线性代数第三章习题选讲

线性代数第三章习题选讲
线性代数第三章习题选讲

第三章习题选讲

9、设向量β可由12,,,m αα"α1线性表示,但不能由12,,,m ααα?"线性表示,则m α不能由12,,,m 1ααα?"线性表示,但可由121,,,,m ααα?"β

线性表示。 〖证明〗(1)(反证)若不然,设m α可由12,,,m 1ααα?"线性表示,且设

112211m k k k m m αααα??=+++" (1) 由假设β可由12,,,m ααα"线性表示,,则可设

112211m m m l l l l m βαααα??=++++" (2)

(1)代入(2)得:

11111()()m m m m l l k l l k 1m βαα??=++++"?,即: β可由12,,,m 1ααα?"线性表示,与题目矛盾。 所以m α不能由12,,,m 1ααα?"线性表示。

(2)由(2)式可得,由于β不能由12,,,m 1ααα?"线性表示,

故0m l ≠,于是由(2)得:

121

121m m m m m m m

l l l l l l l 1αβααα??=????"

即m α可由121,,,,m ααα?"β线性表示。

13、(上课作为例题讲解了)

设向量组(I)线性相关,向量组(II)123,,a a a G G G 234,,a a a G G G

线性无关。 ①能否由线性表示?为什么?

1a G 23,a a G G

②能否由线性表示?为什么? 4a G

123,,a a a G G G 〖解〗①能。

∵线性无关,∴234,,a a a G G G 23,a a G G

线性无关

又∵线性相关,123,,a a a G G G 23,a a G G

线性无关, ∴能否由线性表示,且表示式唯一。

1a G 23,a a G G

〖知识点〗ⅰ、全体无关→部分无关;反之不然;ⅱ、无关向量组添加一个成相关,则添加的一个向量可由原无关向量组唯一线性表示。

②不能。

反证法:如果能由线性表示,而由①知4a G

123,,a a a G G G 1a G 能否由线性表

示,所以能由线性表示。23,a a G G 4a G

23,a a G G 234,,a a a G G G 线性相关,此与线性无关

矛盾,故不能由线性表示。 234,,a a a G G G 4a G

123,,a a a G G G

14、已知向量组12,,,(2s s )ααα≥"线性无关,设

112,βαα=+223,,s s 1βααβαα=+=+"

问12,,s ββ"β是否线性无关? 〖解〗:设有关系式11220s s k k k βββ+++="

即:1122231()()()s s k k k 0αααααα++++++=" 即:111221()()()s s k k k k k k 0s s ααα?++++++=" 因为12,,,(2s s )ααα≥"线性无关,即

111000

s s

s s k k k k k k ?+=??+=??

??+=?""" 齐次线性方程组系数为:10001

11000

0110000

11

"""""""",

即1

100011

1

00

21(1)01100000

00011

s s s +?=+?=??""""""""为奇数为偶数

所以s 为奇数,方程组只有零解,线性无关; s 为偶数,方程组只有非零解,线性相关。

15、设121(1m m m )βαααα?=++++>",则12,,,m βαβαβα???" 线性无关的充要条件是12,,,m ααα"线性无关。 〖证明〗 方法一:

1212011101(,,,)(,,,)

1

1

m m βαβαβαααα???=""""""""

"

而 1011111101101(1)

(1)(1)1

1

1

1

m C m m ?=

=?=??""""""""

""""

"

"

0≠

所以C 为可逆矩阵,则

11212(,,,)(,,,)m m C αααβαβαβα?=???""

即12,,,m ααα"与12,,,m βαβαβα???"等价。 而12,,,m βαβαβα???"线性无关

?12(,,,)m r m βαβαβα???"=

12,,,m ααα"线性无关?12(,,,)m r m ααα="

而等价向量组有相同的秩

所以12,,,m βαβαβα???"线性无关的充要条件是12,,,m ααα"线性无关。 方法二:

“”存在使得?12,,,m k k k "1122()()()m m k k k 0βαβαβα?+?++?=" 由于121(m m m 1)βαααα?=++++>",可得

123213121()()(m m m k k k )0

m ααααααααα?++++++++++++=""""即

232132121()()(m m k k k k k k k k k )0

m m ααα?++++++++++++=""""但由于12,,,m αα"α线性无关,所以

2313121000

m m

m k k k k k k k k k ?+++=??+++=??

