2015年高考数学题分类汇编(文):6.数列

2015年高考数学题分类汇编(文):6.数列
2015年高考数学题分类汇编(文):6.数列

1.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )

172 (B )19

2

(C )10 (D )12 【答案】B

【解析】∵公差1d =,844S S =,∴11118874(443)22a a +

??=+??,解得1a =1

2

,∴101119

9922

a a d =+=

+=,故选B. 【考点定位】等差数列通项公式及前n 项和公式

【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算.

2.【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 【答案】5

【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以

15a =;

若这组数有2n 个,则1101022020n n a a ++=?=,22015n a =,又121n n n a a a a ++=+,所以15a =;

故答案为5

【考点定位】等差数列的性质.

【名师点睛】1.本题考查等差数列的性质,这组数字有可能是偶数个,也有可能是奇数个.

然后利用等差数列性质m n p q m n p q a a a a +=+?+=+.2.本题属于基础题,注意运算的准确性.

3.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中5a =+5c =-,则b = . 【答案】1

【解析】因为三个正数a ,b ,c 成等比数列,所以(2

551b ac ==+-=,因

为0b >,所以1b =,所以答案应填:1. 【考点定位】等比中项.

【名师点晴】本题主要考查的是等比中项,属于容易题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比中项的概念,即若a ,G ,b 成等比数列,则G 称为a 与b 的等比中项,即2G ab =.

4.【2015高考福建,文16】若,a b 是函数()()2

0,0f x x px q p q =-+>> 的两个不同

的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则

p q + 的值等于________.

【答案】9

【解析】由韦达定理得a b p +=,a b q ?=,则0,0a b >>,当,,2a b -适当排序后成等比

数列时,2-必为等比中项,故4a b q ?==,4

b a

=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4

a

是等差中项时,

8

2a a

=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=. 【考点定位】等差中项和等比中项.

【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项与项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题.

5.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = . 【答案】

2

,13

- 【解析】由题可得,2

111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以12

1,3

d a =-=

. 【考点定位】1.等差数列的定义和通项公式;2.等比中项.

【名师点睛】本题主要考查等差数列的定义和通项公式.主要考查学生利用等差数列的定义

以及等比中项的性质,建立方程组求解数列的首项与公差.本题属于容易题,主要考查学生正确运算的能力.

6.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若

126n S =,则n = .

【答案】6

【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,

∴2(12)

12612

n n S -==-,∴264n =,∴n=6.

考点:等比数列定义与前n 项和公式

【名师点睛】解等差数列问题关键在于熟记等比数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公比的方程,解出首项与公比,利用等比数列性质可以简化计算.

7.【2015高考安徽,文13】已知数列}{n a 中,11=a ,2

1

1+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 . 【答案】27

【解析】∵2≥n 时,2

1,21121+=+=-a a a a n n 且 ∴{}1a a n 是以为首项,2

1

为公差的等差数列 ∴271892

1

289199=+=??+

?=S 【考点定位】本题主要考查等差数列的定义、通项公式和前n 项和公式的应用.

【名师点睛】能够从递推公式判断数列的类型或采用和种方法是解决本题的关键,这需要考生平时多加积累,同时本题还考查了等差数列的基本公式的应用,考查了考生的基本运算能力.

8.【2015高考福建,文17】等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2

2

n a n b n -=+,求12310b b b b +++???+的值.

【答案】(Ⅰ)2n a n =+;(Ⅱ)2101.

【解析】(I )设等差数列{}n a 的公差为d .

由已知得()()11143615

a d a d a d +=???+++=??,

解得13

1a d =??=?

所以()112n a a n d n =+-=+. (II )由(I )可得2n n b n =+.

所以()()()()

231012310212223210b b b b +++???+=++++++???++

()()2310222212310=+++???+++++???+

()()102121101012

2

-+?=

+

-

()112255=-+ 112532101=+=.

【考点定位】1、等差数列通项公式;2、分组求和法.

【名师点睛】确定等差数列的基本量是1,a d .所以确定等差数列需要两个独立条件,求数列前n 项和常用的方法有四种:(1)裂项相消法(通过将通项公式裂成两项的差或和,在前n 项相加的过程中相互抵消);

(2)错位相减法(适合于等差数列乘以等比数列型);(3)分组求和法(根据数列通项公式的特点,将其分解为等差数列求和以及等比数列求和);(4)奇偶项分析法(适合于整个数列特征不明显,但是奇数项之间以及偶数项之间有明显的等差数列特征或等比数列特征). 9.【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,

432a a -=.

