在WIN7 64位 32位下ADAMS仿真软件安装教程

在WIN7 64位 32位下ADAMS仿真软件安装教程
在WIN7 64位 32位下ADAMS仿真软件安装教程

首先声明,本人也是苦苦搜寻了很多安装方法,经历亲身体验,最终安装成功的。之前有一种需要java软件安装的方法我试验多次,发现一种简便的方法,适用与不同版本adams的安装,(主要还是找好需要的软件),故总结了如下,方便大家使用。已成功帮别人安装成功好多次,成功率绝对可保证。感谢各位网友对我之前方法的支持。

必须说明:在WIN7_旗舰版或普通版64位下安装,需要用

ADAMS_2010_64位是有特定的,必须是64位的。

所需软件,本人以上传到115网盘;(因115网盘取消了大众分享功能,需要你注册个115网盘,转动自己的网盘就可下载了)

ADAMS_2010_64位:https://www.360docs.net/doc/c48493516.html,/file/dpdg4lk9

ADAMS_2010_32位https://www.360docs.net/doc/c48493516.html,/file/anl3fpix

有事也可联系本人Qq 465185082 (请使用邮箱联系,我加好友设置了权限,需要加好友的网友可跟我邮箱联系。邮箱设置了自动回复,会有相关的下载链接。)

本人还备有adams2010 32位版、adams2005版,有需要的网友也可向我要,一切为网友服务,谢谢大家

需要的软件有

1.、

2.(这个最重要,也是和一般的adams2010的不同之处)、

3.

adams2010 32位版、adams2005版的安装过程与以下类似,可参照使用

下面介绍安装过程

安装过程:

注意:安装途径必须都为英文

1)在你要安装的目录下建立文件夹,建立License文件夹,将

复制进去,打开,输入Y,稍等片刻生成license.dat 许可文件。用记事本打开它可看到自己计算机的名字。

2)通过管理员的身份打开,安装路径可以改,但必须是英文的。期间使用1700@hostname,hostname是你的计算机的完整名称。可直接选取生成license.dat许可文件。

注意:不一定都会出现。

1.如果出现类似如下

的对话框,不用担心。点是就行。知道最后安装完毕。

2.若出现的对话框,不用担心,点确定就行。

3)运行中的(管理员的身份),期间先选择安装途径,再选择指向license.dat,如果安装过程中说有问题,不用管,继续安装就行。

4)最后一步!关键!点击:开始->程序

->->->->出

现如下界面。

第一次安装可不用此小步:(选择,依次将如下路径找到,均在你安装的文件目录里。因为我安装在D:\Software\ADAMS 2010里,故3个文件全在里面找到,其中第二个是第3)步生成的Licens.dat

文件。找到后,点击。

接着点击,先,再,最后

,当左下角出现时,OK啦!

以后出现问题打不开,进行这一步解决试试!

最后感谢大家的支持!

液压挖掘机工作装置在ADAMS中的运动仿真解析

液压挖掘机工作装置在ADAMS中的运动 仿真解析 姓名:XXX 部门:XXX 日期:XXX

液压挖掘机工作装置在ADAMS中的运动仿真解析虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法 和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式, 第 2 页共 5 页

将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。 1.3.仿真过程 当工作面从最初的范围逐渐移动时,一般最初的指的是停机状态下。可以适当的对斗杆、铲斗液压缸进行调整,将其保持在全缩的状态中,逐渐对动臂液压缸拉伸,将其缩小到CD弧线上。这个伸缩过程需要得到弧线支撑,基于保障弧线运动轨迹基础上做好控制工作。其中在进行一次姿态调整之后,作业范围会缩小,而且包络图中的各个点会逐渐深入挖掘机的底部,在这个范围上可以实现挖掘,但是可能出现塌陷实现,导致机械无法正常施工。因此,一般除了有条件的挖沟作业之外进行使用,其他施工一般都不会使用。可以在模型中建立起一个处于回转中心轴的三维坐标,将坐标点确定为(608,.0,0.0,1254.3306),这样就可以测量出方向移动值,可以得出这个位置的位移,这样便可以达到最大高度值,其实这个测量方法比较简单,也比较容易掌握。根据曲线变化得出,从得到的曲线中得出最终的数值,可以查看到最大值,平均值以及最小值等。 工作装置模型的运动学仿真分析 2.1.参数范围 运动学仿真中的参数范围确定一般都包含速度、位移以及加速度,这些参数会有一个变化范围。在进行运动学仿真分析中,需要基于ADAMS/Solver求解,就可以得出代数方程。因此,在进行仿真系统自由度确认时,一般自由度的必须为零。如果这个时候会考虑到物体的惯性 第 3 页共 5 页