??+++=?"""""""""" 即1011101(1)(1)0110m m ?=??≠""""""",只有零解, 所以,线性无关。

120m k k k ===="“”设?12,,,m αα"α线性相关,存在不全为零的使 12,,,m l l l " 11220m m l l l ααα+++=" (1) 令121

()1

i m i l k l l l m =

+++??"(1,2,,)i m =" (2)

则不全为零。

12,,,m k k k "因为若,由(2)可得:

120m k k k ===="12121()11

m m m l l l l l l l m m ====

+++=1??"" 从而与不全为零矛盾。

120m l l l ===="12,,,m l l l "所以不全为零。

12,,,m k k k "易验算1122()()()m m k k k 0βαβαβα?+?++?=" 所以12,,,m βαβαβα???"线性无关。

19、设12,,3ααα是齐次线性方程组AX O =的一个基础解系。 证明:12233,,1αααααα+++也是AX O =的一个基础解系。 〖证明〗

(1)

因为i A O α=,则1212()A A A O αααα+=+=,即12αα+为AX O = 的解;同理23αα+,13αα+也为AX O =的解。 (2)

(线性无关)存在使得 123,,k k k 112123331()()()k k k 0αααααα+++++= 0 即121232313()()()k k k k k k ααα+++++= 3 因为12,,ααα线性无关,即

131223

000k k k k k k +=??

+=??+=? 所以101

11020011=≠,只有零解,即1230k k k ===

1 所以12233,,αααααα+++也是AX O =的一个基础解系。

1241234123

26433x x x x x x x x x x +?=???

1???=????=? (I)

12342343

4521121

x mx x x nx x x x x t +??=???

??=????=?+? (II)

(1)

解方程组(I),用其导出组的基础解系表示解; (2) m ,n,t 为何值时,(I)与(II)同解。

〖解〗(1)11026110264111105172531103041621B ?????????=???→?????

??????????

??

???? 1102611026010140101404162100125?????????→?→??????

?????????

??????

44 无穷多解;

()()3r A r B == 12414242343

262442552x x x x x x x x x x x x +?=?=?+????

?=??=?+?????+==?+??x R 21415201X k k ?????

?????????=+∈?????????????

(2)142x x =?+,244x x =?+,34x 52x =?+4,x k =代入(II)中得:

(2)(4)(52)5(2)(4)0(4)(52)211(4)(4)0(52)216k m k k k m k n k k k n k k k t t ?++?+??+?=???=????

?+??+?=????=?????+?=?+=??

时(I)与(II)同解。 2,4,6m n t ===

11112212112222112200

n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=??

+++=??

??+++=?""""""""""" 的系数矩阵为A ,A 中的某元素的代数余子式,且ij a 0ij A ≠0A =,则12(,,,)T i i in A A A "是这个方程组的一个基础解系。 〖证明〗因为0A =,0ij A ≠,可知()1r A n =?;

AX O =,即111121122122221200i n i i n i in n n nn in A a a a A A a a a A A O A A a a a A ??

????????

????????????????===????????????????????????

??

"#"#""""##"

所以12(,,,)T i i in A A A "为AX O =的解;

又12(,,,)T i i in A A A α=≠"O n ,即12,,,i i i A A "A 线性无关; 所以12(,,,)T i i in A A A "是这个方程组的一个基础解系。

24、设0α是非齐次线性方程组AX β=的解,12,,,n r ααα?"是其导出组的

一个基础解系,证明:0010,,,n r ααααα?++"线性无关。 〖证明〗设有数012,,,,n r k k k k ?"使得

001010()()n r n r k k k 0ααααα??+++++=" (1) 即010011()n r n r n r k k k k k 0αααα??++++""?=0 (2)

(2)式两边左乘A 得:

010011()n r n r n r k k k A k A k A αααα??++++""?= (3)

因为0α是非齐次线性方程组AX β=的解,12,,,n r ααα?"是其导

出组的解,所以(3)式变为00n r

i i k β?==∑,

又0β≠,则0

0n r

i i k ?==∑ (4)

则(2)式化为110n r n r k k αα??++="

又因为12,,,n r ααα?"为基础解系,则线性无关, 所以,代入(4)式,则

120n r k k k ?===="00k =0120n r k k k k ?====="

0010,,,n r ααααα?++"线性无关。

25、设12,,,s αα"α是非齐次线性方程组AX β=的解,在什么条件下

11s s k k αα++"仍是AX β=的解。 〖解〗11()s s A k k αα++" 11s s k A k A αα=++" 1s k k ββ=++"

1()s k k ββ=++=" 则 11s k k ++="

26、设A 为矩阵,线性方程组m n ×AX β=有解的充要条件是:齐次线性

方程组0T A A =的每一个解都满足0Y 0T Y β=。

〖证明〗()()AX r A r A B β=?= (β可由A 的列向量组线性表示)

()T T

T A r A r B ???=???

