: 至今我们对工业机器人运动学方程还只局限于静态位置问题的讨论,还没有涉及力、速度、加速度等。机器人是一个多刚体系统,像刚体静力学平衡一样,整个机器人系统在外载 荷和关节驱动力矩(驱动力)作用下将取得静力平衡;也像刚体在外力作用下发生运动变化 一样,整个机器人系统在关节驱动力矩(驱动力)作用下将发生运动变化。 新课讲解: 第一次课 第三章工业机器人静力计算及动力学分析 3-1 工业机器人速度雅可比与速度分析 一、工业机器人速度雅可比 y1 f 1 (x1 , x2 , x3 , x4 , x5 , x6 ) 假设有六个函数,每个函数有六个变量,即:y 2f2 ( x1 , x2 , x3 , x4 , x5 , x6 ),可写成 Y=F(X) , y6f6 (x1 , x2 , x3 , x4 , x5 , x6 )

相关文档
最新文档