ADAMS平板式抓取机构建模与仿真

ADAMS大作业 机构名称:平板式抓取机构 指导老师:贾璐 学号: 姓名:H L 班级:机制一班

目录 1、启动工作环境 (2) 1.1启动ADAMS软件 (2) 2、设置工作环境 (2) 2.1设置工作网格 (2) 2.2设置图标 (3) 2.3调出坐标 (3) 2.4设置单位 (3) 3、建模 (3) 3.1画出平面闭合曲线 (3) 3.1.1平面闭合曲线一的绘制 (3) 3.1.2曲线二的绘制 (4) 3.1.3曲线三的绘制 (5) 3.1.4曲线四的绘制 (5) 3.2拉伸成三维实体 (5) 3.2.1曲线一的拉伸 (6) 3.2.2曲线二的拉伸 (6) 3.2.3曲线三的拉伸 (6) 3.2.4曲线四的拉伸 (6) 3.3孔的绘制 (7) 3.4贯通杆的绘制 (8) 3.5使贯通杆与Part5形成一个整体 (8) 3.6长方体块的绘制与移动 (8) 3.6.1绘制 (8) 3.6.2移动 (9) 3.7连杆的绘制 (10) 4、添加各种副 (11) 4.1添加转动副 (11) 4.2添加固定副 (12) 4.3添加移动副 (12) 5、添加运动及运动函数的编辑 (13) 5.1添加运动 (13) 5.2运动函数的编辑 (13) 6、防真 (14) 7、防真分析 (15) 7.1位移曲线一的生成 (15) 7.2位移曲线二的生成 (16) 7.3角度曲线的生成 (17) 8、视频输出 (18) 9、退出ADAMS (20) 10、感想 (20)

1、启动工作环境 1.1启动ADAMS软件 双击ADAMS图标,命名如图1-1,点击进入ADAMS 工作环境。右击,点击,将背景颜色修改为白色。 图1-1 2、设置工作环境 2.1设置工作网格 点击,选择其中的,将工作网格设置为如图2-1所示,点击完成设置。

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本

液压挖掘机工作装置在ADAMS中的运动仿真解 析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 虚拟样机技术在使用过程中为液压挖掘机设计提供了 有效的方法和手段,在使用过程中受到了条件限制,较少 的单位会对运行学进行仿真研究,降低了色剂方案可行 性。文章基于动力学仿真软件ADAMS建立起了挖掘机工 作装置虚拟系统,更好的完成了前期处理工作,使得建模 正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下 来之后,该挖掘机的工作范围也基本确定下来。简单理解 就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图

中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方

(完整版)Adams运动仿真例子--起重机的建模和仿真

1起重机的建模和仿真,如下图所示。 1)启动ADAMS 1. 运行ADAMS,选择create a new model; 2. modal name 中命名为lift_mecha; 3. 确认gravity 文本框中是earth normal (-global Y),units文本框中是MKS;ok 4. 选择setting——working grid,在打开的参数设置中,设置size在X和Y方向均为20 m,spacing在X和Y方向均为1m;ok 5. 通过缩放按钮,使窗口显示所有栅格,单击F4打开坐标窗口。 2)建模 1. 查看左下角的坐标系为XY平面 2. 选择setting——icons下的new size图标单位为1

3. 在工具图标中,选择实体建模按钮中的box按钮 4. 设置实体参数; On ground Length :12 Height:4 Depth:8 5. 鼠标点击屏幕上中心坐标处,建立基座部分 6. 继续box建立Mount座架部件,设置参数: New part Length :3 Height:3 Depth: 3.5 设置完毕,在基座右上角建立座架Mount部件 7. 左键点击立体视角按钮,查看模型,座架Mount不在基座中间,调整座架到基座中间部位:

①右键选择主工具箱中的position按钮图标中的move按钮 ②在打开的参数设置对话框中选择Vector,Distance项中输入3m,实现Mount 移至基座中间位置 ③设置完毕,选择座架实体,移动方向箭头按Z轴方向,Distance项中输入2.25m,完成座架的移动 右键选择座架,在快捷菜单中选择rename,命名为Mount 8. 选择setting—working grid 打开栅格设置对话框,在set location中,选择pick 选择Mount.cm座架质心,并选择X轴和Y轴方向,选择完毕,栅格位于座架中心

