双向 DC-DC 变换器(A 题)报告

双向 DC-DC 变换器(A 题)报告
双向 DC-DC 变换器(A 题)报告

双向DCDC变换器设计

用于锂电池化成系统的桥式DC/DC变换器.......................... 错误!未定义书签。1引言.. (2) 2 双向H桥DC/DC变换器拓扑分析................................ 错误!未定义书签。 双向DC/DC变换器 (3) 双向H桥DC/DC变换器结构分析 (3) 双向H桥DC/DC变换器工作状态分析 (4) 正向工作状态模型分析 (4) 反向工作状态模型分析 (4) 3 硬件电路分析设计............................................ 错误!未定义书签。 器件参数选择分析 (5) 主开关管的选择 (5) 滤波电感参数的计算 (6) 硬件电路分析设计 (6) 驱动电路分析设计 (6) 4 系统结构与控制 (9) 系统结构 (9) 控制系统结构 (9) DC/DC变换器控制方法 (10) 电压控制模式 (10) 电流控制模式 (10) 软件设计 (10) 5 实验调试与结果分析 (11) 实验平台搭建 (11) 样机调试 (12) 供电电源调试 (12) 驱动信号调试 (12) 单片机程序,VB工程调试 (13) 保护与采样电路测试 (14) 开环、闭环测试 (15) 小结 (17) 6 总结 (17) 7 谢辞 (17) 参考文献...................................................... 错误!未定义书签。用于锂电池化成系统的桥式DC/DC变换器 摘要:随着锂电池在生活中各个方面的广泛普及,锂电池在生产过程中重要的化成环节逐渐成为关注的焦点。本文主要设计介绍了使用于锂电池化成系统的桥式变换器部分,包含计算机监控、DC/DC双向变换器。双向DC/DC变换器通过调节MOSFET的占空比,实现对锂电池的智能充放电。本文对双向DC/DC变换器的工作原理进行了分析,并通过样机对预期功能进行验证。 关键字:电池化成;双向DC/DC变换器;实验分析 Abstract:As the lithium battery becomes more and more popular in every aspects of

DC-DC双向变换器

2015年全国大学生电子设计竞赛 DC-DC双向变换器(A题) 完成人:石永健(电子三班 201340602081) 2015年8月14

摘要 本系统以同步整流升降压电路为主,采用MSP430F5525单片机为控制核心。正向可以作为BUCK降压电路为电池充电,反向则可作为BOOST升压电路放电,经AD采样后由单片机调整PWM波输出,实现反馈控制。实验结果表明:当输入在24~36V条件下,充电时,充电恒流值十分稳定,电流控制精度为0.5%,充电电流变化率不大于0.5%,效率可高达96%。充电时,变换器效率高达97%。此外本系统还有充电电流显示,过充保护,自动切换等功能。 关键词:DC-DC双向变换;MSP430F5525;PWM反馈;恒流充电;同步整流

目录 1. 方案论证 (4) 1.1双向变换电路的论证与选择 (4) 1.2控制方案的论证与选择 (5) 1.3驱动方案的论证与选择 (5) 2.1电路的设计 (5) 2.1.1系统总体框图 (5) 2.1.2 电流检测子系统电路原理图 (6) 2.1.3 驱动模块电路原理图 (6) 2.2程序的设计 (7) 2.2.1 程序功能描述 (7) 2.2.2 程序流程图 (7) 3. 系统理论分析与计算 (8) 3.1主电路的分析 (8) 3.1.1同步整流电路的分析 (8) 3.1.2同步整流电路参数计算 (9) 3.2恒流充电方案的分析 (9) 4. 测试方案与测试结果 (10) 4.1测试仪器 (10) 4.2测试方案 (10) 4.3测试结果及分析 (11) 5.体会心得 (11) 6.参考文献 (11) 附录1:电路原理图 (12)

