多普勒效应在生活中的应用

多普勒效应在生活中的应用
多普勒效应在生活中的应用

多普勒效应的应用

摘要

所谓多普勒效应就是,当声音,光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。

【关键词】:多普勒效应应用雷达农业

多普勒效应的应用

多普勒效应在我们的生活中已经用到了方方面面,比如车辆测速,灾后救援,超声波诊断病情等,而这些都基于多普勒效应在在实际生活中的应用。为了更好地理解下面我们举几个个例子来看看多普勒效应在生活中的实使用。

一、雷达测速仪

检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据反射波频率变化的多

少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。这样就可以对超速的汽车做出记录了。

二、多普勒效应在医学上的应用

在临床上,多普勒效应的应用也不断增多,近年来迅速发展起来的超声脉冲检查仪就是一个很好的例子。当声源或反射界面移动时,比如当红细胞流经心脏大血管时,从其表面散射的声音频率发生改变,由这种频率偏移就可以知道血流的方向和速度,如红细胞朝向探头时,根据Doppler原理,反射的声频则提高,如红细胞离开探头时,反射的声频则降低。医生向人体内发射频率已知的超声波,超声波被血管中的血流反射后又被仪器接收,测出反射波的频率变化,就能知道血流的速度.这种方法俗称“彩超”,可以检查心脏、大脑和眼底血管的病变。

另外一个例子就是心脏彩色多普勒的应用:韦伯超人射来时,他的频率会增高,音调会变尖:而背离人去时,频率则会降低,音调变粗。这就是多普勒效应造成的。心脏彩色多普勒正是应用这种原理,将心脏图样画的极具观赏性,成为目前世界上最先进的超声诊断设备。这种技术已成为现代临

床医学中不可缺少的诊断工具,目前来说是诊断心脏病特别是先天性心脏病的有效方法。

三、移动通信中的多普勒效应

在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑"多普勒效应"。虽然在日常的生活中我们步行或者坐车因为速度的缘故不能产生明显的多普勒效应即频率的偏差,但是一旦换作了飞机等高速移动的设备时,这种偏差就被N倍放大了,这也就是通信收到了多普勒效应的影响,从而导致通信的混乱,所以在现代通信中必须充分考虑到他的影响,从而也使通信工程增加了更多的复杂性。

四.农业中的多普勒效应

多普勒效应不仅运用于各种工业和军事领域,农业也因此而受惠了。利用多普勒效应来增产抗病就是个很好的例子。

植物声频控制技术是建立在植物经络系统的理论基础上,利用He-Ne激光多普勒效应测振仪,精确地测定出植物

自发声和接受声的频率,并测定出植物自发声频率与环境因子如温度、湿度及组织含水量之间的关系,做了频普分析,进而研制了植物声频发生器。

利用声频发生器对植物施加特定频率的声波,与植物发生共振,促进各种营养元素的吸收#传输和转化,从而增强植物的光和作用和吸收能力,促进生长发育,达到增产、增收、优质、抗病的目的。

五.多普勒效应在天气预报上的应用

我国南方一直是饱受夏季季风气候和台风等灾害天气影响的严重地区之一。多普勒天气雷达的应用提高了我国夏季主要灾害天气梅雨锋中尺度强暴雨的预报监测能力,也结束了荆江地区无高性能监测雷达的历史。我国首部可移动式多普勒天气雷达由中国气象局和湖北省荆州市政府共同投资,是国家973项目“长江流域梅雨锋强暴雨外场试验”大型重点气象工程的关键设备,日前在湖北荆州启用。

参考文献

1.李斌基于电磁波多普勒效应测速应用研发《中国西部科技》 2009年36期

2.王绪本超声速多普勒效应《现代物理知识》 1998年04期

波的多普勒效应

波的多普勒效应 (应化2,闻庚辰,学号:130911225) 摘要:在生活中,我们常常遇到波源与观测者发生相对运动的情形,如站在铁路旁听着高速行驶的列车拉着响笛飞驰而过,此时你会感觉到响笛音调的明显变化,这就是人们常说的多普勒效应。本文从多普勒效应的基本原理出发,结合声波中的具体实例,介绍了多普勒效应在天文学、医学和公共交通方面的应用。最后,发散地想了原理变化后的一些现象,简要说了冲击波、马赫锥的相关内容。 关键词:波,多普勒效应,生活,现象,物理,应用。 一、多普勒效应基本原理 首先,先来让我们以声波为例具体分析一下多普勒效应的三种情况。物理量的定义:设波源为S,观察者相对介质的运动速度是v0,波源相对介质的运动速度是vs,声波在介质中的传播速度为u,波源的频率、波的频率、观察者收到的频率分别是,,B 二、多普勒效应的简单理解 如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。 三、多普勒效应的应用 (一)、天文学 我们应该知道,宇宙中的天体是有它们特有的光谱的。科学家爱德文〃哈勃通过研究光谱,使用多普勒效应得出宇宙正在膨胀的结论:他发现远离银河系的天体发射的光线频率变低,即移向光谱的红端,称为红移,天体离开银河系的速度越快红移越大,这说明这些天体在远离银河系。反之,如果天体正移向银河系,则光线会发生蓝移。 (二)、医学 我们知道血管内血流速度和血液流量,它对心血管的疾病诊断具有一定的价值,特别是对