ADAMS机构设计与分析

曲柄滑块机构的仿真与分析: 图中件1、2、为齿轮,按圆柱建模,其中齿轮2半径350mm、厚度50mm;齿轮1半径150mm、厚度40mm;件3连杆(宽150mm;厚60mm)、件4长方体滑块(长600mm、宽300mm、高400mm),要求整个模型与栅格成对称状态。其中:齿轮1材料密度为7.8 10-3kg/cm2;连杆3质量Q=65kg,惯性矩Ixx=0.132kg.m2,Iyy=6.80kg.m2,Izz=6.91kg.m2;滑块4材料为铝。 绘图步骤简介: 步骤1:启动ADAMS/View程序 1)选择MD Adams>Adams-view MD 2010 2)在打开的对话框中选择create a new model 。 3)选择start in 后在单击,在自己指定的工作目录下新建的一个文件夹,以保存样机模型。 4)在model name栏中输入模型名称:model_lixiang 5)在gravity选项栏中选择earth normal(-global Y)。 6)在units文本框设定为MMKS—mm、kg、N、s、deg 。 7)单击ok按钮。如图:

步骤2:设定建模环境 1)选择settings>working grid,按图所示进行设置工作栅格大小及间距。 2)单击ok按钮,可看到工作栅格已经改变。 3)在主工具箱中选择,显示view控制图标。 4)按F键或在主工具箱中单击,可看到整个工作栅格。 步骤3:样机建模 1、创建设计点 1)在集合建模工具集中,单击点工具图标 2)在主工具箱的选项栏中选择添加到零件上add to ground。 3)在建模视窗中,先点击ground,再选择该点,点击右键,打开修改点对话框,修改坐标为A(-800,-20,20),重复此过程,依次创建点B(-300,0,25)、C(0,0,0)、D(1000,0,0) 2、创建驱动齿轮1 1)在集合建模工具集中,单击圆柱工具图标、。 2)在主工具箱的选项栏中选择新零件new part 3)在长度选项输入40mm、半径选项输入150mm,如图(1)。 4)在建模视窗中,点击点(-800,-20,20),水平拖动鼠标至点的右边点击,创建圆柱体5)旋转圆柱体与屏幕垂直:鼠标放在圆柱体左端附近,点击右键,选择标记点marker菜单,

ADAMS与Matlab联合仿真要点

7.1机械夹紧机构建模使用实例 机械系统建模实例将创建一种机械夹紧机构模型,是阿波罗登月计划中用于夹紧登月舱和宇宙飞船的十二个夹紧机构之一。夹紧机构包括:摇臂(Pivot)、手柄(Handle)、锁钩(Hook)、连杆(Slider)和固定块(ground Block)等物体。 夹紧机构的工作原理是:如图7-1所示,在夹紧机构手柄(Handle)处施加一个作用力,驱动机构运动,使其锁钩(Hook)处产生十倍于作用力的夹紧力,用于夹紧登月舱和宇宙飞船。 夹紧机构的设计要求是:至少产生800N的夹紧力;施加在手柄上的力应不大于80N;释放手柄的力应最小;在振动环境中夹紧机构应安全可靠。 手柄Handle 锁钩Hook 图7-1 夹紧机构三维模型图 以下将从创建几何构件、添加约束、添加载荷及结果后处理等几个方面详细介绍机械夹紧机构模型的建立。通过本实例的学习,能够详细了解ADAMS软件设计流程及使用方法。 7.1.1创建几何构件 1、创建新模型 本实例将使用ADAMS/View的零件库、约束库和力库创建夹紧机构模型。 首先打开ADAMS/View,选择“Create a new model”,模型名称(Model Name):Latch,点击OK,创建新模型完毕。其它设置如图7-2所示:

图7-2 创建新模型 2、设置工作环境 选择菜单栏【Settings】→【Units】命令,设置模型物理量单位,如图7-3所示: 图7-3设置模型物理量单位 选择菜单栏【Settings】→【Working Grid】命令,设置工作网格,如图7-4所示:

图7-4设置工作网格 3、创建设计点 设计点是几何构件形状设计和位置定位的参考点。本实例将通过设计点列表编辑器创建几何构件模型所需要的全部设计点。 选择并点击几何模型库(Geometric Modeling)中的点(Point),下拉菜单选择(Add to Ground)、(Don’t Attach),并单击Point Table列表编辑器,创建并生成Point_1、Point_2等六个设计点,如图7-5、图7-6所示: 图7-5设计点列表编辑器