? (β可由A 的行向量组线性表示)

0T

A Y ?=与0T T A Y

B ??=????

同解

0T Y β?=

线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解: ∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4 T T =-----=- ∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]T T T αα+=-+-= 2.设 12[2,5,1,3],[10,1,5,10],T T αα== 3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α 解: ∵ 1236325αααα=+- [6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24], T T T T =+--= ∴ [1,2,3,4].T α= 3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关 解:不正确.如:[][]121,2,3,4T T αα==,虽然 12000,αα+=但12,αα线性无关。 (2) 如果存在m 个不全为零的数12,,,,m k k k L 使 11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。 解: 不正确. 如[][]11121,2,2,4,1,2,T T k αα====存在k 使 121220,,.αααα+≠但显然线性相关 (3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都 不能由其余向量线性表出. 解: 正确。(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。 (4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。 解:不正确。例如:[][][]1230,0,0,0,1,0,0,0,1,T T T ααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。 (5) 如果向量β可由向量123,,ααα线性表示,即: 112233,k k k βααα=++则表示系数 123,,k k k 不全为零。 解:不正确。例如:[][][]120,0,0,1,0,0,0,1,0,T T T βαα=== []31230,0,1,000T αβααα==++,表示系数全为0。 (6) 若向量12,αα线性相关,12,ββ线性无关,则1212,,,ααββ线性相关.

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数第三章练习题

一、单项选择题 1.若四阶方阵A 的秩为3,则( ) A .A 为可逆阵 B .齐次方程组Ax =0有非零解 C .齐次方程组Ax =0只有零解 D .非齐次方程组Ax =b 必有解 2.若线性方程组???=λ+-=+-21 2321 321x x x x x x 无解,则λ等于( ) 3.设3阶方阵A 的秩为2,则与A 等价的矩阵为( ) A.???? ? ??000000111 B. ????? ??300110111 C. ???? ? ??000432111 D. ???? ? ??333022001 4.设A 为m ×n 矩阵,且非齐次线性方程组AX=b 有唯一解,则必有( ) A .m=n B .R(A)=m C .R(A)=n D .R(A)

三、计算题 1.设矩阵A =????? ??? ??-b a 1401321a 21的秩为2,求a ,b. 2.求齐次线性方程组??? ??=+++=+++=--+0 23203220 4321 43214321x x x x x x x x x x x x 的通解. 3.求线性方程组?? ? ??=++=+++=+++3220231 43243214321x x x x x x x x x x x 的通解. 4. 判断线性方程组123412341 34x x 3x x 12x x x 4x 2x 4x 5x 1-+-=?? --+=??-+=-?是否有解,有解时求出它的解. 5.给定线性方程组 ??? ??-=++-=++-=++2 23 321 321321ax x x x ax x a x x x (1)问a 为何值时,方程组有无穷多个解; (2)当方程组有无穷多个解时,求出其通解. 6.当a 为值何时,方程组??? ??=+++=+++=+++a x x x x x x x x x x x x 43214321432132322221 有解在有解时,求出它的通解.

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

修订版-线性代数习题三答案

第三章 线性方程组 一、温习巩固 1. 求解齐次线性方程组??? ??=-++=--+=-++0 51050363024321 43214321x x x x x x x x x x x x 解: 化系数矩阵为行最简式 ???? ? ????→?????? ??----=000001001-0215110531631121行变换A 因此原方程同解于? ? ?=+-=0234 21x x x x 令2412,k x k x ==,可求得原方程的解为 ???? ?? ? ??+??????? ??-=1001001221k k x ,其中21,k k 为任意常数。 2. 求解非齐次线性方程组?? ? ??=+=+-=-+8 31110232 2421321321x x x x x x x x 解:把增广矩阵),(b A 化为阶梯形 ?? ? ? ? ????→?????? ??---??→?????? ??--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A 因此3),(2)(=<=b A R A R ,所以原方程组无解。 3. 设)1,2,1,3(),1,1,2,3(--=--=βα。求向量γ,使βγα=+32。 解:??? ? ? --=-= 31,0,35,3)2(31αβγ 4. 求向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),T T T ααα=-==4(1,1,2,0),T α=- T )6,5,1,2(5=α的秩和一个极大线性无关组。 解:将51,ααΛ作为列向量构成矩阵,做初等行变换