多普勒效应及其应用1

多普勒效应及其应用 中文摘要:本文介绍了多普勒效应的发展过程和理论解释,通过具体例子重点讲述了声波和光波的多普勒效应, 并且介绍了多普勒效应在各领域中的应用及多普勒效应的应用原理。说明了多普勒效应在生活中的普遍性以及研究多普勒效应的重要性 主题词:多普勒效应; 原理,应用 正文: 引言:在日常生活中,我们有过这样的经验,在铁路旁听行驶中火车的汽笛声,当火车鸣笛而来时,人们会听到汽笛声的音调变高.相反,当火车鸣笛而去时,人们则听到汽笛声的音调变低.像这样由于波源或观察者相对于介质有相对运动时,观察者所接收到的波频率有所变化的现象就叫做多普勒效应.这种现象是奥地利物理学家多普勒(1803~1853)于1842年首先发现的,因此以他的名字命名.多普勒效应的正式提出是1842年在布拉格举行的皇家波西米亚学会科学分会会议上的论文《论天体中双星和其他一些星体的彩色光》。该论文的主要结论是: (1)如果一个物体发光,在沿观察者的视线方向以可与光速相比拟的速度趋近我们,或后退,那么这一运动必然导致光的颜色和强度的变化。 (2)如果在另一方面一个发光物体静止不动。而代之以观察者直接朝向或者背离物体非常快速的运动,那么所有的这些频率变化都会随之发生。 (3)如果这一“趋向”和“背离”不是按照上述假定的那样,沿着原来视线的方向,而是与视线成一夹角的方向,那么除了颜色和光强的变化,星体的方向也要变化,这样一星体同时会在位置上发生明显变化。[1] 论文首次发表出来因为没有足够的实验数据和理论依据,因此被很多人质疑和批评。1845年在荷兰进行的火车笛声实验验证了多普勒效应的正确性,多普勒效应才开始得到广泛重视并应用于实际。多普勒效益的第一次应用始于战争服务,第一次世界大战末期,军用飞机开始出现,英国由于国土面积小在遭遇空袭预警能力很弱,饱受了来自空中的洗劫。第二次世界大战前期,英国物理学家罗伯特·沃森-瓦特根据多普勒效应的原理研制出了最早期的雷达,在英国的东海岸建立了对空雷达警戒网,该雷达墙天线有100米高,能测到160千米以外的敌机,依靠这个雷达墙,英国总能及时准确的测出德国飞机的架数、航向、速度和抵达英国本土的时间,牢牢把握住了战争主动权,有效的降低了德国空军的杀伤力,在这场英国保卫战中扮演着不可替代的决定性的作用。 多普勒效应的原理 波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。 假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ 声波中的原理 设声源的频率为v,声波在媒质中的速度为V,波长λ=V/v。声波在媒质中传播的速度与波源是否运动无关,故总是以决定于媒质特性的速度V来传

多普勒效应及其应用

多普勒效应及其应用 姓名:许涛班级:应物二班学号:20143444 天津理工大学理学院 摘要:在多普勒效应中有多普勒频移产生,并且与波源和观测者的相对运动情况有关,以此为基础讨论了多普勒效应在卫星定位、医学诊断、气象探测中的应用。 关键词:多普勒效应;定位;测速。 引言: 在日常生活中,人们都有这样的经验,火车汽笛的音调,在火车接近观察者时比其远离观察者时高.此现象就是多普勒效应.它是由奥地利物理学家多普勒于1842年首先发现的.多普勒效应是波动过程的共同特征.光波(电磁波)也有多普勒效应,并于1938年得到证实.此效应在卫星定位、医学诊断、气象探测等许多领域有着广泛的应用。 多普勒效应及其表达式 由于波源和接收器(或观察者)的相对运动,使观测到的频率与波源的实际频率出现差别.这种现象称为多普勒效应。 机械波多普勒效应的普遍公式 设波源S发出的波在媒质中的传播速度为v、频率为fS,接受器R接收到的频率为fR,以媒质为参考系,波源与接收器相对于媒质的运动速度分别为uS和uR,uS和uR与波源和接收器连线的夹角分别为θS和θR,如图1所示.此时可以推导得到 fR= v+uRcosθR /v-uScosθS fS. (1) 此式为波源和接收器沿任意方向彼此接近时的多普勒效应公式.如果波源和接收器沿任意方向彼此远离时如图2所示,同理可推导出 fR=v-uRcosθR /v+uScosθS fS. (2) (1)、(2)两式就是机械波多普勒效应的普遍公式,由两式我们可以得到诸如S 和R在同一直线上运动时多普勒效应各公式的表示形式.由此可以看出多普勒效应不但与波源S和接收器R的运动速度有关,而且还与S和R的相对位置有关。 1.2 光波(电磁波)多普勒效应的普遍公式 因为光波(电磁波)的传播不依赖弹性介质,它与机械波需要靠媒质而传播有所不同,所以公式 (1)和(2)对光波(电磁波)不再适用.但是从理论上我们可以推证出光波的多普勒效应公式.若光源发出光波的频率记作f0,观测者测得该光的频率为f,通过计算可得: f=f0√(1-β) /1-βcosθ. (3) 其中,β= v c ,c为真空中的光度,v为光源相对于观测者的运动速度,θ为光源

多普勒效应在生活中的应用(1)