ADAMS实例建模仿真

Adams 实例建模仿真 目录 Adams课程论文 (1) 第一章模型的建立 (2) 1、模型的介绍 (2) 2、启动ADAMS (2) 3、栅格设置 (3) 4、创建齿轮 (3) 5、创建连杆 (5) 6、创建滑块 (6) 第二章创建转动副,移动副,齿轮副,驱动力,仿真 (7) 1、创建转动副 (7) 2、创建移动副 (8) 3、创建齿轮副 (9) 4、创建驱动力 (10) 5、仿真 (11) 第三章计算结果后处理 (12) 1、滑块的速度曲线 (12) 2、滑块位移曲线 (12) 3、滑块加速度曲线 (13) 4、齿轮1与齿轮2转角曲线 (13) 5、连杆曲线图 (14) 6、录制动画并导出 (15) 第四章总结 (17)

第一章模型的建立 1、模型的介绍 如图一所示,该模型由齿数z为200,模数m为4,半径400mm的齿轮1,齿数z为100,模数m为4,半径200mm的齿轮2,以及连杆和滑块组成。该模型的运动形式为齿轮1为驱动轮,带动齿轮2转动,齿轮2于连杆偏心连接,带动连杆推动滑块直线反复运动。实质上是将齿轮的转动转化为滑块的平动。 图1-1 模型简图 2、启动ADAMS 2.1 在桌面点击ADAMS快捷键Adams - View x64 2013,或者Windows开始菜单启动:“开始”—“所有程序”—“MSC.Software”—“Adams x64 2013”—“A View”—“Adams-View”。 2.2 启动后出现Welcome欢迎窗口,如图1-1所示,点击New Model,出现Create New Model,Model Name为adams,Gravity为Earth Normal,Units为MMKS。 2.3 单击OK,进入ADAMS。

Matlab及adams联合仿真 仿真结果动画的保存及后处理

Matlab与adams联合仿真实例 本实例以matlab为外部控制程序,使用PID算法控制偏心杆的摆动,使偏心杆平衡到指定位置。 1.在adams/view中建立偏心杆模型 图1 偏心杆模型 1)新建模型 如图所示,将Units设置为MMKS。设置自己的Working Directory,这里设置为C:\adams\exercise。点击OK按钮。 图2 新建模型对话框 2)创建连杆 设置连杆参数为Length=400,Width=20,Depth=20,创建如图所示的连杆。 图3 创建连杆 3)创建转动幅 在连杆质心MARKER点处创建转动幅,旋转副的参数设置为1Location和Normal To grid将连杆与大地相连。

图4 创建转动幅 4)创建球体 球体选项设置为Add to part,半径设置为20,单击连杆右侧Marker点,将球体添加到连杆上 图5 创建球体 5)创建单分量力矩 单击Forces>Create a Torque(Single Component)Applied Forces,设置为Space Fixed,Normal to Grid,将Characteristic设置为Constant,勾选Torque并输入0,单击连杆,再点击连杆左侧的Marker点,在连杆上创建一个单分量力矩。 图6 创建单分量力矩

2.模型参数设置 1)创建状态变量 图7 新建状态变量 点击图上所示得按钮,弹出创建状态变量对话框,创建输入状态变量Torque,将Name 修改为.MODEL_1.Torque。 图8 新建输入状态变量Torque 再分别创建状态变量Angel和Velocity(后面所设计控制系统为角度PID控制,反馈变量为Angel,Velocity为Angel对时间求导,不需要变量Velocity,这里设置Velocity是为了展示多个变量的创建)。设置Angel的函数AZ(MARKER_3,MARKER_4)*180/PI,Velocity 的函数为WZ(MARKER_3,MARKER_4)*180/PI。(MARKER_3为连杆上的点,MARKER_4为地面上固定的点)AZ(MARKER_i,MARKER_j)表示MARKER_i绕MARKER_j的Z轴旋转的角度,WZ表示MARKER_i绕MARKER_j的Z轴旋转的角速度。