(I )求{}n a 的通项公式;

(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等.

【解析】

试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;(II )先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出

1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数.

试题解析:(Ⅰ)设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =.

又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.

(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =. 所以61642128b -=?=. 由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.

【名师点晴】本题主要考查的是等差数列的通项公式和等比数列的通项公式,属于中档题.本题通过求等差数列和等比数列的基本量,利用通项公式求解.解本题需要掌握的知识点是等差数列的通项公式和等比数列的通项公式,即等差数列的通项公式:()11n a a n d =+-,等比数列的通项公式:11n n a a q -=.

10.【2015高考安徽,文18】已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)设n S 为数列{}n a 的前n 项和,1

1

n n n n a b S S ++=

,求数列{}n b 的前n 项和n T .

【答案】(Ⅰ)1

2n n a -=(Ⅱ) 1122

21

n n ++--

【解析】

(Ⅰ)由题设可知83241=?=?a a a a , 又941=+a a , 可解的??

?==8141a a 或???==18

4

1a a (舍去) 由3

14q a a =得公比2=q ,故1112--==n n n q a a .

(Ⅱ)122

1211)1(1-=--=--=

n n n n q q a S 又11111

11

n n n n n n n n n n a S S b S S S S S S +++++-=

==-

所以1113221211

111...1111...++-=???? ??-++???? ??-+???? ??-=+++=n n n

n n S S S S S S S S b b b T

1

2

111

--

=+n .

【考点定位】本题主要考查等比数列的通项公式、性质,等比数列的前n 项和,以及利用裂项相消法求和.

【名师点睛】本题利用“若q p n m +=+,则q p n m a a a a =”,是解决本题的关键,同时考生发现11111

11

n n n n n n n n n n a S S b S S S S S S +++++-===-

是解决本题求和的关键,本题考查了考生的基础运算能力.

11.【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =

,35

4

a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值;

(2)证明:112n n a a +??

-

????

为等比数列; (3)求数列{}n a 的通项公式.

【答案】(1)78;(2)证明见解析;(3)()1

1212n n a n -??

=-? ?

??

【解析】

试题分析:(1)令2n =可得4a 的值;(2)先将211458n n n n S S S S ++-+=+(2n ≥)转化为

2144n n n a a a +++=,再利用等比数列的定义可证112n n a a +?

?-????

是等比数列;

(3)先由(2)可得数列112n n a a +?

?-

????的通项公式,再将数列112n n a a +?

?-???

?的通项公式转化为数列12n n a ??

????

??

???? ???????

是等差数列,进而可得数列{}n a 的通项公式. 试

:(

1

2

n =时,

4231

458S S S S +=+,即

435335415181124224a ??????

+++++=+++ ? ? ???????

,解得:478a =

(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125

441644

a a a +=?

+==,所以21

44n n n a a a +++=,因

()212111111111

4242212142422222

n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列

112n n a a +?

?-??

??

是以21112a a -=为首项,公比为12的等比数列 (3)由(2)知:数列112n n a a +??

-

????

是以21112a a -=为首项,公比为12的等比数列,所

以1

11122n n n a a -+??

-= ?

??

11

41122n n n n

a a ++-=???? ? ???

??,所以数列12n n a ????

??

??????

???????

是以1212a =为首项,公差为4的等差数列,所以()2144212n

n

a n n =+-?=-??

???

,即()()1

11422122n

n n a n n -????=-?=-? ? ?????,所以数列

{}n a 的通项公式是()1

1212n n a n -??

=-? ?

??

考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.

【名师点晴】本题主要考查的是等比数列的定义、等比数列的通项公式和等差数列的通项公式,属于难题.

本题通过将n S 的递推关系式转化为n a 的递推关系式,利用等比数列的定义进行证明,进而可得通项公式,根据通项公式的特点构造成等差数列进行求解.解题时一定要注意关键条件“2n ≥”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的定义、等比数列的通项公式和等差数列的通项公式,即等比数列的定义:

1

n n

a q a +=(常数)

,等比数列的通项公式:11n n a a q -=,等差数列的通项公式:()11n a a n d =+-.