双向DC-DC变换器设计-全国大学生电子设计竞赛

2015年全国大学生电子设计竞赛 双向DC-DC变换器(A题) 学号:1440720117 吕刚 2015年12月30日

摘要 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 在本次设计中恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 关键字电池充放电升压降压XL4016 XL6019 STM32

目录 一、系统方案 (1) 1、双向DC-DC变换电路的论证与选择 (1) 2、测量控制方案和辅助电源的论证与选择 (1) 3、控制方法的论证与选择 (1) 二、系统理论分析与计算 (2) 三、电路与程序设计 (3) 1、电路的设计 (3) (1)系统总体框图 (3) 2、程序的设计 (5) (1)程序功能描述与设计思路 (5) (2)程序流程图 (6) 3、程序流程图 (7) 四、测试仪器与数据分析 (7) 附录1:电路原理图 (9) 附录2:源程序 (10)

双向DC-DC变换器(A题) 【本科组】 一、系统方案 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 1、双向DC-DC变换电路的论证与选择 方案1:由降压斩波变换电路(即Buck变换电路)和升压斩波变换电路(即Boost 电路)组成双向DC-DC变换电路,分别各使用一个全控型器件VT(IGBT或MOSFET),对输入直流电源进行斩波控制通过调整全控型器件VT的控制信号占空比来调整输出电压。 方案2:采用XL4016开关型降压芯片和XL6019开关型升压/降压芯片构成升压、降压电路具有低纹波,内助功率MOS,具有较高的输入电压范围,内置过电流保护功能与EN引脚逻辑电平关断功能。 综合以上两种方案,考虑到时间的限制,选择了比较容易实现的方案2。 2、测量控制方案和辅助电源的论证与选择 由于瑞萨单片机开发套件数量有限,所以我们选择了一款相对便宜,速度快,性价比较高的STM32103V8T6作为控制器,显示部分由于收到题目对作品重量的要求,选择了质量轻,分辨率较高的0.96寸OLED屏幕显示。由于市场上所售开关电源模块的,纹波大的因素,所以辅助电源选择了一个较小的9V变压器,进行,整流滤波作为辅助电源。 3、控制方法的论证与选择 方案1:采用PWM调节占空比的方法控制降压芯片的控制端,达到控制恒流和控制恒压的目的,采用PWM调节软件较为复杂,而且PWM调节较为缓慢,软件控制难度大。 方案2:恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 综合以上两种方案,选择软件较为简单,硬件较为复杂的方案2。

DCDC变换器的发展及应用

DC/DC变换器的发展与应用 周志敏 (莱芜钢铁集团公司动力部,山东莱芜271104) 摘要:介绍电压调整模块(VRM)技术、软开关技术和高频磁技术在DC/DC变换器中的应用,分析DC/DC变换器发展的关键技术,并探讨其发展的趋势。 关键词:电压调整模块;软开关;高频磁技术 1引言 直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC 变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领域有着广阔的应用前景。 DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被 广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。 DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密

DC-DC变换器的设计方案

一种模块化高效DC-DC变换器的开发与研制 设计方案 一、设计任务:设计一个将220VDC升高到600VDC的DC-DC变换器。在电阻负载下,要求如下: 1、输入电压=220VDC,输出电压=600VDC。 2、输出额定电流=2.5A,最大输出电流=3A。 3、当输入在小范围内变化时,电压调整率SV≤2%(在=2.5A时)。 4、当在小范围你变化时,负载调整率SI≤5%(在=220VDC时)。 5、要求该变换器的在满载时的效率η≥90%。 6、输出噪声纹波电压峰-峰值≤1V(在=220VDC,=600VDC,=2.5A条件下)。 7、要求该变换器具有过流保护功能,动作电流设定在3A。 8、设计相关均流电路,实现多个模块之间的并联输出。 二、设计方案分析 1、DC-DC升压变换器的整体设计方案 图1 DC-DC变换器整体电路图