线性代数第三章习题与答案(东大绝版)

第三章 习题与答案 习题 A 1.求向量123(4,1,3,2),(1,2,3,2),(16,9,1 ,3)T T T =--=-=-ααα的线性组合12335.+-ααα 解 12341161293535331223?????? ? ? ? ? ? ?+-=+- ? ? ?-- ? ? ?-??????ααα1251613109491512561037???????? ? ? ? ? ? ? ? ?=+-= ? ? ? ?--- ? ? ? ?--???????? . 2.从以下方程中求向量α 1233()2()5()-++=+αααααα, 其中123(2,5,1,3),(10,1,5,10),(4,1 ,1,1).T T T ===-ααα 解 由方程得1233322550-++--=αααααα, 1232104651112 632532515118310124???????? ? ? ? ? ? ? ? ?=+-=+-= ? ? ? ?- ? ? ? ?????????αααα 故12 34?? ? ?= ? ??? α,即(1,2,3,4)T =α. 3.求证:向量组12i s α,α,,α,α 中的任一向量i α可以由这个向量组线性表出. 证 120010(1,2,,)i i s i s =+++++= ααααα 4.证明: 包含零向量的向量组线性相关. 证 设向量组为1211α,α,,α,0,α,,αi i s -+ ,则有 12110α0αα00α0α0,0i i s k k -++++++++=≠ 而0,0,,0,,0,,0k 不全为0,故向量组线性相关. 5.设有m 个向量12α,α,,αm ,证明: 若αα()i j i j =≠,则向量组12α,α,,αm 线性相关. 证 显然有1210α0αα0α()α0α0,0i i j m k k k +++++++-++=≠ , 而0,,0,,0,,0,,0,,0k k - 不全为0.故向量组线性相关. 6.判断下列向量组的线性相关性

线性代数测试题(第三章)

线性代数测试题(第三章) 一、填空题(请将正确答案直接填在横线上,每小题3分,共15分): 1. 向量()()12243221αβ==-,,则 2α-3β =__________。 2. 一个含有零向量的向量组必线性 。 3. 设A 是一个n 阶方阵,则A 非奇异的充分必要条件是R (A )=__________。 4. 设12303206A t ?? ??=-?????? ,当t = 时,R (A ) = 2。 5. 已知A 是m × n 矩阵,齐次线性方程组AX = 0的基础解系为12,,,s ηηηL 。如R (A )= k ,则s =__________;当k =__________时方程只有零解。 二、单项选择题 ( 每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内,每小题3分,共15分): 1. 设有4维向量组 α1 , …, α6,则( )。 A R (α1 , …, α6) = 4 B R (α1 , …, α6) = 2 C α1 , α2 , α3 , α4必然线性无关 D α1 , …, α6中至少有2个向量能由其余向量线性表示 2. 已知????? ???????-------=4322351521215133A 则R (A )为 A 1 B 2 C 3 D 4 3. 设s ααα,,,21Λ为n 维向量组, 且秩12(,,,),s R r ααα=L 则( )。 A 该向量组中任意r 个向量线性无关 B 该向量组中任意 1+r 个向量线性相关 C 该向量组存在唯一极大无关组 D 该向量组有若干个极大无关组 4. 若1234,,,X X X X 是方程组AX O =的基础解系,则1234X X X X +++ 是AX O =的( )。 A 解向量 B 基础解系

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算22 1 12312231315 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ? 3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A

4.设矩阵210120001A ?? ??=?? ???? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+ 2.设00021000531 23004580034600A ?? ??? ? ??=?? ?????? ,求1.A - 二、讨论抽象矩阵的可逆性 1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A -

线性代数第三章(答案)