12.【2015高考湖北,文19】设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记n

n n

a c

b =

,求数列{}n c 的前n 项和n T . 【答案】(Ⅰ)1

21,2.n n n a n b -=-???=??或11(279),9

29().9n n n a n b -?=+????=???

;(Ⅱ)12362n n n T -+=-.

【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.

【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向.

13.【2015高考湖南,文19】(本小题满分13分)设数列{}n a 的前n 项和为n S ,已知

121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,

(I )证明:23n n a a +=; (II )求n S 。

【答案】(I )略;(II) 2

*2*23

(531),(21,)2

3(31),(2,)2

n n n

n k k N S n k k N -??-=+∈??=??-=∈?? 【解析】

试题分析:(I )当*

,2n N n ∈≥时,由题可得23n n a S +=*13,()n S n N +-+∈,

113n n a S +-=*3,()n S n N -+∈,两式子相减可得2113n n n n a a a a +++-=-,即23,(2)n n a a n +=≥,然后验证当n=1时,命题成立即可; (II)通过求解数列{}n a 的奇数项

与偶数项的和即可得到其对应前n 项和的通项公式.

试题解析:(I )由条件,对任意*n N ∈,有23n n a S +=*13,()n S n N +-+∈, 因而对任意*

,2n N n ∈≥,有113n n a S +-=*3,()n S n N -+∈, 两式相减,得2113n n n n a a a a +++-=-,即23,(2)n n a a n +=≥, 又121,2a a ==,所以3121121333()33a S S a a a a =-+=-++=, 故对一切*n N ∈,23n n a a +=。 (II )由(I )知,0n a ≠,所以

2

3n n

a a +=,于是数列21{}n a -是首项11a =,公比为3的等比数列,数列2{}n a 是首项12a =,公比为3的等比数列,所以112123,23n n n n a a ---==?, 于是21221321242()()n n n n S a a a a a a a a a -=+++=++

++++

+

1

1

1

3(31)

(133)2(133)3(133)2

n n n n ----=++

+++=++

=

从而1221223(31)3

23(531)22

n n n n n n S S a ----=-=-?=?-,

综上所述,2*2*23

(531),(21,)2

3(31),(2,)2

n n n

n k k N S n k k N -??-=+∈??=??-=∈??。 【考点定位】数列递推关系、数列求和

【名师点睛】已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.

14。【2015高考湖南,文21】 (本小题满分13分)函数2

()cos ([0,)f x ae x x =∈+∞,记

n x 为()f x 的从小到大的第*()n n N ∈个极值点。

(I )证明:数列{()}n f x 是等比数列;

(II )若对一切*

,()n n n N x f x ∈≤恒成立,求a 的取值范围。

【答案】(I )略;

(II) 2,)π

-+∞

【解析】

试题分析:(I

)由题()cos()4

x f x x π

'=

+ ,令()0f x '= ,求出函数的极值点,根

据等比数列定义即可得到结果;(II)

由题意问题等价于

34

34

n e n ππππ-

≤-恒成立问题,设

()(0)

t

e g t t t =>,然后运用导

2min

1254[()]min[(),()]min[(),()]()444n g x g x g x g g g e ππ

πππ====

,所以24

e π

π

≤,

求得2a π

-≥,得到a 的取值范围;

试题解析:(I

)()cos sin cos()4

x x x f x ae x ae x x π

'=-=

+

令()0f x '=,由0x ≥,得42x m πππ+=-,即*3,4

x m m N π

π=-∈,

而对于cos()4

x π

+

,当k Z ∈时,

若22242k x k π

π

π

ππ-

<+

<+

,即32244k x k ππππ-

<<+,则cos()04x π

+>;

若322242k x k πππππ+<+<+,即52244k x k ππππ+<<+,则cos()04

x π

+<;

因此,在区间3((1),)4m m πππ--与3(,)44

m m ππ

ππ-+上,()f x '的符号总相反,

于是当*3,4x m m N ππ=-∈时,()f x 取得极值,所以*3,4

n x n n N π

π=-∈,此时,

331

4

43()cos()(1)4n n n n f x ae

n ππ

ππππ-

-+=-=-,易知()0n f x ≠,而

1()()n n f x e f x π+==-是常数, 故数列{()}n f x

是首项为41()f x ae π

=,公比为e π-的等比数列。

(II )对一切*

,()n n n N x f x ∈≤

恒成立,即34

34n n ae

π

πππ--≤恒成立,亦即

34

34

n e n π

πππ-

≤-恒成立,

设()(0)t e g t t t =>,则2

(1)