如图1升压式DC-DC变换器整体电路所示,该DC/DC电压变换器由主电路、采样电路、控制电路、驱动电路组成;开关电源的主电路单元、样电路单元采、控制电路单元、驱动电路单元组成闭环控制系统,是相对输出电压的自动调整。控制电路单元以SG3525为核心,精确控制驱动电路,改变驱动电路的驱动信号,达到稳压的目的。 2、DC-DC升压变换器主电路的工作原理 DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC变换器的工作原理。 图2(a)DC-DC变换器主电路 图2(b)DC-DC变换器主电路 图2(a)是升压式DC-DC变换器的主电路,它主要由开关变换电路、高频变压电路、整流电路、输出滤波电路四大部分组成;图1(b)是用matlab模拟出的升压式DC-DC变换器的主电路图。其中开关变换电路主要由绝缘栅双极型晶体管IGBT、储能电容C和RC 放电电路组成;高频变压器电路由一个工作频率为20KHz的升压变压器和一个隔直电容组成;整流电路部分采用桥式整流的设计方案,由四个快速恢复二极管构成,实现将逆变产生

DC-DC变换器设计毕业设计

绪论 一.开关电源概述 开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。半个世纪以来,开关电源大致经历了四个阶段。 早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。 稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。等对供电电压都有一定的要求。至于精密的电子仪器,对供电电压的要求更为严格。所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。 目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。 尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。 二. 开关电源的技术追求 1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。因此高频化是开关电源的主要发展方向。 2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电

A题双向DC-DC

A 双向 DC-DC 变换器
摘要:本设计实现了一种基于 MSP430F2616 单片机的可程控双向 DC-DC 变换器。 系统由 18650 电池组、直流稳压电源充电电路、同步 Boost-Buck 电路、滤波电 路、辅助电源、单片机、键盘、AD 转换电路、显示器等电路组成。充电模式下, 输入为 30V 直流电,通过同步降压拓扑结构形成稳定的约 20V 的直流电压,该直 流电压经过程控降压模块实现可程控输出电流。电流经过二次滤除纹波可得到稳 定的电流输出。放电模式下,通过同步升压拓扑结构形成稳定的 30V 电压输出。 同时该电源变换器具过充保护的功能,提高了电源的安全性和稳定性。本电源效 率高、步进精度高、输出电流稳定、安全性高、重量小轻便可携带;通过按键与 显示器实现人机交互,人机交互友好。 关键字:DC-DC,恒流,效率

1 方案论证
变换器设计方案
题目要求电池组在充电模式下,输入直流电为 24~36V 的条件下可以输出恒
流 2A,放电模式可以输出恒压 30V,所以本次设计需要利用双向 DC-DC 拓扑结构。
方案一:采用隔离型 DC-DC 双向变换器。借鉴非隔离单向变换器中反并联开
关管或二极管,以构成非隔离双向变换器的思想,也可以从隔离型单向变换器演
变得到隔离型正激双向 DC-DC 变换器。该方案在需要电气隔离的场合应用比较广
泛。
方案二:采用全桥 DC-DC 双向变换器。通过移相可使控制其开关器件实现零
电压开关。开关器件的电压、电流应尽量小;变压器为双向励磁,利用率较高,
在中、大功率场合有广泛的应用。
方案三:采用 Boost-Buck 双向变换器。常见的非隔离型单向变换器的拓扑
结构有 Buck、Boost、Buck/Boost 等电路。在这些单向变换器的二极管两端反并
联开关管,在开关管两端反并联二极管,即可构成与之对应的 Boost-Buck 双向
变换器电路。
三种方案理论上都能够实现本设计需要的双向 DC-DC 电压变换。正激双向
DC-DC 变换器虽然成本低,驱动电路容易,但由于变压器会处于单向励磁状态,
变压器利用率较低,并且需要额外设计磁复位电路,适用的电路范围较小。全桥
DC-DC 双向变换器虽处于双向励磁状态,利用率较高,但其电路拓扑结构复杂难
以实现;但相比于非隔离双向变换器而言,其效率还是较低的,达不到本设计需
要的效率达到 95%以上的要求。这两种隔离型双向变换器均需要用到变压器,比
较笨重,会超出该设计的系统总质量小于 500g 的要求。而 Boost-Buck 双向变换
器电路精简,无变压器较为轻便,利用率较高,因此本次设计采用 Boost-Buck
双向 DC-DC 拓扑结构。
恒流恒压设计方案
为满足充电模式下,输入为 24~36V 变化时,稳定输出恒定 2A 电流,输入电
压不变情况下充电电流步进可调,充电模式下本电源需要实现降压恒流功能。为
满足放电模式时候,保持输出电压不变,本电源在放电模式下需实现恒压功能。
方案一:采用程序控制 PWM 占空比实现恒压恒流功能。利用高精度 ADC 芯片
对负载进行采样得到负载两端的电压或者电流,根据公式: VOUT VIN TON TON TOFF
(1)
其中
VOU
T
为输出加在负载两端的电压,
VIN
为输入电压,
TON TON TOFF
为控制
PWM