基于Adams的凸轮机构运动仿真教程

基于adams的凸轮机构运动仿真 摘要:虚拟样机技术是一种崭新的产品开发技术,其中ADAMS软件是目前最著名的虚拟样机分析软件之一。本文阐述了虚拟样机技术和ADAMS软件的特点及其应用,以凸轮机构为研究对象,对其进行动力学分析。主要运用我们学习过的机械原理等理论知识对机构进行运动学和动力学的相关理论计算;利用ADAMS软件在图形显示方面的优势,采用其基本模块ADAMS/View(界面模块)进行一系列建模、运动分析和动态模拟仿真工作,验证模型的正确性,并对机构在整个周期内的可行性进行计算分析,记录相应信息,输出所需要的位置、速度、加速度等曲线与理论结果比较,充分展现虚拟样机技术的优越性,为虚拟样机技术的深入研究打下基础。 关键词:ADAMS;凸轮机构;运动学分析;仿真 引言 凸轮机构的应用十分广泛,在生产机械中应用凸轮机构可以较容易的实现不同的工作要求。特别是实现间歇式的运动过程!但是,目前对于该类模型的动态仿真很少。本例主要就推程、回程等要求进行预设。力图通过adams实现对该凸轮机构的构建以及后续的仿真,并尝试进行一定的机构优化。 1.研究内容 这里,我主要研究内容为理论凸轮设计在adams中的设计及其动态仿真。后续,根据输出的相应的速度、加速度曲线等将进行一定的设计优化。力图真实还原凸轮机构在设计中的真实过程。 2.工作原理 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。通过对凸轮轮廓进行不同的设计,可以实现从动件不同形式的运动。以此来满足机械设计中对于运动的精细控制过程。 3.动力学建模 (1)建模前期准备 情景设想:某公司需要设计一凸轮机构实现对物料的间歇夹紧过程。其给出相应数据如下。 注:其他的暂 不作要求。 (2)设计

ADAMS实例仿真解析

ADAMS大作业 姓名:柴猛

学号:20107064 目录 绪论 (1) 模型机构 (2) 模型建立 (3) 约束添

加 (9) 运动添加 (11) 模型仿真 (14) 小结 (17) 参考文献 (17)

绪论 大型旋挖钻机是我国近年来引进、发展的桩工机械, 逐步取代了对环境污染严重、效率低下的其它建筑工程桩孔施工机械。旋挖钻机的钻桅变幅机构对整机布局和操纵稳定性影响很大, 它是实现钻孔位置变化及改变钻桅位置状态的关键部件。钻桅是旋挖钻机主执行机构的重要支撑, 其为钻具、调整机构、加压系统等提供结构支撑, 整个桅杆对于保证整机的正常运行和工作质量起着至关重要的作用。 旋挖钻机主要是运用于灌注桩施工,功能为钻孔。而在当今灌注桩施工中旋挖钻机具有优于其它方式的优点: 1.钻井效率高; 2.成孔质量好; 3.环境污染小。 本文主要是对旋挖钻机的钻桅举升装置进行运动仿真分析。

模型机构 钻桅举升装置主要由钻头,钻杆,变幅机构,桅杆以及油缸组成, 工作过程:对孔,下钻,钻进,提钻,回转,卸土六个主要步骤。 对孔:为了保证钻桅的垂直度,采用了平行四边形平动机构,并结合液压杆及回转机构完成孔的定位; 下钻:由于钻具质量大,应控制其下降速度,将钢丝绳与钻杆通过回转接头连接,采用卷扬提升系统控制钻具的升降;钻进:通过动力头驱动扭矩并传递给钻杆,再由钻杆传递给钻钭以实现钻进;提钻:与下钻具有相同的控制系统和运动过程; 回转:由回转机构完成;卸土:通过卷扬系统和连杆的旋转来完成。

模型建立 把实际模型按比例缩 小 一.底座 因为底座不参与运动分析,所以可以用方块代替底座:

Adams动力学仿真分析的详细步骤

1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,并进行保存。 2、检查并修改系统的设置,主要检查单位制和重力加速度。 3、修改零件名称(能极大地方便后续操作)、材料和颜色。首先在模型界面,使用线框图来修改零件名称和材料。然后,使用view part only来修改零件的颜色。 4、添加运动副和驱动。 注意: 1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。 2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。若视图定向错了,运动方向就错了,驱动函数要取负。 3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。 4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。 5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错。 6)添加完运动副和驱动后,应对其进行检查。使用数据库导航器检查运动副和驱动的名称、类型和数量,使用verify model检查自由度的数目,此时要逐个零件进行自由度的检查和计算。 7)进行初步仿真,再次对之前的工作进行验证。因为添加了材料,有重力,但没有定义接触,此时模型会在重力的作用下下掉。若没问题,则进行保存。 5、添加载荷。