()t e t g t t -'=,令()0g t '=得1t =,

当01t <<时,()0g t '<,所以()g t 在区间(0,1)上单调递减; 当1t >时,()0g t '>,所以()g t 在区间(1,)+∞上单调递增; 因为(0,1)n x ∈,且当2n ≥时,1(1,),,n n n x x x +∈+∞<所以

2min

1254[()]min[(),()]min[(),()]()444n g x g x g x g g g e ππ

πππ

====

因此,*

,()n n n N x f x ∈≤

恒成立,当且仅当24e ππ≤

,解得2a π

-≥,

故实数a

的取值范围是2,)π

-+∞。

【考点定位】恒成立问题;等比数列的性质

【名师点睛】解决数列与函数的综合问题时,如果是证明题要根据等比数列的定义明确证明的方向,如果是不等式恒成立问题,要使用不等式恒成立的各种不同解法,如变量分离法、最值法、因式分解法等,总之解决这类问题把数列看做特殊函数,并把它和不等式的知识巧妙结合起来综合处理就行了.

15.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +?

?

?

????

前n 项和为

21

n

n +. (I )求数列{}n a 的通项公式;

(II )设()12n a

n n b a =+?,求数列{}n b 的前n 项和n T .

【答案】(I )2 1.n a n =- (II) 1

4(31)4.9

n n n T ++-?=

【解析】

(I )设数列{}n a 的公差为d , 令1,n =得

1211

3

a a =,所以123a a =. 令2,n =得

12231125

a a a a +=,所以2315a a =. 解得11,2a d ==,所以2 1.n a n =-

(II )由(I )知24224,n n n b n n -=?=?所以121424......4,n n T n =?+?++? 所以23141424......(1)44,n n n T n n +=?+?++-?+? 两式相减,得121344......44n n n T n +-=+++-?

114(14)13444,1433n n n n n ++--=-?=?--

所以113144(31)44.999

n n n n n T ++-+-?=?+=

【考点定位】1.等差数列的通项公式;2.数列的求和、“错位相减法”.

【名师点睛】本题考查了等差数列的通项公式、等比数列的求和、“错位相减法”等,解答本题的关键,首先是注意运用从一般到特殊的处理方法,准确确定等差数列的通项公式;其次就是能对所得数学式子准确地变形,本题易错点在于错位相减后求和时,弄错数列的项数,或忘记从3n T -化简到n T .

本题是一道能力题,属于中等题.在考查等差数列、等比数列等基础知识的同时,考查考生的计算能力.本题是教科书及教辅材料常见题型,能使考生心理更稳定,利于正常发挥.

16.【2015高考陕西,文21】设2()1,, 2.n n f x x x x n N n =++

+-∈≥

(I)求(2)n f ';

(II)证明:()n f x 在20,3??

???

内有且仅有一个零点(记为n a ),且1120233n

n a ??<-< ???.

【答案】(I) (2)(1)21n n f n '=-+ ;(II)证明略,详见解析.

试题解析:(I)由题设1()12n n f x x nx -'=++

+,

所以1(2)1222n n f n -'=+?+

+ ①

由 22(2)12222n n f n '=?+?++ ② ①-②得21(2)12222n n n f n -'-=+++

+-

2

122(1)2112

n n n n -=

-?=---, 所以 (2)(1)21n n f n '=-+ (II)因为(0)10f =-<

222133222()112120233313

n

n n f ????- ? ? ?????????=

-=-?≥-?> ? ?????

-,

所以()n f x 在2(0,)3

内至少存在一个零点, 又1()120n n f x x nx -'=++

+>

所以()n f x 在2

(0,)3

内单调递增,

因此,()n f x 在2(0,)3

内有且只有一个零点n a ,

由于1()11n

n x f x x -=--,

所以10()11n

n n n n

a f a a -==--

由此可得1111222

n n n a a +=+> 故

12

23

n a << 所以1

11112120222333n n

n n n a a ++????

<-=

?????

【考点定位】1.错位相减法;2.零点存在性定理;3.函数与数列.

