舵机程序

舵机程序
舵机程序

第5课摇头风扇

前面我们制作的风扇都是朝一个方向吹的,而家里的有些风扇是可以摇头的,能不能让我们的风扇也摇头呢?当然可以,这就需要舵机的加入了,这节课我们将了解舵机的有关知识,并制作出摇头风扇。

【任务导航】

1.了解舵机相关知识;

2.制作摇头风扇。

【材料阅读】

舵机简介

舵机,又称伺服电机,航海模爱好者们经常用这种电机来控制模型的方向舵,所以它就俗称为“舵机”。其工作过程是把所接收到的电信号转换成电动机轴上的角位移或角速度输出。目前广泛应用于机器人控制领域中。本书用到的舵机是TowerPro出品的SG90舵机,如图2.5.1所示。该舵机采用高强度ABS透明外壳配以内部高精度尼龙齿轮组,加上精准的控制电路、高档轻量化空心杯电机使该微型舵机的重量只有9克,而输出力矩达到了惊人的1.8kg*cm。标准的舵机有三条控制线,分别是电源、地和信号线。舵机的针脚定义为:棕色线——GND,红色线——5V,橙色线——信号线。

图2.5.1 SG90舵机

舵机的控制一般需要不断地发给它一个高电平时间在1-2ms之间、低电平时间在5-20ms 之间的脉冲信号。注意:Arduino板上支持舵机的只有数字口9和10,因此舵机橙色线只能连接数字口9或10,另外我们使用的SG90舵机转动角度在0-180°之间。

【动手操作】

活动主题:制作我的摇头风扇

同学们在了解了相关的知识后,可以自己制作本课的摇头风扇了,我们用到的器材主要是Romeo板子、舵机、风扇(带直流电机)。

1.硬件搭建(摇头风扇的连接)

在连接物理电路时,需要注意:舵机接到数字针脚(程序中,舵机连接的是数字针脚9,电机接的是M1接线柱)。

2.控制舵机从0°转到180°的参考程序

图2.5.3 控制舵机

3.摇头风扇的参考程序

摇头风扇是舵机从0°转到180°,然后再转回来,并且一直保持风扇的电机开启即可,如下所示。

图2.5.4 摇头风扇

【探究思考】

请同学们观察一下,风扇都是自动摇头,我们可以控制它吗?讨论一下,如何实现?

【视野拓展】

1.舵机的工作原理

舵机是遥控模型控制动作的动力来源,不同类型的遥控模型所需的舵机种类也随之不同。如何审慎地选择经济且合乎需求的舵机,也是一门不可轻忽的学问。

工作原理:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就像我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。

2.舵机的控制方式

舵机的伺服系统由可变宽度的脉冲来进行控制,控制线是用来传送脉冲的。脉冲的参数有最小值,最大值,和频率。一般而言,舵机的基准信号都是周期为20ms,宽度为1.5ms。这个基准信号定义的位置为中间位置。舵机有最大转动角度,中间位置的定义就是从这个位置到最大角度与最小角度的量完全一样。最重要的一点是,不同舵机的最大转动角度可能不相同,但是其中间位置的脉冲宽度是一定的,那就是1.5ms。如图2.5.5所示。

图2.5.5 脉冲宽度

角度是由来自控制线的持续的脉冲所产生。这种控制方法叫做脉冲调制。脉冲的长短决定舵机转动多大角度。例如:1.5毫秒脉冲会到转动到中间位置(对于180°舵机来说,就是90°位置)。当控制系统发出指令,让舵机移动到某一位置,并让他保持这个角度,这时外力的影响不会让它的角度产生变化,但是这个是由上限的,上限就是他的最大扭力。除非控制系统不停的发出脉冲稳定舵机的角度,舵机的角度不会一直不变。当舵机接收到一个小于1.5ms的脉冲,输出轴会以中间位置为标准,逆时针旋转一定角度。接收到的脉冲大于1.5ms 情况相反。不同品牌,甚至同一品牌的不同舵机,都会有不同的最大值和最小值。一般而言,最小脉冲为1ms,最大脉冲为2ms。如图2.5.6所示。