东南大学 课程小论文 题目多普勒效应的应用 院系土木工程学院 专业土木工程 姓名赵天辉 年级 05110229 2011年12月13日 摘要

所谓多普勒效应就是,当声音,光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。 【关键词】:多普勒效应应用雷达农业 多普勒效应的应用 多普勒效应在我们的生活中已经用到了方方面面,比如车辆测速,灾后救援,超声波诊断病情等,而这些都基于多普勒效应在在实际生活中的应用。为了更好地理解下面我们举几个个例子来看看多普勒效应在生活中的实使用。 一、多普勒效应 当波源和观察者之间有相对运动时,观察者会感到频率发生变化的现象,叫多普勒效应。多普勒效应是在波源与观察者之间有相对运动时产生的现象。波源相对于介质不动,当观察者朝着波源运动时,观察者接收到的频率增大;当观察者远离波源时,观察者接收到的频率减小。当观察者的速度与波速相等时接收不到波,此时接收到的频率变为零。观察者相对于介质不动,当波源接近观察者时,观察者接收到的频率增大;波源远离观察者时,观察者接收到的频率减小。波源和观察者同时相对于介质运动,综合以上两种情况可知,一方面由于观察者运动,使波面通过观察者的速度增大或减小;另一方面由于波源的运动,使观察者所在处的波的波长缩短或伸长。不仅机械波有多普勒效应,电磁波也有多普勒效应。 二、多普勒效应的应用 1.雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。这样就可以对超速的汽车做出记录了。 2.多普勒效应在医学上的应用 在临床上,多普勒效应的应用也不断增多,近年来迅速发展起来的超声脉冲检查仪就是一个很好的例子。当声源或反射界面移动时,比如当红细胞流经心脏大血管时,从其表面散射的声音频率发生改变,由这种频率偏移就可以知道血流的方向和速度,如红细胞朝向探头时,根据Doppler原理,反射的声频则提高,如红细胞离开探头时,反射的声频则降低。医生向人体内发射频率已知的超声波,超声波被血管中的血流反射后又被仪器接收,测出反射波的频率变化,就能知道血流的速度.这

多普勒效应 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节 实验名称 多普勒效应及声速的测试与应用 教师评语 实验目的与要求: 1. 加深对多普勒效应的了解 2. 测量空气中声音的传播速度及物体的运动速度 主要仪器设备: DH-DPL 多普勒效应及声速综合测试仪,示波器 其中, DH-DPL 多普勒效应及声速综合测试仪由实验仪、智能运动控制系统和测试架三个部份组成。 实验原理和内容: 1、 声波的多普勒效应 实际的声波传播多处于三维的状态下, 先只考虑其中的一维(x 方向)以简化其处理过程。 设声源在原点,声源振动频率为f ,接收点在x 0,运动和传播都在x 轴向上, 则可以得到声源和接收点没有相对运动时的振动位移表达式: ???? ? ?-=000cos x c t p p ωω , 其中00x c ω-为距离差引起的相位角的滞后项, 0c 为声速。 然后分多种情况考虑多普勒效应的发生: 1.1 声源运动速度为S V ,介质和接收点不动 假设声源在移动时只发出一个脉冲波, 在t 时刻接收器收到该脉冲波, 则可以算出从零时刻到声源发出该脉冲波时, 声源移动的距离为)(0c x t V S -, 而该时刻声源和接收器的实际距离为 )(00c x t V x x S --=, 若令S M =S V /0c (声源运动的马赫数), 声源向接收点运动时S V (或S M )

为正, 反之为负(以下各个马赫数的处理方法相同, 均以相互靠近的运动时记为正)。 则距离表达式变为)1/()(0S S M t V x x --=, 代回到波函数的普适表达式中, 得到变化的表达式: ????? ????? ? ?--=0001cos c x t M p p S ω 可见接收器接收到的频率变为原来的 S M 11 -, 即: 1.2 根据同样的计算法, 通过计算脉冲波发出时的实际位移并代换普适表达式中的初始位移量, 便可以得到声源、介质不动,接收器运动速度为r V 时, 接收器接收到的频率为 1.3介质不动,声源运动速度为S V ,接收器运动速度为r V ,可得接收器接收到的频率为 1.4 介质运动。 同样介质的运动会改变声波从源向接收点传播的实际表观速度(真实声速并没有发生变化), 导致计算收发声时的实时位移量变为t V x x m -=0, 通过同样的计算法, 可以得到此状态下接收器收到的频率为(以介质向接收器运动时, 马赫数记为正) 另外, 当声源和介质以相同的速度和方向运动时, 接收器收到的频率不变(从定性的分析即可得到这一点结论)。 本实验重点研究第二种情况, 即声源和介质不动, 接收器运动。 设接收器运动速度为r V ,根据1.2 式可知,改变r V 就可得到不同的r f ,从而验证了多普勒效应。另外,若已知r V 、f ,并测出r f ,则可算出声速0c ,可将用多普勒频移测得的声速值与用时差法测得的声速作比较。若将仪器的超声