【名师点睛】(1)在函数出现多项求和形式,可以类比数列求和的方法进行求和;(2)证明

零点的唯一可以从两点出发:先使用零点存在性定理证明零点的存在性,再利用函数的单调性证明零点的唯一性;(2)有关函数中的不等式证明,一般是先构造函数,再求出函数在定义域范围内的值域即可;(4)本题属于中档题,要求有较高逻辑思维能力和计算能力.

17.【2015高考四川,文16】设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列1

{

}n

a 的前n 项和为T n ,求T n . 【解析】(Ⅰ) 由已知S n =2a n -a 1,有

a n =S n -S n -1=2a n -2a n -1(n ≥2) 即a n =2a n -1(n ≥2)

从而a 2=2a 1,a 3=2a 2=4a 1, 又因为a 1,a 2+1,a 3成等差数列 即a 1+a 3=2(a 2+1)

所以a 1+4a 1=2(2a 1+1),解得a 1=2

所以,数列{a n }是首项为2,公比为2的等比数列 故a n =2n .

(Ⅱ)由(Ⅰ)得112n n a =所以T n =211[1()]111122 (11222212)

n n n

-+++==-- 【考点定位】本题考查等差数列与等比数列的概念、等比数列通项公式与前n 项和等基础知识,考查运算求解能力.

【名师点睛】数列问题放在解答题第一题,通常就考查基本概念和基本运算,对于已知条件是S n 与a n 关系式的问题,基本处理方法是“变更序号作差”,这种方法中一定要注意首项a 1是否满足一般规律(代入检验即可,或者根据变换过程中n 的范围和递推关系中的表达式判断).数列求和时,一定要注意首项、公比和项数都不能出错.同时注意,对于较为简单的试题,解析步骤一定要详细具体,不可随意跳步.属于简单题.

18.【2015高考天津,文18】(本小题满分13分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且112331,2a b b b a ==+=,5237a b -=. (I )求{}n a 和{}n b 的通项公式;

(II )设*,n n n c a b n N = ,求数列{}n c 的前n 项和.

【答案】(I )12,n n a n -*=∈N ,21,n b n n *=-∈N ;(II )()2323n

n S n =-+

【解析】

(I )列出关于q 与d 的方程组,通过解方程组求出q ,d ,即可确定通项;(II )用错位相减法求和.

试题解析:(I )设{}n a 的公比为q ,{}n b 的公差为d ,由题意0q > ,由已知,有24232,310,

q d q d ?-=?-=?

消去d 得4

2

280,q q --= 解得2,2q d == ,所以{}n a 的通项公式为12,n n a n -*=∈N ,

{}n b 的通项公式为21,n b n n *=-∈N .

(II )由(I )有()1

212

n n c n -=- ,设{}n c 的前n 项和为n S ,则

()0121123252212,n n S n -=?+?+?++-? ()1232123252212,n n S n =?+?+?+

+-?

两式相减得()()2

3

12222122323,n n n n S n n -=++++--?=--?-

所以()2323n

n S n =-+ .

【考点定位】本题主要考查等差、等比数列的通项公式及错位相减法求和,考查基本运算能力.

【名师点睛】近几年高考试题中求数列通项的题目频频出现,尤其对等差、等比数列的通项考查较多,解决此类 问题要重视方程思想的应用.错位相减法求和也是高考考查频率较高的一类方法,从历年考试情况来看,这类问题,运算失误较多,应引起考生重视.

19.【2015高考浙江,文17】(本题满分15分)已知数列{}n a 和{}n b 满足,

*1112,1,2(n N ),n n a b a a +===∈

*1231111

1(n N )23

n n b b b b b n

++++

+=-∈. (1)求n a 与n b ;

(2)记数列{}n n a b 的前n 项和为n T ,求n T . 【答案】(1)2;n

n n a b n ==;(2)1

*(1)22()n n T n n N +=-+∈

【解析】

(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和. 试题解析:(1)由112,2n n a a a +==,得2n

n a =. 当1n =时,121b b =-,故22b =. 当2n ≥时,

11n n n b b b n +=-,整理得11

n n b n b n

++=

所以n b n =.

(2)由(1)知,2n

n n a b n =? 所以2

3222322n n T n =+?+?+

+?

2341222232(1)22n n n T n n +=+?+?+

+-?+?