图2.5.6 脉冲宽度与转动角度

【挑战自我】

摇头风扇很不错吧?但是我们并不希望它一直在摇头,有什么办法可以控制它吗,以便于我们让它摇头才摇头,不让它摇头就停止摇头,试一试吧。

51单片机程序:按键控制舵机角度

#include "reg52.h" unsigned char count; //0.5ms次数标识 sbit pwm =P2^7 ; //PWM信号输出 sbit jia =P2^4; //角度增加按键检测IO口 sbit jan =P2^5; //角度减少按键检测IO口 unsigned char jd=5; //角度标识 void delay(unsigned char i)//延时 { unsigned char j,k; for(j=i;j>0;j--) for(k=125;k>0;k--); } void Time0_Init() //定时器初始化 { TMOD = 0x01; //定时器0工作在方式1 IE = 0x82; TH0 = 0xfe; TL0 = 0x33; //11.0592MZ晶振,0.5ms TR0=1; //定时器开始 } void Time0_Int() interrupt 1 //中断程序 { TH0 = 0xfe; //重新赋值 TL0 = 0x33; if(count< jd) //判断0.5ms次数是否小于角度标识 pwm=1; //确实小于,PWM输出高电平 else pwm=0; //大于则输出低电平 count=(count+1); //0.5ms次数加1 count=count%40; //次数始终保持为40 即保持周期为20ms } void keyscan() //按键扫描 { if(jia==0) //角度增加按键是否按下 { delay(10); //按下延时,消抖 if(jia==0) //确实按下 { jd++; //角度标识加1 count=0; //按键按下则20ms周期从新开始 if(jd==6) jd=5; //已经是180度,则保持 while(jia==0); //等待按键放开

舵机工作原理

控制思想 该模块的程序框图如图4.5 所示。车模在行驶过程中不断采样赛道信息,并通过分析车模与赛道相对位置判断车模所处赛道路况,是弯道还是直道,弯道时是左转还是右转。直道时小车舵机状态保持不变,弯道时左转或右转,计算转弯半径。我们所用舵机的标准PWM 周期为20ms,转动角度最大为左右90度,PWM调制波如图7.2所示。

当给舵机输入脉宽为0.5ms,即占空比为0.5/20=2.5%的调制波时,舵机右转90度;当给舵机输入脉宽为1.5ms,即占空比为1.5/20=7.5%的调制波时,舵机静止不动;当给舵机输入脉宽为2.5ms,即占空比为2.5/20=12.5%的调制波时,舵机左转90度。可以推导出舵机转动角度与脉冲宽度的关系计算公式为: 注:其中t为正脉冲宽度(ms);θ为转动角度;当左转时取加法计算,右转时取减法计算结果。 当我们根据赛道弯度计算出转动角度以后便可以根据舵机的参数计算出脉冲宽度,控制舵机转动,舵机转角与PWM脉宽关系如表4-1所示。

在具体操作中PWM调制波的周期可以设置在20ms左右一定范围内,比如设置为10ms 或是30ms均可以使舵机正常转动,但是设置周期较长时,系统延迟时间较多,舵机转向会出现滞后,导致赛车冲出跑道;设置周期如果过短,系统输出PWM 调制波不稳定,舵机转动也会受影响,不能实现赛车的精确转向。经过反复测试,最终把输出PWM 调制波周期设定为13ms (用计数器实现)。 运行电机的转速以及舵机的转角,在软件上都是通过对PWM 波占空比进行设置来相应控制的。前面提到,舵机转角控制需要将两个

八位寄存器合成为一个十六位寄存器。程序中的舵机位置信号,当PWM调制波周期设为13ms时,因为总线频率为24MHz,用时钟SB,可计算得到16进制参数为9870H,舵机中间位置时占空比16进制参数为1680H,要分配给PWM6和7,分配时这2个端口的赋值必须是16进制,那么PWM模块初始化赋值为 PWMPER6= 0x98,PWMPER7= 0x70,PWMDTY6= 0x16,PWMDTY7= 0x80,因此这就牵涉到如何将1个十进制数分配为2个十六进制数问题。有2种方案,一种是除法取余,另一种是移位操作,前者编译生成的代码比后者要多,所以采用移位操作来实现,即取高位时与0xFF00先作“&”计算,然后将所得到的数向右移8位(>>8),即可取得高8位;同理,取低8位时只要与0x00FF作“&”计算即可(算法)。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。 工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。