多普勒效应的应用

多普勒效应的应用 摘要:所谓多普勒效应就是,当声音,光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。在日常生活中,人们都有这样的经验,火车汽笛的音调在火车接近观察者时比其远离观察者时高此现象就是多普勒效应。它是由奥地利物理学家多普勒于1842年首先发现的。多普勒效应是波动过程的共同特征。光波也有多普勒效应。此效应在卫星定位、医学诊断、气象探测等许多领域有着广泛的应用。 The so-called doppler effect is When sound is light and radio waves such as vibration source and the observer to the relative velocity v relative motion Observers received from the frequency of the vibration frequency and vibration source of the different Because this phenomenon is the earliest discovered Austrian scientist doppler So called the doppler effect In daily life People have such experience The tones of the train whistle when the train approaching observer is higher than its far away from the observer this phenomenon is called the doppler effect It is by the Austrian physicist doppler first found in 1842 The doppler effect is a common characteristic of wave process Light waves have the doppler effect This effect in the satellite positioning medical diagnosis of meteorological observation and many other fields has been widely used 关键词:多普勒效应、声波、光波、电磁波 Doppler effect Acoustic waves are electromagnetic waves 正文: 一、声波的多普勒效应及运用 当一列呜笛的火车经过某观察者时,他会发现火车汽笛音调由高变低。这是因为声调的高低是由观察者耳膜振动频率的不同决定的,如果频率高,听起来声调就高,反之听起来声调就低,这就是声波的多普勒效应。当火车以恒定速度驶近观察者时,汽笛发出的声波在空气中的传播结果是波长缩短。因此,在一定时间间隔内进入人耳的声波频率就增加了,这就是观察感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大、频率变低,因此听起来就显得低沉。 定量分析可得观测到的波的频率f'=(v+u)f/(v-w),式中w为波源相对于介质的运动速度、u为观察者相对于介质的速度、v表示波在静止介质中的传播速度、f表示波源的固有频率。当观察者朝波源运动时,u取正;当观察者背离波源运动时,u取负。当波源朝观察者运动时,w取负;当波源背离观察者动时,w取正。从上式易知,当观察者与声源相互靠近时,f'>f;当观察者与声源相互远离时f'

相对论多普勒效应

第五章相对论 ★非相对论多普勒效应(回顾) 1842.(奥)多普勒 波源S 与接收器(如人耳等)有相对运动,从而接收器接收到的频率有变化的现象---多普勒效应1. 波源S 静止(u S =0,人动u 人≠0) ①人朝向S 运动 人耳在Δt 内收到(u +u 人) Δt /λ个波长 v u u u u u t t v 人人耳内收波长数 +=+=ΔΔ=λ ②人远离S ) ( 0自证人 耳v u u u v ?= §5.5 相对论多普勒效应 如火车进站声频高;火车出站声频低。λ λu v u =0 声波频率, 声波长,设:声波速人耳 S λ 介质 波对人耳速度 波对人耳速度

第五章相对论 2.观察者静止(u 人=0),波源S 动(u S ≠0)①波源S 朝向人运动: 由图知:波长压缩了即: 00 0 v u u u v u v u u T u u u v S S S ?= ?=?=′=∴λλ耳②波源S 远离人:) ( 0自证耳v u u u v S += 介质 ? ??S u r S ?人耳 T u S T u S ?=′λλu S T λ T u S ?=′λλu S =0的第二波 3.一般情况: cos cos 0v u u u u v S α β m 人±=耳规律:波源动?波长变; 接收器动?接收完整波长数变. 波对人耳速度波对人耳速度 可见:当波源或观察者在二者联线垂直方向(α=β=π/2)上运动时, 无多普勒效应。(见本教材《力学》p237)

第五章相对论 ★相对论多普勒效应 光波传播不需介质, 这与机械波声波完全不同;由光速不变原理,无论是光源向接收器运动,还是接收器向光源波运动,对接收器来说光速都是c 。? ?T u S ?因此,可仿声波源朝向接收器情形如图接收器(不动)→S:光源(运动)→S':光波周期T' =T 0,ν'= ν0光波周期T ,频率ν相对论?, 12 β?′=T T c u S =βλ= λ-u S T=cT-u S T =(c-u S )T 缩 T u S ?=λλ 缩 接收频率为:0 11)(νββ λν?+==?==L T u c c c S 缩 ※光源与接收器在连线上 S u r S ?x 接收器 无介质