双向DC-DC变换器(全国大学生电子设计竞赛全国二等奖作品)

2015年全国大学生电子设计竞赛双向DC-DC变换器(A题) 2015年8月15日

摘要 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 在本次设计中恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 关键字电池充放电升压降压XL4016 XL6019 STM32

目录 一、系统方案 (1) 1、双向DC-DC变换电路的论证与选择 (1) 2、测量控制方案和辅助电源的论证与选择 (1) 3、控制方法的论证与选择 (1) 二、系统理论分析与计算 (2) 三、电路与程序设计 (3) 1、电路的设计 (3) (1)系统总体框图 (3) 2、程序的设计 (5) (1)程序功能描述与设计思路 (5) (2)程序流程图 (6) 3、程序流程图 (7) 四、测试仪器与数据分析 (7) 附录1:电路原理图 (9) 附录2:源程序 (10)

双向DC-DC变换器(A题) 【本科组】 一、系统方案 本设计主要由双向DC-DC变换电路、测控显示电路、辅助电源三部分构成,其中双向DC-DC变换电路降压部分采用XL4016开关降压型DC-DC转换芯片,最高转换效率可达93%,升压部分采用XL6019开关型升压/降压芯片,具有低纹波,输入范围广,转换效率高的特点。恒流部分采用PWM控制原理,形成一个闭环回路,控制电流恒定,恒压部分完全由硬件控制,单片机辅助控制的方式。以上部分确保系统满足题目要求,实现恒流充电,恒压放电,过压保护功能,并且有着较高的转换效率。 1、双向DC-DC变换电路的论证与选择 方案1:由降压斩波变换电路(即Buck变换电路)和升压斩波变换电路(即Boost 电路)组成双向DC-DC变换电路,分别各使用一个全控型器件VT(IGBT或MOSFET),对输入直流电源进行斩波控制通过调整全控型器件VT的控制信号占空比来调整输出电压。 方案2:采用XL4016开关型降压芯片和XL6019开关型升压/降压芯片构成升压、降压电路具有低纹波,内助功率MOS,具有较高的输入电压范围,内置过电流保护功能与EN引脚逻辑电平关断功能。 综合以上两种方案,考虑到时间的限制,选择了比较容易实现的方案2。 2、测量控制方案和辅助电源的论证与选择 由于瑞萨单片机开发套件数量有限,所以我们选择了一款相对便宜,速度快,性价比较高的STM32103V8T6作为控制器,显示部分由于收到题目对作品重量的要求,选择了质量轻,分辨率较高的0.96寸OLED屏幕显示。由于市场上所售开关电源模块的,纹波大的因素,所以辅助电源选择了一个较小的9V变压器,进行,整流滤波作为辅助电源。 3、控制方法的论证与选择 方案1:采用PWM调节占空比的方法控制降压芯片的控制端,达到控制恒流和控制恒压的目的,采用PWM调节软件较为复杂,而且PWM调节较为缓慢,软件控制难度大。 方案2:恒压部分完全有硬件控制,硬件自身形成一个闭环控制回路,对电压进行调节使其恒定题目要求的精度范围。单片机通过光耦电路的工作与停止,恒流部分由PWM调节占空比,使其恒流。 综合以上两种方案,选择软件较为简单,硬件较为复杂的方案2。