所以2

3

11222222(1)22n n n n n n T T T n n ++-=-=++++-?=--

所以1

(1)2

2n n T n +=-+.

【考点定位】1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和. 【名师点睛】本题主要考查等差数列、等比数列的通项公式以及数列的求和.根据数列递推关系式推理得到数列的性质和特点,以此得到数列的通项公式,利用错位相减法计算新组合的数列的求和问题.本题属于中等题,主要考查学生基本的运算能力. 20.【2015高考重庆,文16】已知等差数列{}n a 满足3a =2,前3项和3S =9

2

. (Ⅰ)求{}n a 的通项公式,

(Ⅱ)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T . 【答案】(Ⅰ)+1

=2

n n a ,(Ⅱ)21n n T =-. 【解析】

试题分析:(Ⅰ)由已知及等差数列的通项公式和前n 项和公式可得关于数列的首项a 1和公式d 的二元一次方程组,解此方程组可求得首项及公差的值,从而可写出此数列的通项公式, (Ⅱ)由(Ⅰ)的结果可求出b 1和b 4的值,进而就可求出等比数列的公比,再由等比数列

的前n 项和公式1(1)

1n n b q T q

-=-即可求得数列{}n b 前n 项和n T .

试题解析: (1)设{}n a 的公差为d ,则由已知条件得

11329

22,3,22

a d a d ′+=+

= 化简得113

22,,2

a d a d +=+=

解得11

=1,2a d =,

故通项公式1=1+

2n n a -,即+1

=2n n a . (2)由(1)得141515+1

=1==82

b b a =,.

设{}n b 的公比为q,则34

1

q 8b b ==,从而2q =. 故{}n b 的前n 项和

1(1)1(12)21112

n n n n b q T q -?===---.

【考点定位】1. 等差数列,2. 等比数列.

【名师点睛】本题考查等差数列及等比数列的概念、通项公式及前n 项的求和公式,利用方程组思想求解.

本题属于基础题,注意运算的准确性.

【2015高考上海,文23】(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分.

已知数列}{n a 与}{n b 满足)(211n n n n b b a a -=-++,*∈N n . (1)若53+=n b n ,且11=a ,求数列}{n a 的通项公式;

(2)设}{n a 的第0n 项是最大项,即)N (0*

∈≥n a a n n ,求证:数列}{n b 的第0n 项是最大项;

(3)设130a λ=<,n n b λ=)N (*

∈n ,求λ的取值范围,使得对任意m ,*∈N n ,

0n a ≠,且

1

(,6)6m n

a a ∈. 【答案】(1)56-=n a n ;(2)详见解析;(3))0,4

1

(-

. 【解析】(1)因为)(211n n n n b b a a -=-++,53+=n b n , 所以)(211n n n n b b a a -=-++6)5383(2=--+=n n ,

所以}{n a 是等差数列,首项为11=a ,公差为6,即56-=n a n .

(2)由)(211n n n n b b a a -=-++,得n n n n b a b a 2211-=-++,

所以}2{n n b a -为常数列,1122b a b a n n -=-,即1122b a b a n n -+=, 因为n n a a ≥0,*∈N n ,

所以111122220b a b b a b n n -+≥-+,即n n b b ≥0, 所以}{n b 的第0n 项是最大项.

(3)因为n n b λ=,所以)(211n n n n a a λλ-=-++,

当2≥n 时,112211)()()(a a a a a a a a n n n n n +-+???+-+-=--- λλλλλλ

λ3)(2(2)(22211

+-+???+-+-=---n n n n

λλ+=n 2, 当1=n 时,λ31=a ,符合上式, 所以λλ+=n n a 2,

因为031<=λa ,且对任意*∈N n ,

)6,6

1

(1∈n a a , 故0

2<+=λλa ,于是)0,2

1

(-∈λ, 此时对任意*∈N n ,0≠n a , 当02

1

<<-

λ时,λλλ>+=n n a 22||2,λλλ<+-=--1212||2n n a , 由指数函数的单调性知,}{n a 的最大值为022

2<+=λλa ,最小值为λ31=a , 由题意,

n m a a 的最大值及最小值分别是12321+=λa a 及3

1212+=λa a , 由

61312>+λ及6123<+λ,解得04

1<<-λ, 综上所述,λ的取值范围是)0,4

1

(-.