多普勒效应的原理及应用

2019年2月 多普勒效应的原理及应用 徐睦然(云南师范大学附属中学呈贡校区,650500) 【摘要】在科技飞速发展的现如今,多普勒效应已被广泛应用于物理学,医学,天文学等各大领域当中。我们可以通过它解释我们身边发生的不少现象,从而重新认识多普勒效应在这些领域中的应用。本文将以高中生的视角根据列车通过路口的实际情况建立合适的物理模型,从声学角度出发,在理论上重点分析列车发出声音的频率在不同条件下因多普勒效应产生的变化,并简单介绍多普勒效应在其他领域的应用。 【关键词】多普勒效应;物理建模;接收频率 【中图分类号】O442【文献标识码】A【文章编号】1006-4222(2019)02-0313-03 1引言 在日常生活中,我们发现:当列车通过路口时,我们听到 的声音音调会有所变化。这便是多普勒效应造成的现象。多普 勒效应是为纪念奥地利科学家多普勒(Christian Johann Doppler) 而以其名字命名的,他于1842年首次提出这一理论。这是一 种当波源与观察者存在相对运动时,观察者接收到的波的频 率会发生变化的现象,该现象被称为多普勒效应[1]。不仅在如 声波的机械波中会出现这样的现象,在光这类电磁波中也会 发生多普勒效应(光谱中的红移与蓝移)[1]。多普勒效应的应用 十分广泛,不仅在经典物理中,其在交通、医学、天文学等各个 领域更是发挥了显著作用。因此,对多普勒效应的原理及应用 的分析探究是具有重要意义的。在此基础之上,本文还将通过 建立列车通过时的实际情况建立物理模型帮助大家切实感受 多普勒效应,并对其在现代的具体应用作简单介绍。 2多普勒效应的原理 多普勒认为,当波源与观察者存在相对运动时,观察者接 收到的波的频率和波长会发生变化[2]。在波源频率保持不变的 情况下,波源相对观测者远离时,观测者接收的频率变低,波 长变长;而波源相对观测者靠近时,观测者接收的频率变高, 波长变短。 假设波源的频率为f0,波长为λ,周期为T,波在介质中传 播的速度为v,观测者接收到的波频率为f。以下将通过三种 情况讨论分析多普勒效应的作用效果: 2.1观测者相对于参考系静止,波源作相对运动 假设观测者静止,波源以速度v A相对于观测者运动(假 设v A方向与观测者成夹角α,如图1),则观测者接收到波的 频率为: f=v v-v A cosαf0(1) 式(1)说明,当波源相对于观测者运动方向成锐角时, cosα>0,观测者接收到波的频率比波源原本的频率大;当波源 相对于观测者运动方向成顿角时,cosα<0,观测者接收到波的频率比波源原本的频率小;当波源相对于观测者运动方向成直角时,cosα=0,观测者接收到波的频率与波源原本的频率相等。 2.2波源相对于参考系静止,观测者作相对运动 假设波源静止,观测者以速度vВ相对于波源运动(假设vВ方向与波源成夹角β,如图2),则观测者接收到波的频率为[3] f=v+vВcosβv f0(2) 式(2)说明,当观测者相对于波源运动方向成锐角时, cosβ>0,观测者接收到波的频率比波源原本的频率大;当观测 者相当于波源运动方向成钝角时,cosβ<0,观测者接收到波的频率比波源原本的频率小;当观测者相对于波源运动方向成直角时,cosβ=0,观测者接收到波的频率与波源原本的频率相等。 2.3波源与观测者同时作相对运动 假设波源以速度v A、观测者以速度vВ同时相对于参考系运动时(若v A和vВ相对于x轴有夹角,则分别设为α与β,如图3),观测者接收到波的频率为[3]: f=v+vВcosβ v-v A cosαf0(3)式(3)是普遍意义下机械波的多普勒效应的表达式,说明波源与观测者相向运动时,观测者接收到波的频率比波源原本的频率大;波源与观测者相离运动时,观测者接收到波的频率比波源原本的频率小。 综合以上多普勒原理的分析,我们不难知道,波源与观测者二者作相向运动时,观测者接收到波的频率大于波源原本的频率;二者作相离运动时,观测者接收到波的频率小于波源原本的频率;特别地,当二者不存在相对运动时,观测者接收到波的频率不发生变化。 进一步分析可知,二者在相向运动时,观测者接收到的波是被“压缩”的波,波长变短,接收频率升高;而二者在相离运动时,观测者接收到的波是被“拉伸”的波,波长变长,接收频率降低。 多普勒效应存在于任意波动过程之中,其在我们的日常生活中无处不在。下面本文将对生活中最常见的例子—— —列车运行过程进行分析,并以此为例具体阐述多普勒效应在生活中的应用。 3多普勒效应在列车运行中的应用 图1仅波源作相对运动示意图 图2仅观测者作相对运动示意图 图3波源与观测者同时作相对运动示意图 图4列车运动示意图 论述313

多普勒效应在生活中的应用

多普勒效应在生活中的应用 ——李维土木工程系2003级2班 20030058 什么是多普勒效应? 当一辆汽车响着喇叭从你身边疾驶而过时,喇叭的音调会由高变低,好像汽车驶来的时候唱着音符“i”,离开的时候就唱音符“7”了.1842年,奥地利物理学家多普勒带着女儿在铁道旁散步时就注意到了类似的现象,他经过认真的研究,发现波源和观察者互相靠近或者互相远离时,观察到的波的频率都会发生变化,并且做出了解释.人们把这种现象叫做多普勒效应. 多普勒效应在我们日常生活中是可以感觉到的,如火车呜笛,从远到近时,人的耳朵感到的笛声是尖的,火车经过之后由近而远离去时,则笛声由尖变粗。这是因为火车笛声具有某个频率,当朝向人来或背离人去时,火车与人之间相对运动,发生了频率的移动(频移)现象。 对于声波和其他波动,情况相似:当波源和观察者相对静止时,1s内通过观察者的波峰(或密部)的数目是一定的,观察到的频率等于波源振动的频率;当波源和观察者相向运动时,1S内通过观察者的波峰(或密部)的数目增加,观察到的频率增加;反之,当波源和观察者互相远离时,观察到的频率变小。 多普勒效应在生活中的应用 一、雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 二、多普勒效应在医学上的应用 在临床上,多普勒效应的应用也不断增多,近年来迅速发展起来的超声脉冲Doppler检查仪,当声源或反射界面移动时,比如当红细胞流经心脏大血管时,从其表面散射的声音频率发生改变,由这种频率偏移就可以知道血流的方向和速度,如红细胞朝向探头时,根据Doppler原理,反射的声频则提高,如红细胞离开探头时,反射的声频则降低。医生向人体内发射频率已知的超声波,超声波被血管中的血流反射后又被仪器接收,测出反射波的频率变化,就能知道血流的速度.这种方法俗称“彩超”,可以检查心脏、大脑和眼底血管的病变。 心脏彩色多普勒的应用:朝向人来时,频率增高,音调变尖:背离人去时,频率降低,音调变粗。这种频移现象就是多普勒效应造成的。心脏彩色多普勒正是应用这种原理,集所有超声诊断功能于一体,把心脏血流描绘得微妙微肖,成为目前世界上最先进的超声诊断设备。心脏彩色多普勒是一种非侵入性检查心脏病的重要技术之一,对病人无痛苦,无损害,