选择最佳DCDC变换器的要点及途径

一、元器件的选择 1.DC-DC电源变换器的三个元器件 1)开关:无论哪一种DC/DC变换器主回路使用的元件只是电子开关、电感、电容。电子开关只有快速地开通、快速地关断这两种状态。只有快速状态转换引起的损耗才小,目前使用的电子开关多是双极型晶体管、功率场效应管,逐步普及的有IGBT管,还有各种特性较好的新式的大功率开关元件。 2)电感:电感是开关电源中常用的元件,由于它的电流,电压相位不同,因 此理论损耗为零。电感常为储能元件,也常与电容公用在输入滤波器和输出滤波器上,用于平滑电流,也称它为扼流圈。其特点是流过它上的电流有“很大的惯性”.换句话说,由于“磁通连续性”,电感上的电流必须是连续的,否则将会产生很大的电压尖峰波。电感为磁性元件,自然有磁饱和的问题,多数情况下,电感工作在线性区,此时电感值为一常数,不随端电压与流过的电流而变化。但是,在开关电源中有一个不可忽视的问题,就是电感的绕线所引起的两个分布参数(或称寄生参数)的 现象。其一是绕线电阻,这是不可避免的;其二是分布式杂散电容,随绕线工艺、材料而定。杂散电容在低频时影响不大,随频率提高而渐显出来,到一频率以上时,电感也许变成电容的特性了。如果将杂散电容集成为一个,则从电感的等效电路可看出在一角频率后的电容性。 3)电容:电容是开关电源中常用的元件,它与电感一样也是储存电能和传递 电能的元件。但对频率的特性却刚好相反。应用上,主要是“吸收”纹波,具平滑电 压波形的作用。实际上的电容并不是理想的元件。电容器由于有介质、接点与引线,形成一个等效串联内电阻ESR.这种等效串联内电阻在开关电源中小信号控制上,以及输出纹波抑制的设计上,起着不可忽视的作用。另外电容等效电路上有一个串联的电感,它在分析电路器滤波效果时非常重要。有时加大电容值并不能使电压波形平直,就是因为这个串联寄生电感起着副作用。电容的串联电阻与接点和引出线 有关,也与电解液有关。常见铝电解电容的成分为AL2O3,导电率比空气的大七倍,为了能提高电容量,把铝箔表面做成有规律的凸凹不平状,使氧化膜表面积加大,加入的电解液可在凸凹面上流动。普通的铝电解电容在高频脉动电流大幅度增加下,高频阻抗温度上升较大,成了开关电源长寿命的瓶颈。所谓好电容耐反波电流, 耐温升,ESR值小。电容电解液受温度影响,温度升高,电阻减小,即电容串联电阻减小,则是理想的。温度升高,等效串联电阻加大,导致电容寿命减短,这是 普通铝电解电容的缺点。为改善这一缺点,将电解液覆盖在氧化膜表面后将其干 燥形成固体式电解质电容,即“钽电容”. 2.器件选择要点 只如果外接开关管,最好选择开关三极管或功率MOS 管,注意耐压和功耗。如果开关频率很高,电感可选用多线并绕的,以降低趋肤效应的影响。续流二极管一般选恢复时间短、正向导通电压小的肖特基二极管,但要注意耐压。如果输出电压很小(零点几伏),就必须使用MOS管续流。输出滤波电容一般使用高频电容, 可减小输出纹波同时降低电容的温升。在取样电路的上臂电阻并一个0.1~1μf电容,可以改善瞬态响应。电源设计的器件选择需要注意以下几点:

全国大学生电子设计竞赛双向DCDC变换器A题设计报告

全国大学生电子设计竞赛双向D C D C变换器A 题设计报告 Hessen was revised in January 2021

2015年全国大学生电子设计竞赛 双向 DC-DC 变换器(A题) 【本科组】 2015年8月13日

目录

摘要 本系统介绍了一种双向DC-DC变换器的基本原理和实现方法。由SG3525芯片产生的PWM波经三极管传入到电路中,驱动MOSFET管,使其关断或导通,使电压升高或降低。同时,可由单片机监测相应信号经判断后控制继电器选择放电或充电的模式使电路保持在一直正常情况下运行。当充电电压超出限幅值时,单片机可自动断开主电路,以保护系统安全。此外,本系统在设计时注重了高精度的要求,使输出电流步进可控,且步进值小于。而系统中各元件的选择以低损耗为标准,提高了系统的低功耗特性,使系统的效率达到最高。本系统经过多次模拟与实验,基本完成各项要求。 关键字:DC-DC变换;低损耗;自动;可控;充电 ABSTRACT This system introduces the basic principle and realization method of a kind of bidirectional DC-DC converter. The PWM wave generated by the SG3525 chip is introduced into the circuit by the transistor, driving the MOSFET tube, making it shut off or on, so that the voltage is raised or lowered. At the same time, the signal can be monitored by a single chip microcomputer to control the relay selection discharge or charging mode to keep the circuit under normal circumstances. When the charging voltage exceeds the limit, the single chip microcomputer can automatically disconnect the main circuit to protect the system security. In addition, the system is designed with high accuracy requirements, so that the output current is controlled, and the step value is less than . In the system, the selection of the components of the system is the standard, which improves the system's low power consumption characteristics, so that

双向DC-DC变换器研究

双向DC-DC变换器 摘要: 双向DC/DC变换器是一种可以实现“一机两用”的设备,可用其得到能量的双向传输,并且在有些需要能量双向流动的场合,双向DC/DC变换器可大幅度减轻系统的体积、重量以及成本价值,有着重要的研究意义。 首先介绍的是双向DC/DC变换器的概念、应用场合以及其研究现状,并在此基础上分析了电压—电流型双向全桥DC/DC变换器;Buck充电模式时,高压侧开关有驱动信号,低压侧开关管驱动信号封锁,仅用功率开关管的体二极管整流;此时电路为电压型全桥结构;Boost放电模式时,低压侧开关管有驱动信号,高压侧开关管驱动信后封锁,仅用功率开关管的体二极管整流;此时电路为电流型全桥结构。然后,分别对buck充电模式和boost放电模式的工作原理进行了分析。最后利用Proteus软件分别对buck充电模式和boost放电模式的开环和闭环进行了仿真,给出了各部分的波形图,最后得出的仿真结果和理论一致。 关键词:双向DC-DC变换器 Buck充电模式 Boost放电模式

目录 前言 (3) 1.方案论证 (4) 1.1方案一 (6) 1.2 方案二 (6) 1.3 方案选择 (7) 2.电路设计和原理 (7) 2.1 5V电压源电路设计 (7) 2.2 0.1s (8) 2.2.1 引脚及功能表 (9) 2.2.2 (10) 2.3 计数电路设计 (11) 2.4电路设计 (13) 2.5显示电路设计 (14) 2.6控制电路设计 (15) 3.软件仿真调试 (15) 3.1 软件介绍 (15) 3.2 调试步骤及方法 (16) 4.故障分析及解决方法 (17) 5.总结与体会 (18) 附录: (20) A、总体电路图 (20) B、元器件清单 (20) C、元器件功能与管脚 (21) D、参考文献 (24)