6、修改驱动函数。一般使用速度进行定义,旋转驱动记得加d。 7、仿真。先进行静平衡计算,再进行动力学计算。 8、后处理。 具体步骤如下: 1)新建图纸,选择data,添加曲线,修改legend。一般需要线位移,线速度,垂直轮压和水平侧向力的曲线。 2)分析验证,判断仿真结果的正确性(变化规律是否对,关键数值是否对)。 3)截图保存,得出仿真分析结论。

Adams单摆建模与仿真分析

ADAMS对单摆的建模与仿真分析 姓名: 班级: 学号:

单摆作业: 已知: 摆杆质量M1=0.002kg,小球质量M2=12kg, 摆杆长度 l=40.0cm, g=9.8m/s2 ,初始摆角α=30o, 结束时间(End time): 5.0 , 步长(Steps ):500

一.建立单摆模型 1.设置参数 (1)通过开始程序菜单运行 ADAMS,运行 ADAMS。 (2)选择Create a new model 。 (3)确认Gravity (重力)文本框中是Earth Normal (-Global Y),Units(单位)文本框中是MMKS-mm,kg,N,s,deg,单击OK按钮。 (4)在Setting下拉菜单中选择Working Grid,系统打开参数设置对话框,在Spacing栏,X和Y项都输入10mm 2. 建立摆杆模型 (1)选择View菜单选择Coordinate Windows 命令,打开坐标窗口,以便查看模型尺寸。(2)在主工具箱右键单击Rigid Body 在弹出的级联图标中选择Rigid Body :link工具(3)用鼠标左键单击Rigid Body :link工具,系统打开参数设置对话框,确认在工具箱下方文本框中显示New Part。选中Length 选项,输入40cm,即单摆的长度。选中Width选项,输入2.0cm。选中 Depth选项,输入2.0cm。 (4)单击View中的Coordinate Window键,鼠标单击(0,400,0)作为单摆的左侧起点,然后单击右侧水平方向的任一点,ADAMS自动生成摆臂 3.设置摆臂位置 (1)在工具箱中选择定位图标。 (2)打开参数设置对话框,在Angle栏输入30,此时摆臂高亮显示。 (3)点击2次顺时针箭头,摆臂转向与竖直方向成30度方向。 4.建立球模型 (1)在主工具箱右键单击Rigid Body 在弹出的级联图标中选择Rigid Body :sphere工具(2)用鼠标左键单击Rigid Body:sphere 工具,系统打开参数设置对话框,确认在工具箱下方文本框中显示New Part (3 )单击View中的Coordinate Window键,鼠标单击摆杆右端点作为球的中心点,自动生成一个球 5.设置摆臂和球的质量 (1)鼠标右键单击摆臂Part 2,在打开的右键快捷菜单中选择Modify,弹出修改对话框(2)在Define Mass By栏选择User Input。 (3)在Mass(质量)栏输入0.002kg。 (4)输入完毕单击OK按钮。 (5)根据上面步骤设置球的质量为12kg。 6.建立单摆支点 (1)在工具箱中选择铰接图标。 (2)系统打开参数设置对话框,确认在工具箱下方的Construction文本框中显示1 Location 和Normal To Grid。 (3)鼠标左键依次点击点击摆臂的左端点,ground,摆臂的左端点中心。 (4)在大地和摆臂之间生成一个铰接支点。 7.建立摆杆和球铰接 (1)在工具箱中选择铰接图标。 (2)系统打开参数设置对话框,确认在工具箱下方的Construction文本框中显示2Bod —1Loc和Normal To Grid。 (3)鼠标左键依次点击点击摆臂的左端点,球,摆臂的右端点中心。 (4)在球和摆臂之间生成一个铰接支点。

ADAMS行星齿轮运动学仿真详解

ADAMS行星轮仿真过程详解 1三维建模 使用UG进行三维建模并装配,UG中有齿轮库,可以直接生成齿轮。本例行星齿轮机构各齿轮参数及中心距如表1所示。行星轮与内齿轮各啮合点坐标如表2所示,啮合点坐标将在ADAMS建模时使用。 表1行星齿轮机构各齿轮参数 外齿轮齿顶圆直径 (mm)内齿轮齿顶圆直径 (mm) 行星轮齿顶圆直径 (mm) 内齿轮与行星轮中心距 (mm)200 120 50 80 表2行星轮与内齿轮啮合点坐标 行星轮1与内齿轮 (mm) 行星轮1与外齿轮 (mm) 行星轮2与内齿轮 (mm) 行星轮3与内齿轮 (mm) (0,0,60)(0,0,100) (0.0, -57, -18.5) (0.0, 48.5, -35.3) 将连接杆、内齿轮、外齿轮和行星轮装配到指定位置,装配图如图1所示,三个行星轮相互间夹角为120°。装配完成后导出.xt格式文件,用于ADAMS建模。 图1行星轮机构装配体