多普勒效应的研究与应用

1 引言 因波源和观测者有相对运动而出现的观测频率与波源频率不相等的现象,叫做多普勒效应。1842年,多普勒发表论文首次论述多普勒效应。他推导出当波源和观察者有相对运动时,观察者接收到的波长频率会改变,在运动的波源前面波被压缩,波长变短,频率变高;在运动的波源后面波长变长,频率变低。波源的速度越高,产生的这种频率变化越大。观测频率变化的程度,可以计算出波源沿观测方向运动的速度。从此关于多普勒发现的这种现象得到了人们的广泛关注,并拉开了研究多普勒效应及运用的序幕。2003年河南大学物理系尹国盛以光子假设为前提 ,利用动量守恒定律和能量守恒定律导出了相对论多普勒公式,包括经典力学中的多普勒公式和相对论力学中的多普勒公式,并简单讨论了经典力学的多普勒效应[1]。在同年3月湖北工学院数理系的别业广通过研究认为多普勒效应是一切波动过程的共同特征,不仅机械波有多普勒效应,电磁波也有多普勒效应[2]。在6月湖北工学院数理系的徐国旺和别业广在引入速度矢量的基础上,导出了接收频率与本征频率的关系,并对多普勒效应中观察者所在处的振动方程进行了初步探讨[3]。除此之外 ,他们还用Mathematica 对一实例进行了动画演示。2004年陕西科技大学理学院的刘运以静止和运动的原子发射光子为例 ,运用能量及动量守恒定律 ,从动力学角度研究了光的多普勒效应 ,说明光的多普勒效应不但是一个运动学问题 ,而且也是一个动力学问题[4]。2007年5月重庆交通学院物理教研室的胡成华从光的粒子性出发 ,分析计算了运动原子和静止原子发射的光子的频率 ,得到了完全相同的多普勒频移公式[5]。在接下来的一年中江西省气象科学研究所的马中元回顾了雷达气象学的发展史和多普勒雷达工作原理,指出雷达利用电磁波的散射与吸收、

多普勒效应及其应用

多普勒效应及其应用 学号:200910800028 姓名:闻丽丽 摘要:多普勒效应是波源和观察者有相对运动时观察者接收到的波的频率与波源发出频率不同的现象。这一现象最初是由奥地利物理学家多普勒发现的,是为纪念多普勒而命名的,他于1842年首先提出这一理论,并被天文学家用来测量恒星的视向速度,先已广泛应用于各种技术中。 关键字:多普勒相对运动频率声波光波应用 正文: 一、多普勒效应的发现 1842年奥地利一位名叫多普勒的数学家、物理学家。一天,他正路过铁路交叉处,恰逢一列火车从他身旁驰过,他发现火车从远而近时汽笛声变响,音调变尖,而火车从近而远时汽笛声变弱,音调变低。他对这个物理现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的现象。这就是频移现象。因为,声源相对于观测者在运动时,观测者所听到的声音会发生变化。当声源离观测者而去时,声波的波长增加,音调变得低沉,当声源接近观测者时,声波的波长减小,音调就变高。音调的变化同声源与观测者间的相对速度和声速的比值有关。这一比值越大,改变就越显著,后人把它称为“多普勒效应”。 二、多普勒效应的解析 原理:多普勒效应指出,波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。但是由于缺少实验设备,多普勒当时没有用实验验证、几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ。 产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的频率会改变.在单位时间内,观察者接收到的完

多普勒效应及应用

多普勒效应的本质 波被压缩,当物体沿着靠近观察者的方向运动时,波长会被压缩,频率会升高。反之波长被拉长,频率降低。 多普乐效应应用 1、雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。这样就可以对超速的汽车做出记录了。 2、多普勒效应在医学上的应用 在临床上,多普勒效应的应用也不断增多,近年来迅速发展起来的超声脉冲检查仪就是一个很好的例子。当声源或反射界面移动时,比如当红细胞流经心脏大血管时,从其表面散射的声音频率发生改变,由这种频率偏移就可以知道血流的方向和速度,如红细胞朝向探头时,根据Doppler原理,反射的声频则提高,如红细胞离开探头时,反射的声频则降低。医生向人体内发射频率已知的超声波,超声波被血管中的血流反射后又被仪器接收,测出反射波的频率变化,就能知道血流的速度.这种方法俗称“彩超”,可以检查心脏、大脑和眼底血管的病变。另外一个例子就是心脏彩色多普勒的应用:韦伯超人射来时,他的频率会增高,音调会变尖:而背离人去时,频率则会降低,音调变粗。这就是多普勒效应造成的。心脏彩色多普勒正是应用这种原理,将心脏图样画的极具观赏性,成为目前世界上最先进的超声诊断设备。这种技术已成为现代临床医学中不可缺少的诊断工具,目前来说是诊断心脏病特别是先天性心脏病的有效方法。 3、宇宙学研究中的多普勒现象 目前通过多普勒效应制成的各种仪器已经广泛运用在对宇宙的观察和研究之中了。 20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去。1929年哈勃根据光谱红移总结出著名的哈勃定律:星系的远离速度v与距地球的距离r成正比,即v=Hr,H为哈勃常数根据哈勃定律后来更多天体红移的测定,人们