【考点定位】数列的递推公式,等差数列的性质,常数列,数列的最大项,指数函数的单调性.

【名师点睛】数列是高中数学的重要内容之一,是衔接初等数学与高等数学的桥梁,在高考

数列历年高考真题分类汇编

专题六 数列 第十八讲 数列的综合应用 答案部分 2019年 1.解析:对于B ,令2 104x λ-+=,得12 λ=, 取112a = ,所以211 ,,1022n a a == ?? ?…, 10n n a a +->,{}n a 递增, 当4n … 时,11132122 n n n n a a a a +=+>+=,

所以54 65109 323232a a a a a a ?>???> ???? ?>??M ,所以6 10432a a ??> ???,所以107291064a > >故A 正确.故选A . 2.解析:(1)设数列{}n a 的公差为d ,由题意得 11124,333a d a d a d +=+=+, 解得10,2a d ==. 从而* 22,n a n n =-∈N . 由12,,n n n n n n S b S b S b +++++成等比数列得 () ()()2 12n n n n n n S b S b S b +++=++. 解得()2 121n n n n b S S S d ++= -. 所以2* ,n b n n n =+∈N . (2 )*n c n = ==∈N . 我们用数学归纳法证明. ①当n =1时,c 1=0<2,不等式成立; ②假设() *n k k =∈N 时不等式成立,即12h c c c +++

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

2015高考数学分类汇编数列

专题六 数列 1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1 B 、0 C 、1 D 、6 【答案】B 【解析】由等差数列的性质得64222240a a a =-=?-=,选B . 【考点定位】本题属于数列的问题,考查等差数列的通项公式及等差数列的性质. 【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题. 2.【2015高考福建,理8】若,a b 是函数()()2 0,0f x x px q p q =-+>> 的两个不同的零 点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .9 【答案】D 【解析】由韦达定理得a b p +=,a b q ?=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ?==,.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,,解得1a =,4b =;当 4 a 是等差中项时,,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D . 【考点定位】等差中项和等比中项. 【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项及项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题. 3.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +< C .若120a a <<,则2a > D .若10a <,则()()21230a a a a --> 【答案】C

2017高考试题分类汇编-数列

数列 1(2017山东文)(本小题满分12分) 已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ) {}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ??????的前n 项和n T . 2(2017新课标Ⅰ文数)(12分) 记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。 3((2017新课标Ⅲ文数)12分) 设数列{}n a 满足123(21)2n a a n a n +++-=K . (1)求{}n a 的通项公式; (2)求数列21n a n ????+?? 的前n 项和. 4(2017浙江)(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n N *∈). 证明:当n N *∈时,

(Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1? x n ≤12 n n x x +; (Ⅲ)112 n -≤x n ≤212n -. 112()2 n n n n x x x x n *++-≤∈N . 5(2017北京理)(本小题13分) 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--???-(1,2,3,)n =???, 其中12max{,,,}s x x x ???表示12,,,s x x x ???这s 个数中最大的数. (Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时, n c M n >;或者存在正整数m ,使得12,,,m m m c c c ++???是等差数列. 6(2017新课标Ⅱ文)(12分) 已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 7(2017天津文)(本小题满分13分) 已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于 0,

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

2018年高考数学试题分类汇编数列

2018试题分类汇编---------数列 一、填空题 1.(北京理4改)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为__________. 1.1272f 2.(北京理9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 2.63n a n =- 3.(全国卷I 理4改)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a __________. 3.10- 4.(浙江10改).已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则13,a a 的大小关系是_____________,24,a a 的大小关系是_____________. 4.1324,a a a a >< 5.(江苏14).已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依 次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 5.27 二、解答题 6.(北京文15)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++. 6.解:(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=. (2)由(I )知ln 2n a n =,∵ln2ln2e e e =2n n a n n ==, ∴{e }n a 是以2为首项,2为公比的等比数列.∴2 12ln2ln2ln2e e e e e e n n a a a ++ +=++ + 2=222n +++1=22n +-.∴12e e e n a a a +++1=22n +-. 7.(全国卷I 文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n = . (1)求123b b b , ,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 7.解:(1)由条件可得a n +1=2(1) n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列. 由条件可得121n n a a n n +=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n -=,所以a n =n ·2n -1. 8.(全国卷II 理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 8. 解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为 29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,所以当n =4时,n S 取得最小值,最小值为?16.