2ADAMS建模 1)导入模型。新建ADAMS模型,将.xt格式文件导入到ADAMS模型中。 2)添加运动副 行星轮系所需运动副共有6个,外齿轮与大地间的固定副JOINT_1(外齿轮不动);连接杆与外齿轮的旋转副JOINT_2,连接杆与内齿轮的旋转副JOINT_3,连接杆与三个行星轮之间的旋转副JOINT_4、JOINT_5、JOINT_6。记住此处一定是各构件和连接杆之间的旋转副,而不能是和大地之间建旋转副,如图2所示,这是后面建齿轮副的必要条件。 图2连接杆与各构件运动副 3)添加齿轮副 分别建立三个行星轮和内齿轮的齿轮副,一个行星轮和外齿轮的齿轮副。齿轮副选择的对象不是部件而是之前建立的旋转副,分别建立JOINT_2和JOINT_4,JOINT_3和JOINT_4,JOINT_3和JOINT_5,JOINT_3和JOINT_6之间的齿轮副。 齿轮副需要啮合点,对啮合点需要建立在两个旋转副共有的部件上,也就是连接杆上,啮合点的位置决定了两个运动副之间的传动比。分别在两两齿轮啮合点处

液压挖掘机工作装置在ADAMS中的运动仿真解析

液压挖掘机工作装置在ADAMS中的运动仿真解析Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订: ___________________ 审核: ___________________ 单位: ___________________

文件编号:KG-A0-4251-95 液压挖掘机工作装置在ADAMS中的 运动仿真解析 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 虚拟样机技术在使用过程中为液压挖掘机设计提 供了有效的方法和手段,在使用过程中受到了条件限 制,较少的单位会对运行学进行仿真研究,降低了色剂 方案可行性。文章基于动力学仿真软件ADAMS建立起 了挖掘机工作装置虚拟系统,更好的完成了前期处理工 作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1. 基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确 定下来之后,该挖掘机的工作范围也基本确定下来。简 单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在 包括图中,有些部分区间靠近的比较紧密,有的会深入

到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如: 挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 2?顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进

液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液压挖掘机工作装置在ADAMS中的运动仿真解析(2021版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

液压挖掘机工作装置在ADAMS中的运动仿 真解析(2021版) 虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖

掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。

ADAMS 柔性体运动仿真分析及运用

ADAMS 柔性体运动仿真分析及运用 焦广发,周兰英 (北京理工大学机械与车辆工程学院100081) 摘要介绍了ADAMS柔性体基本理论及在ADAMS中生成柔性体的几种方法,并构建机械系统仿真模型.通过一个实例验证了ADAMS 柔性体运动仿真分析的实效. 关键词:ADAMS 柔性体运动仿真继电器 Application of ADAMS flexible body kinetic simulation Jiao guangfa Zhou lanying (Beijing institute of technology ,school of mechanical and vehicular engineering , Beijing 100081 ) Abstract Introduced the basic theory of ADAMS flexible body and some methods of adding flexible bodies to a model to study the dynamic characteristics of the mechanical system1,constructed mechanical system simulation model1 Tested the validity of the ADAMS flexible kinematical simulation through an example1. Key words :ADAMS Flexible body Kinetic simulation relay ADAMS全称是机械系统自动动力学分析软件,它是目前世界范围内最广泛使用的多体1系统仿真分析软件,其建模仿真的精度和可靠性在现在所有的动力学分析软件中也名列前茅.机械系统动力学仿真分析是机械设计的重要内容,过去分析时建立的模型,其构件都是属于刚体,在作运动分析时不会发生弹性变形.而实际上,在较大载荷或加、减速的情况下,机构受力后会有较大的变形和位移变化,产生振动.ADAMS的分析对象主要是多刚体,但ADAMS提供了柔性体模块,运用该模块可以实现柔性体运动仿真分析,以弹性体代换刚体,可以更真实地模拟出机构动作时的动态行为,同时还可以分析构件的振动情况[1]. 一、ADAMS柔性体理论及生成柔性体的几种方法 ADAMS柔性模块是采用模态来表示物体弹性的,它基于物体的弹性变形是相对于连接物体坐标系的弹性小变形,同时物体坐标系又是经历大的非线性整体移动和转动这个假设建立的.其基本 基金项目:北京市重点学科建设(XK100070424);北京理工大学基金(0303E10) 作者简介:焦广发(1982—),男,河北人,硕士,主要研究方向为动力学仿真,有限元分析和表面涂层技术. 思想是赋予柔性体一个模态集,采用模态展开法,用模态向量和模态坐标的线性组合来表示弹性位移,通过计算每一时刻物体的弹性位移来描述其变形运动.ADAMS柔性模块中的柔性体是用离散化的若干个单元的有限个结点自由度来表示物体的无限多个自由度的.这些单元结点的弹性变形可近似地用少量模态的线性组合来表示. ADAMS提供了四种生成柔性体的方法,对于外形简单的构件,可以采用直接生成柔性件的方法,即拉伸模式;对于外形复杂的构件,可以采用先建刚性件, 再进行网格划分的模式, 即构件网格模式(Solid). 1) 拉伸法生成柔性体:首先要确定拉伸中心线,再定义截面半径、单元尺寸、材料属性等,最后定义好柔性体跟其它构件的连接点即外连点,就可以生成柔性体.模型生成柔性件的同时生成模态中性文件,该模态中性文件中包含了柔性件的质量、质心、转动惯量、频率、振型以及对载荷的参数因子等信息.将模型中原有的刚体件上的运动副修改在柔性件上,使柔性件与模型上的其它构件连接起来,同时删除无效的刚性件.这样可以使模型保持原有的自由度,从而实现柔性构件的运动仿真运算.