第11题 双向DC-DC变换器

摘要 本系统基于双向同步整流原理,主电路在拓扑结构上整合Buck和Boost两种电路,配合MOS管驱动电路、电流检测电路、辅助电源电路以及输出过流保护电路,使该DC/DC 变换器实现能量的双向流通。系统由STM32F103ZET6单片机控制电流的步进可调,同时控制PWM波产生相应恒定电压值,使用TI的MOS管CSD19535代替续流二极管,大大提高了系统效率。本系统在充电模式可达到98%的转换效率,放电模式达到98%的转换效率,电流检测电路使用TI高精度检流芯片INA282,恒定输出的电流精度稳定在1.5%以内,电压精度稳定在1%以内,同时在LCD上显示所处状态,符合基本要求与发挥部分的参数要求。本设计创新点在于将电池充电过程分为三个阶段,通过显示屏实时显示电池所处的充电状态。 关键词 DC/DC电路同步整流STM32

目录 1 方案论证 (3) 1.1 方案描述 (3) 1.2 方案比较与选择 (3) 1.2.1 主控器方案比较与选择 (3) 1.2.2 显示屏方案比较与选择 (3) 1.2.3 电流检测方案比较与选择 (4) 1.2.4 PWM生成方式比较与选择 (4) 1.2.5 驱动电路方案比较与选择 (2) 2 电路与程序设计 (3) 2.1 双向DC/DC主回路与器件 (3) 2.2 测量控制电路、控制程序 (3) 2.2.1 测量控制电路 (3) 2.2.2 控制算法 (3) 2.2.3 主程序设计 (4) 3 理论分析与计算 (5) 3.1 主回路主要器件参数选择及计算 (5) 3.1.1 MOS管驱动芯片IR2110 (5) 3.1.2 电流检测芯片INA282 (5) 3.1.3 功率管选择CSD19535 (6) 3.1.4 电感参数计算 (6) 3.2 控制方法与参数计算 (6) 3.3 提高效率的方法 (7) 4 测试方案与测试结果(见附件) (7) 4.3 测试结果分析 (7) 5 结束语 (8) 6 参考文献 (8)

六种基本DCDC变换器拓扑结构总结

六种基本DC/DC变换器拓扑,依次为buck,boost,buck-boost,cuk,zeta,sepic变换器 半桥变换器也是双端变换器,以上是两种拓扑。 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。 正激变换器 绕组复位正激变换器 LCD复位正激变换器

RCD复位正激变换器 有源钳位正激变换器 双管正激

吸收双正激 有源钳位双正激 原边钳位双正激

软开关双正激 推挽变换器 无损吸收推挽变换器

推挽变换器:推挽变换器是双端变换器.其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管.但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合.而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免. 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激.其管子电压应力下降为输入电压.其他等同. 推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题.在VRM中有应用.

半桥变换器也是双端变换器,以上是两种拓扑. 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决. 半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制. 全桥变换器

DC-DC变换器学习手册

Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 2031 Keywords: DC to DC, buck, boost, flyback, inverter, PWM, quick-PWM, voltage mode, current mode skip, synchronous rectifier, switching regulator, linear regulator TUTORIAL 2031 DC-DC Converter Tutorial Nov 29, 2001 Abstract:Switching power supplies offer higher efficiency than traditional linear power supplies. They can step-up, step-down, and invert. Some designs can isolate output voltage from the input. This article outlines the different types of switching regulators used in DC-DC conversion. It also reviews and compares the various control techniques for these converters. Introduction The power switch was the key to practical switching regulators. Prior to the invention of the Vertical Metal Oxide Semiconductor (VMOS) power switch, switching supplies were generally not practical. The inductor's main function is to limit the current slew rate through the power switch. This action limits the otherwise high-peak current that would be limited by the switch resistance alone. The key advantage for using an inductor in switching regulators is that an inductor stores energy. This energy can be expressed in Joules as a function of the current by: E = ? × L × I2 A linear regulator uses a resistive voltage drop to regulate the voltage, losing power (voltage drop times the current) in the form of heat. A switching regulator's inductor does have a voltage drop and an associated current but the current is 90 degrees out of phase with the voltage. Because of this, the energy is stored and can be recovered in the discharge phase of the switching cycle. This results in a much higher efficiency and much less heat. What is a Switching Regulator? A switching regulator is a circuit that uses a power switch, an inductor, and a diode to transfer energy from input to output. The basic components of the switching circuit can be rearranged to form a step-down (buck)converter, a step-up (boost) converter, or an inverter (flyback). These designs are shown in Figures 1,2,3, and 4 respectively, where Figures 3 and 4 are the same except for the transformer and the diode polarity. Feedback and control circuitry can be carefully nested around these circuits to regulate the energy transfer and maintain a constant output within normal operating conditions.