详细的舵机控制原理资料

目录 一.舵机PWM信号介绍 (1) 1.PWM信号的定义 (1) 2.PWM信号控制精度制定 (2) 二.单舵机拖动及调速算法 (3) 1.舵机为随动机构 (3) (1)HG14-M舵机的位置控制方法 (3) (2)HG14-M舵机的运动协议 (4) 2.目标规划系统的特征 (5) (1)舵机的追随特性 (5) (2)舵机ω值测定 (6) (3)舵机ω值计算 (6) (4)采用双摆试验验证 (6) 3.DA V的定义 (7) 4.DIV的定义 (7) 5.单舵机调速算法 (8) (1)舵机转动时的极限下降沿PWM脉宽 (8) 三.8舵机联动单周期PWM指令算法 (10) 1.控制要求 (10) 2.注意事项 (10) 3.8路PWM信号发生算法解析 (11) 4.N排序子程序RAM的制定 (12) 5.N差子程序解析 (13) 6.关于扫尾问题 (14) (1)提出扫尾的概念 (14) (2)扫尾值的计算 (14)

一.舵机PWM 信号介绍 1.PWM 信号的定义 PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。具体的时间宽窄协议参考下列讲述。我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。 目前,北京汉库的HG14-M 舵机可能是这个过渡时期的产物,它采用传统的PWM 协议,优缺点一目了然。优点是已经产业化,成本低,旋转角度大(目前所生产的都可达到185度);缺点是控制比较复杂,毕竟采用PWM 格式。 但是它是一款数字型的舵机,其对PWM 信号的要求较低: (1) 不用随时接收指令,减少CPU 的疲劳程度; (2) 可以位置自锁、位置跟踪,这方面超越了普通的步进电机; 其PWM 格式注意的几个要点: (1 ) 上升沿最少为0.5mS ,为0.5mS---2.5mS 之间; (2) HG14-M 数字舵机下降沿时间没要求,目前采用0.5Ms 就行;也就是说PWM 波形 可以是一个周期1mS 的标准方波; (3) HG0680为塑料齿轮模拟舵机,其要求连续供给PWM 信号;它也可以输入一个周 期为1mS 的标准方波,这时表现出来的跟随性能很好、很紧密。

舵机知识

DIYer修炼:舵机知识扫盲 双向电梯 ? 1 简介 ? 2 舵机的结构和原理 ? 3 选择舵机 ? 4 舵机的支架和连接装置 ? 5 如何控制舵机 ? 6 舵机应用:云台网络摄像头 ?7 如何DIY连续旋转的舵机 ?8 连续旋转舵机的应用:5分钟的绘图机器人 1 简介 舵机控制的机器人 ● 我猜你肯定在机器人和电动玩具中见到过这个小东西,至少也听到过它转起来时那与众不同的“吱吱吱”的叫声。对,它就是遥控舵机,常用在机器人技术、电影效果制作和木偶控制当中,不过让人大跌眼镜的是,它竟是为控制玩具汽车

和飞机才设计的。 ● 舵机的旋转不像普通电机那样只是古板的转圈圈,它可以根据你的指令旋转到0至180度之间的任意角度然后精准的停下来。如果你想让某个东西按你的想法运动,舵机可是个不错的选择,它控制方便、最易实现,而且种类繁多,总能有一款适合你呦。 ● 用不着太复杂的改动,舵机就可摇身一变成为一个高性能的、数字控制的、并且可调速的齿轮电机。在这篇文章中,我会介绍舵机使用的的一些基础知识以及怎样制作一个连续运转舵机。 2 舵机的结构和原理

A.标准舵机图解 ● 遥控舵机(或简称舵机)是个糅合了多项技术的科技结晶体,它由直流电机、减速齿轮组、传感器和控制电路组成,是一套自动控制装置,神马叫自动控制呢?所谓自动控制就是用一个闭环反馈控制回路不断校正输出的偏差,使系统的输出保持恒定。我们在生活中常见的恒温加热系统就是自动控制装置的一个范例,其利用温度传感器检测温度,将温度作为反馈量,利用加热元件提输出,当温度低