adams分析报告

ADAMS机构分析报告 一题目描述 题目:两个支点和中间法兰盘对夯锤切割次序的控制 图1所示的机构在行程中自动地从一个支点换到另一个支点。 图1 法兰和夯锤组成的切割机换向机构 1.运行情况 如图1中(A)可知,法兰盘被安装在切割机机架的上支点上,而切割夯锤在下支点与法兰盘相连。法兰盘下端连接有法兰支撑活塞,夯锤中间有止推块,下端有刀片。在循环工作开始时,夯锤绕着下支点旋转并用方型刀片切割平板;中间法兰盘的运动受到法兰支撑活塞的限制。在切割后,夯锤停在法兰盘的底部,如图1(B)所示。之后,有切割力作用的夯锤克服了法兰支撑活塞的约束力,并且夯锤绕着上支点转动。从而使得斜向刀刃对平板做斜向切割。 2. 实现的功能 在切割力作用下夯锤开始运动时,由于法兰盘有法兰支撑活塞,法兰盘不转动,夯锤绕下支点转动,用方型刀片切割平板。之后由于夯锤止推块的作用使夯锤停在法兰盘的下端,之后克服了法兰支撑活塞的约束力,并绕上支点转动,从而实现夯锤不要更换刀片即可改变切割方向。 二.^ 三.机构的运动简图及自由度 机构的运动简图如图2、图3所示:

图2 机构的运动简图 图3 机构的三维渲染运动简图 自由度的计算:DOF=∑--i i n n )1(6=2

四.大致确定其运动尺寸 机构的运动尺寸如图4所示: ¥ 图4 转位机构的大致尺寸 四.分析目的 分析机构能否达到题目中描述的运动要求,即夯锤可否绕设计点旋转, 实现在不更换刀片的前提下,改变刀片切割方向。

五.模型描述 图5 机构分析图 1机构的构建 该机构构件数量少,主要由夯锤、中间法兰盘组成,且各组成构件结构简单,利用adams 建模即可完成,无需通过专业CAD建模。 (1)夯锤的建立夯锤结构简单,有多种方法建立,首先建立三个marker点,分别为marker19、marker15、marker2。然后先去工具箱中拉伸命令,设置如图6所示,用点来创建,并选择close,表示选取曲线闭合,之后分别点取marker19、marker15、marker2,点

液压挖掘机工作装置在ADAMS中的运动仿真解析

编号:AQ-JS-06829 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 液压挖掘机工作装置在ADAMS中的运动仿真解析Motion simulation analysis of working device of hydraulic excavator in ADAMS

液压挖掘机工作装置在ADAMS中 的运动仿真解析 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖

掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方式,将其更换成位移运动方式。运动的函数输入时,需要注意相匹配的的STEP函数。对液压缸进行STEP函数值设置时,应该满足运动函数需求。当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。

相关文档
最新文档