多普勒效应应用举例【多普勒效应及其应用】

多普勒效应应用举例【多普勒效应及其应用】多普勒效应及其应用 院系班级:机电工程学院姓名:危建伟学号: [1**********]7 摘要:多普勒效应是指自然界普遍存在的一种效应,它是由奥地利科学家丁. Doppler于1842年最先发现,并且将其发表在论文上,。多普勒推导出当波源和观察者有相对运动时,观察者接收到的波频会改变,并且做了大量的实验证明它。现今多普勒效应是物理学中的重点,在我们的现实生活中也是常见的,人们利用多普勒效应制成声呐、雷达等设备在航海、军事上都有重要影响,因此,研究多普勒效应对我国的进步与发展具有重要意义。关键词:多普勒效应;应用 1 多普勒效应的发展史 1.1 多普勒效应的发现 1842年奥地利一位名叫多普勒的数学家、物理学家。一天,他正路过铁路交叉处,恰逢一列火车从他身旁驰过,他发现火车从远而近时汽笛声变响,音调变尖,而火车从近而远时汽笛声变弱,音调变低。他对这个物理现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源

频率的现象。这就是频移现象。因为,声源相对于观测者在运动时,观测者所听到的声音会发生变化。当声源离观测者而去时,声波的波长增加,音调变得低沉,当声源接近观测者时,声波的波长减小,音调就变高。音调的变化同声源与观测者间的相对速度和声速的比值有关。这一比值越大,改变就越显著。为了纪念多普勒,后人把它称为“多普勒效应”。 1.2 多普勒效应的发展 自从多普勒效应被发现以后,许多科学家都致力于研究多普勒效应的作用,多领域的用途。例如,医学、宇宙学、物理学。 特别是科学家法国物理学家斐索(1819-1896),他于1848年独立地对恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化. 如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移.。 2 多普勒效应的计算公式 设观察者与波源沿同一直线运动,它们相对于媒介的速度分别为v和u,波的传播速度为V,波源发出的频率为f,而观察者接收到的

利用MATLAB仿真多普勒效应

利用MATLAB 仿真多普勒效应 某某某 摘 要:分析多普勒效应特性,建立数学模型,利用MATLAB 软件对其进行仿真试验,进行定量分析,根据仿真试验结果绘制出听者接收到的信号的频率变化曲线以及用信号处理工具箱函数spectrogram 绘制的时间频率图,并生成相应的声音。 关键词:Doppler effect MATLAB/ Simulink 0 研究背景 多普勒效应是由生在德国的奥地利物理学家多普勒(Johann Doppler 1802一1853)发现的。1845年,荷兰气象学家巴依斯·巴洛(h.d.Buys Ballot)测得了声音的多普勒效应。一辆汽车在我们身旁急驰而过,车上喇叭的音调有一个从高到低的突然变化;站在铁路旁边听火车的汽笛声也能够发现,火车迅速迎面而来时音调较静止时为高,而火车迅速离去时则音调较静止时为低。这是日常生活中的一个多普勒效应的例子。在天文、通信等领域还有众多的例子。 当波源或观察者相对于媒质运动时,或者说波源和观察者有相对运动时,观察者接受到的震动频率与波源震动频率不同的现象,称为多普勒效应。 对于多普勒效应的讨论,一般仅限于声源和听者在同一直线上运动的情况。当声源和听者不在同一直线上运动时,接收频率变化比较复杂,听者接收到的信号波形方程也难以用解析式表示。 MATLA 具有强大的数值计算和仿真功能以及图形技术。本文试图从MATLAB 编程的角度出发,应用MATLAB 的Simulink 仿真试验方法,建立仿真的试验环境,对声源和听者不在同一直线上运动的情况下产生的多普勒效应特性进行分析,产生极好的模拟,实现多普勒效应的验证,绘制出听者接收到的信号的频率变化曲线以及用信号处理工具箱函数spectrogram 绘制的时间频率图,并生成相应的声音。 1 基本原理 以下公式描述了多普勒效应现象的各个物理量之间的定量关系: =f s v f /cos 10θ+ (1-1) 其中, f0是声源发出的声音的频率; v 是听者与声源的相对运动速度; θ为速度矢量与声源和听者的连线夹角; v s 为声音在空气中传播的速度,f 是听者听到的声音频率。 2 理论模型 多普勒效应---设声源距离听者的水平距离为0x ,以v 的速度沿水平方向向听者直线驶

多普勒效应原理及其应用

大学生物理论文及科技制作竞赛 多普勒效应原理及其应用 虞金花(08009203) (东南大学自动化学院,南京,211189) 摘要:多普勒效应是波源和观察者有相对运动时观察者接收到的波的频率与波源发出不同频率的现象。 本文首先介绍声波和光波中多普勒效应的原理,然后结合原理阐述多普勒效应在我们现在生活中的广泛应用。 关键词:多普勒效应;原理;应用 Doppler Effect’s Principle and Application Yu Jin Hua (Department of Automation Southeast University, Nanjing, 211189) Abstract: Doppler Effect is a phenomenon that when the waves and observers have relative motion, the frequency the observers receive is different from the frequency that it originally was. First,this paper introduces the principle of Doppler Effect, then explain its wide use in our daily life with the combination of its principle. Key words:Doppler Effect;principle;appplication 多普勒效应是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒而命名的,他于1842年首先提出了这一理论。多普勒认为,物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高 (蓝移)。在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低 (红移)。波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。恒星光谱线的位移显示恒星循着观测方向运动的速度。除非波源的速度非常接近光速,否则多普勒位移的程度一般都很小。所有波动现象 (包括光波) 都存在多普勒效应。1多普勒效应的原理 波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。 假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ。 1.1声波中的原理 设声源的频率为v,声波在媒质中的速度为V,波长λ=V/v。声波在媒质中传播的速度与波源是否运动无关,故总是以决定于媒质特性的速度V来传