历年数列高考题汇编精选

历年数列高考题汇编 1、(全国新课标卷理) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式. (2)设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ?? ??的前项和. 解:(Ⅰ)设数列{a n }的公比为q ,由 2 3 26 9a a a =得 3234 9a a =所以 21 9q = .有条件可知a>0,故 13q = . 由 12231 a a +=得 12231 a a q +=,所以 113a = .故数列{a n }的通项式为a n =13n . (Ⅱ ) 111111 log log ...log n b a a a =+++ (12...)(1)2 n n n =-++++=- 故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n - + 2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g (1) 求数列{}n a 的通项公式;

(2) 令n n b na =,求数列的前n 项和n S 解(Ⅰ)由已知,当n ≥1时, 111211 [()()()]n n n n n a a a a a a a a ++-=-+-++-+L 21233(222)2n n --=++++L 2(1)12n +-=. 而 12, a =所以数列{ n a }的通项公式为 21 2n n a -=. (Ⅱ)由 21 2n n n b na n -==?知 3521 1222322n n S n -=?+?+?++?L ① 从而 235721 21222322n n S n +?=?+?+?++?L ② ①-②得 2352121 (12)22222n n n S n -+-?=++++-?L . 即 211 [(31)22] 9n n S n +=-+ 3.设}{n a 是公比大于1的等比数列,S n 为数列}{n a 的前n 项和.已知S 3=7,且 a 1+3,3a 2,a 3+4构成等差数列.(1)求数列}{n a 的通项公式;(2)令Λ2,1,ln 13==+n a b n n ,求数列}{n b 的前n 项和T n . . 4、(辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

2019年高考数学真题分类汇编专题18:数列

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , . 因为数列{c n }为“M–数列”,设公比为q , 所以c 1=1,q >0. 因为c k ≤b k ≤c k +1 , 所以 ,其中k =1,2,3,…,m .

当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e(e,+∞) +0– f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项公式。②由①知,b k=k, .因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0,因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m ,再利用分类讨论的方法结合求导的方法判断函数的单调性,从而求出函数的极值,进而求出函数的最值,从而求出m的最大值。

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2020年高考试题分类汇编(数列)

2020年高考试题分类汇编(数列) 考法1等差数列 1.(2020·全国卷Ⅱ·理科)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心由一块圆心石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一层多 9块, 已知每层的环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石) A .3699块 B .3474块 C .3402块 D .3339块 2.(2020·全国卷Ⅱ·文科)记n S 是等差数列{}n a 的前n 项的和,若12a =-,262a a +=,则10S = . 3. (2020·山东卷)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和为 . 4.(2020·上海卷)已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910 a a a a +++= . 5.(2020·浙江卷)已知等差数列{}n a 的前n 项和n S ,公差0d ≠, 11a d ≤.记12b S =,122n n n b S S ++=-,n N *∈,下列等式不可能成立的是 A.4262a a a =+ B.4262b b b =+ C. 2428a a a =? D.2428b b b =? 6.(2020·北京卷)在等差数列{}n a 中,19a =-,31a =-.记12n n T a a a =(1,2,n =),则数列{}n T A.有最大项,有最小项 B.有最大项,无最小项 C.无最大项,有最小项 D.无最大项,无最小项

2015-2019全国卷高考数学分类汇编——集合

2014年1卷 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2014年2卷 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 2015年2卷 (1) 已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B = (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2} 2016年1卷 (1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3 (,3)2 2016-2 (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( ) (A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,,

2016-3 (1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 2017-1 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2017-2 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 2017-3 1.已知集合A ={}22(,)1x y x y +=│ ,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0 2018-1 2.已知集合{}220A x x x =-->,则A =R e A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥

2020年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何 一、选择题 1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。 (A )1 (B )2 (C )3 (D )4 2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 3.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6 D .8 4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82π D .10π 5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 6.(全国卷一文)(10)在长方体1111ABCD A B C D -中, 2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为 A .8 B .62 C .82 D .83 7.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方 体所得截面面积的最大值为 A . 33 B .23 C .324 D .3 9.(全国卷二文)(9)在正方体1111ABCD A B C D -中, E 为棱1CC 的中点,则异面直线AE 与CD 所成角

相关文档
最新文档