第三章 矩阵的初等变换与线性方程组 一、填空题 1、 设???? ?? ? ??=n n n n n n b a b a b a b a b a b a b a b a b a A 2 1 2221 212111,其中),,2,1(,0,0n i b a i i =≠≠,则=)(A R ____ 2、 设n 阶矩阵A 的各行元素之和均为零,且=)(A R n -1,则线性方程组AX =0 的通解为________ 3、 设四阶方阵的秩为2,其伴随矩阵的秩为_______ 4、 设?????? ? ??=---112 11 22 221 21n n n n n n a a a a a a a a a A ,??????? ??=n x x x X 21,???? ??? ??=111 B ,其中 ),,2,1,,(n j i j i a a j i =≠≠,则线性方程组B AX =的解是________ 5、 已知????? ? ?=10 0210 002 P ,??? ? ? ? ?=20 0020 001A ,则=-1001)(AP P ________ 6、 设A ,B 均为n 阶矩阵AB =0,且A +B=E,则=+)()(B R A R _________ 7、 设矩阵n m A ?的秩为r ,P 为m 阶可逆矩阵,则)(PA R =________ 8、 矩阵??? ?? ??--34031302 1201 的行最简形矩阵为___________ 9、 矩阵??? ? ? ? ?----17 4 03430 1320的行最简形矩阵为__________ 10、 从矩阵A 中划去一行得到矩阵B ,则)(______)(B R A R 从矩阵A 中增加一行得到矩阵B ,则)(______)(B R A R

线性代数第三章课后习题

习题三 (A ) 1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵: (1) 112332141022-?? ?= ? ???(2)111113 1320461135-?? ?- ?= ? ???(3)2451212211 1212136363--? ? ? -- ?= ? -- ?---?? 2.设A 123012425? ? ?=- ? ???,010(1,2)100001? ? ?= ? ???E ,100(3,2(5))010051?? ? = ? ??? E . 试求(1,2)E A ;(1,2)AE ;(3,2(5))E A . 3.用初等变换求下列方阵的逆矩阵: (1) A 101110012?? ?=- ? ??? (2)A 211124347--?? ?=- ? ?-??(3)A 1111022200330004?? ? ?= ? ??? 4.用初等变换解下列矩阵方程: (1) 设A 101110120? ? ? = ? ???,102102-?? ?= ? ??? B ,且AX =B ,求X . (2)设A 220213010? ? ?= ? ??? ,且+AX =A X ,求X . 5.设矩阵A 122324111222-?? ?=-- ? ?-?? ,计算A 的全部三阶子式,并求()R A . 6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明. 7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明. 8.求下列矩阵A 的秩: (1) 310211311344?? ? =-- ? ?--??(2 )1121224230610304-?? ?- ?= ?- ?-??(3)1221 12480 22423336064--? ? ? - ?= ?-- ?--?? (4) 112205123λλλ-?? ?= ? ?-?? (5) 111 111λ λλ?? ? = ? ???

线性代数第三章习题解

线性代数第三章习题解 1. 计算下列行列式: 1) 4 321; 2) 2 2b b a a ; 3) 7 04 0- 解: 1) 26432414 321-=-=?-?=; 2) )(222 2a b ab b a ab b b a a -=-=; 3) 0)4(0707 40=-?-?=-. 2. 计算下列三阶行列式: 1) 241130 4 21--; 2) 320001753-; 3) b a c a c b c b a 解: 1) 将行列式按第一列展开 2) 将行列式按第二行展开 3) 3. 计算下列行列式: 1) 0 00 0000005 5 4433 2222211111b a b a b a e d c b a e d c b a ; 2) x y y x y x y x D n 0 0000 000 00 =; 3) f e d c b a 00000000 解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得 3) 先对第一列展开, 然后对第二列展开, 得 4. 利用行列式的性质计算下列行列式

1) 2 60 5 232112131412 -; 2) ef cf bf de cd bd ae ac ab ---; 3) 2 2 2 2 2222 2 2222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a 解: 下面都将所求行列式的值设为D . 1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得 3) 将第2,3,4列都展开, 并统统减去第1列, 得 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得 5. 把下列行列式化为上三角形行列式, 并计算其值 1) 1 5 2 3 21353140422 -----; 2) 2 1 6 4 72954 1732152----- 解: 1) 2) 6. 计算下列n 阶行列式 1) 12125 4 3 1432321-n n n 2) a b b b a b a 解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为 )1(2 1 321+= ++++n n n , 将此公因式提出, 因此有 再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得 2) 此题和第3题的2)一样, 因此有n n n b a D 1 )1(+-+= 7. 证明下列行列式 1) ))()((1 11 a c c b b a ab ca bc c b a ---=