多普勒效应及其应用

多普勒效应及其应用 摘要:本文首先推导出机械波和光波(电磁波)多普勒效应普遍公式,在多普勒效应中有多普勒“红移”和“蓝移”产生,并且与波源和观察者的相对运动情况有关,以此为基础讨论了多普勒效应在激光测速、卫星定位、激光冷却中性原子,超声多普勒血流仪以及利用超声波的多普勒效应在医学上进行诊断。 关键字:多普勒效应;红移;蓝移;定位;测速;激光冷却;多普勒冷却;超声多普勒血流仪;医学诊断 Doppler effect and its application Abstract: This paper first derives the mechanical waves and light waves ( electromagnetic waves) Doppler effect formula, the Doppler effect in Doppler" red" and" blue shift", and with the source and the observer relative motion, as a basis for discussion of the Doppler effect in laser velocimetry, satellite positioning, laser cooling of neutral atoms, ultrasonic Doppler blood flowmeter and ultrasonic Doppler effect in medical diagnosis Keywords : Doppler effect; shift; blue shift; positioning; velocity measurement; laser cooling; Doppler cooling; ultrasonic Doppler blood flowmeter; Doppler medical diagnosis 在日常生活中,人们都有这样的经验,火车汽笛的音调,在火车接近观察者时比其远离观察者时高。此现象就是声波的多普勒效应。它是由奥地利物理学家多普勒于1842年首先发现的。多普勒效应是波动过程的共同特征。电磁波频域的多普勒效应在1938年才得到证实。现在,此效应在激光测速、卫星定位、医学诊断、气象探测等很多领域有着广泛的应用。 1 多普勒效应及其表达式 由于波源和接收器(或观察者)的相对运动,使观测到的频率与波源的实际频率出现差异。这种现象叫多普勒效应。 1.1 机械波多普勒效应的普遍公式 设波源S 发出的波在媒质中的传播速度为v 、频率为S f , 接收器R 接收到的频率R f ,,以媒质为参考系,波源与接收器相对于媒质的运动速度分别为S u 和R u , S u 和R u 与波源和接收器连线的夹角分别为S θ和R θ,如图1.1所示,此时可以推

多普勒效应及声速的测试与应用

多普勒效应及声速的测试与应用 对于机械波和电磁波而言,当波源和观察者(或接收器)之间发生相对运动,观察者接收到的波的频率和波源的频率不同,这种现象称为多普勒效应。当波源、观察者不动,而传播介质运动时,或者波源、观察者、传播介质都在运动时,也会发生多普勒效应。 多普勒效应在核物理,天文学、工程技术,交通管理,医疗诊断等方面有十分广泛的应用。如用于卫星测速、光谱仪、多普勒雷达,多普勒彩色超声诊断仪等。 【实验目的】 1. 加深对多普勒效应的了解。 2. 测量空气中声音的传播速度及物体的运动速度。 【实验仪器】 DH-DPL 多普勒效应及声速综合测试仪(详见附录使用说明书) 【实验原理】 1、声波的多普勒效应 设声源在原点,声源振动频率为f ,接收器在x 。声源、接收器的运动都在x 方向,波的传播也在x 方向。对于三维情况,处理稍复杂一点,其结果相似。声源、接收器和传播介质不动时,在x 方向传播的声波的数学表达式为: 00cos p p t x c ωω? ? =????? (1-1) ① 声源运动速度为V S ,介质和接收点不动 设声速为c 0,在时刻t ,声源移动的距离为 )(0c x t V S ? 因而声源实际的距离为 )(00c x t V x x S ??= ∴ )1/()(0S S M t V x x ??= (1-2) 其中M S =V S /c 0为声源运动的马赫数,声源向接收点运动时V S (或M S )为正,反之为负,将式1-2代入式1-1: ???????? ????? ???=0001cos c x t M p p S ω

可见接收器接收到的频率变为原来的S M 11?, 即: S S M f f ?=1 (1-3) ② 声源、介质不动,接收器运动速度为V r ,同理可得接收器接收到的频率: f c V f M f r r r )1()1(0 +=+= (1-4) 其中0 c V M r r = 为接收器运动的马赫数,接收点向着声源运动时V r (或M r )为正,反之为负。 ③介质不动,声源运动速度为V S ,接收器运动速度为V r ,可得接收器接收到的频率: f Ms M f r rs ?+= 11 (1-5) ④介质运动,设介质运动速度为V m ,得 t V x x m ?=0 根据1-1式可得: ∴ ()?????? ?+=0001cos x c t M p p m ω ω (1-6) 其中0m m M V c =为介质运动的马赫数。介质向着接收点运动时m V (或m M )为正,反之为 负。 可见若声源和接收器不动,则接收器接收到的频率: f M f m m )1(+= (1-7) 还可看出,若声源和介质一起运动,则频率不变。 为了简单起见,本实验只研究第2种情况:声源、介质不动,接收器运动速度为r V 。根据1-4式可知,改变V r 就可得到不同的r f 以及不同的△f =r f ?f ,从而验证了多普勒效应。另外,若已知V r 、f ,并测出r f ,则可算出声速0c ,可将用多普勒频移测得的声速值与用时

相关文档
最新文档