DCDC变换器的发展与应用.

DC/DC变换器的发展与应用 1引言 直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率 的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC/DC 变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC 变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC 变换器在远程和数字通讯领域有着广阔的应用前景。 DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。 DC/DC变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为 0.31W/cm3~1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。目前,已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。 电子产业的迅速发展极大地推动了开关电源的发展。高频小型化的开关电源及其技术已成为现代电子设备供电系统的主流。在电子设备领域中,通常将整流器称为一次电源,而将DC/DC变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前,在电子设备中用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT实现高频工作,开关频率一般控制在50kHz~100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因为电子设备中所用的集成电路的种类繁多,其电源电压也各不相同,在电子供电系统中,采用高功率密度的高频DC/DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,可以大大减小损耗、方便维护,且安装和增容非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因为电子设备容量的不断增加,其电源容量也将不断增加。 2电力电子器件 功率变换技术高速发展的基础是电力电子器件和控制技术的高速发展,在21世纪,电力电子器件将进入第4代即智能化时代,具有如下显著的特征。 2.1高性能化 高性能化主要包括高电压、大容量、降低导通电压低损耗、高速度和高可靠性等4个方面。如IGBT 的电流可达2kA~3kA、电压达到4kV~6kV,降低损耗是所有复合器件的发展目标。预计在21世纪IGBT、

双向储能系统DCDC变换器设计

双向储能系统DC/DC 变换器设计 本报告设计了双向储能系统DC-DC 变换器,并基于计算机仿真PSCAD 软件进行了仿真,器变换器拓扑如图1(a)所示,其中左侧为低压侧,接储能电池,右侧为高压侧,接负载与分布式电源,变换器电感为5mH ,高压侧稳压电容为3000μf ,开关频率为6000Hz 。变换器控制策略采用双闭环定电压控制,外环为电压环,内环为电流环,从而起到稳定高压侧电压的作用,如图1(b)所示。 图1(a) 变换器拓扑 图1(b) 变换器控制策略 1 低压侧:V dc :35-50V ;电流纹波<3%(满载充电工况下) 由于锂离子电池电压会随着SOC 波动,其波动范围为35-50V ,因此首先需要对锂离子电池进行建模。查阅文献可知,可使用单变量函数描述锂离子电池SOC 与电池端电压之间的关系。由于当SOC 为0时,电池端电压为35V ;当SOC 为1时,电池端电压为50V ,因此利用典型的单变量函数可以得到本文中锂离子电池的数学模型,即 3523out 10.345( 1.031 3.6850.2156 0.11780.3201)7.544SOC u e SOC SOC SOC -=-++-++ (1) 根据模型可以得到PSCAD 锂离子电池模型如图2所示。仿真可得其SOC-电压特性曲线如图3所示。

图2 PSCAD 锂离子电池模型 图3 锂离子电池SOC-电压特性曲线 由按秒特性原理,可知电流纹波与高低压侧电压及电感有关,可以得到稳态下的电感电流纹波为 in in out in out in in L out (1)()222u u T u u u u u dT i T L L u L --?=== (2) 其中u in 为低压侧输入电压,u out 为高压侧输出电压,T 为开关周期,L 为电感满载时电流最大值为 max 1000W 28.57A 35V i == (3) 因此有 in out in out ()28.570.030.8571A 2u u u T u L -≤?= (4) 由(2)可知当u in 最小时,电流纹波有最大值,u in =35V 代入可得 0.0031L ≥H (5) 因此L 取5mH 可以满足要求,其电流纹波的仿真波形如图4所示,可以看出电流纹波不到0.7A ,满足要求。

相关文档
最新文档