20XX考研数学线代典型题型分析.doc

试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程

组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

线性代数总结汇总经典例题

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)范德蒙德行列式 数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1

(6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解 (2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A|

线性代数 第三章 测验

(1)设n 阶方阵A 的秩rn (5)设A 是m ×n 矩阵,AX=0是非齐次线性方程组AX=B 所对应的齐次线性方程组,则下列结论正确的是:( ) (A )若AX=0仅有零解,则AX=B 有唯一解; (B )若AX=0有非零解,则AX=B 有无穷多解; (C )若AX=B 有无穷多个解,则AX=0仅有零解; (D )若AX=B 有无穷多个解,则AX=0有非零解。 (6)设向量组(Ⅰ):α1,α2,…,αr 可由向量组(Ⅱ):β1,β2,…,βS 线性表示,则( ) (A )当rS 时,向量组(Ⅱ)必线性相关; (C )当rS 时,向量组(Ⅰ)必线性相关; 7. 已知一个向量组为???? ? ???????--=????????????-=????????????=????????????=????????????=1311,4152,2312,1021,120154321ααααα,求该向量组的秩及该向量组的一个最大线性无关组, 并把其余列向量用该最大无关组线性表示.. 8. 当λ取何值时,非齐次线性方程组12312321231x x x x x x x x x λλλλλ?++=?++=??++=? (1) 有唯一解;(2)无解;(3)有无 穷多解,并求通解.

《线性代数复习资料》习题三.docx

第三章习题 一、选择题 1.设4为加X/2矩阵,则Ar = O有非零解的充分必要条件是( ) (A)r(A) = n (B) r(A) = m (C) r(A) < n (D) r(A) < m 2.设A是加m矩阵,Ax = O是非齐次线性方程组Ax = b对应的齐次方程组,那么 下列叙述正确的是( ) (A)如果Ar = O只有零解,那么Ax = b有唯一解 (B)如果Ax = O有非零解,那么= b有无穷多个解 (C)如果Ax = b有无穷多个解,那么心=0只有零解 (D)如果Ax = h有无穷多个解,那么山=0有非零解 3.设A为m矩阵,则有( ) (A)若m2)线性无关的充分必要条件是( ). (A)0,闵,…,%都不是零向量 (B)0,°2,???,匕任意两个向量的分量不成比例 (C)0,①每一个向量均不可由其余向量线性表示 (D)0,$,至少有一个向量不可由其余向量线性表示 6.设向量0 =a,bi,cJs二他厶心),0] =(ci\,b\,C\,d),02二他厶心,%),下列命题中正确的是( )

(A)若线性相关,则必有0|,02线性相关 (B)若0,的线性无关,则必有久02线性无关 (C)若A,%线性相关,则必有0,也线性无关 (D)若0|,禹线性无关,则必有线性相关 7?向量组0,°2,…,%G?2)的秩不为零的充分必要条件是( ) (A)e,俐,…,%中没有线性相关的部分组 (B)0,6^2,…,%中至少有一个非零向量 (C)es,…,%全是非零向量 (D)…,a$全是零向量 &向量组0,。2,%线性无关的充耍条件是( ) (A)向量组屮不含0向量 (B)向量组的秩等于它所含向量的个数 (C)向量组中任意厂-1个向量无关 (D)向量组屮存在一个向量,它不能由其余向量线性表示 9 ?若加个77维向量线性无关,贝9( ) (A)再增加一个向量后也线性无关 (B)去掉一个向量后仍线性无关 (C)其中只有一个向量不能被其余的线性表示 (D)以上都不对 10. 设A为加m矩阵,则齐次线性方程组Ar = 0仅有零解的充分条件是( ) (A)A的列向量组线性无关(B) A的列向量组线性相关 (C) A的行向量组线性无关(D) A的行向量组线性相关 11.已知0可由勺乞,為线性表示,但0不能由Qi?线性表示,则下面结论止确 的是( ) (A)购能由勺。2,0线性表示,但不能由0,^2线性表示

相关文档
最新文档