于设定值时,加热器启动,温度达到设定值时,加热器关闭,这样不就使温度始终保持恒定了吗。 B.闭环反馈控制 ● 对于舵机而言呢,位置检测器是它的输入传感器,舵机转动的位置一变,位置检测器的电阻值就会跟着变。通过控制电路读取该电阻值的大小,就能根据阻

舵机控制程序

舵机控制程序 Final revision on November 26, 2020

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,

获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信

号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件 的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV 以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都

远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。 具体的设计过程: 例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为20ms- 2ms=18ms,所以开始时在控制口发送高电平,然后

单片机程序按键控制舵机角度

#i n c l u d e"r e g52.h" unsigned char count; //0.5ms次数标识 sbit pwm =P2^7 ; //PWM信号输出 sbit jia =P2^4; //角度增加按键检测IO口 sbit jan =P2^5; //角度减少按键检测IO口 unsigned char jd=5; //角度标识 void delay(unsigned char i)//延时 { unsigned char j,k; for(j=i;j>0;j--) for(k=125;k>0;k--); } void Time0_Init() //定时器初始化 { TMOD = 0x01; //定时器0工作在方式1 IE = 0x82; TH0 = 0xfe; TL0 = 0x33; //11.0592MZ晶振,0.5ms TR0=1; //定时器开始 } void Time0_Int() interrupt 1 //中断程序 {

TH0 = 0xfe; //重新赋值 TL0 = 0x33; if(count< jd) //判断0.5ms次数是否小于角度标识 pwm=1; //确实小于,PWM输出高电平 else pwm=0; //大于则输出低电平 count=(count+1); //0.5ms次数加1 count=count%40; //次数始终保持为40 即保持周期为20ms } void keyscan() //按键扫描 { if(jia==0) //角度增加按键是否按下 { delay(10); //按下延时,消抖 if(jia==0) //确实按下 { jd++; //角度标识加1 count=0; //按键按下则20ms周期从新开始 if(jd==6) jd=5; //已经是180度,则保持 while(jia==0); //等待按键放开 }

舵机控制程序

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,

获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占

空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放 器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV 以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波

电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。 具体的设计过程: 例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为 20ms-2ms=18ms,所以开始时在控制口发送高电平,然后设置定时器在

51控制舵机程序大全

#include void InitTimer0(void) { TMOD = 0x01; TH0 = 0x0B1; TL0 = 0x0E0; EA = 1; ET0 = 1; TR0 = 1; }void delay(1)(void) { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } void main(void) { InitTimer0(); P1_2=0; while(1); } void Timer0Interrupt(void) interrupt 1 { //20ms中断 TH0 = 0x0B1; TL0 = 0x0E0; P1_2=1; delay(1); P1_2=0; }

#include #include #include #define uchar unsigned char #define uint unsigned int sbit IN1=P0^0; sbit IN2=P0^1; sbit EA1=P0^5; sbitdj=P0^7; //舵机口 uint t=0;//中断次数 ucharzk;//高电平中断次数uchar p=0;//定义pwm占空比void delay(uint z) { uinti,j; for(i=0;i>8;//100us一次中断TL0=-100%256; if(t==0)zk=p; if(t=zk) dj=0; t++; if(t>=200) t=0;//20mspwm周期 } void turn_left() { IN1=1;IN2=0;EA1=1;//电机工作p=5;//0.5ms delay(600); } void turn_right() { IN1=1;IN2=0;EA1=1;//电机工作p=25;//2.5ms delay(600);

舵机控制C程序

舵机控制C程序 #include #defineucharunsignedchar #defineuintunsignedint /* 变量定义 */ ucharkey_stime_counter,hight_votage=15,timeT_counter; bitkey_stime_ok; /* 引脚定义 */ sbitcontrol_signal=P0^0; sbitturn_left=P3^4; sbitturn_right=P3^5; /***************************************************************** 名称:定时器0初始化 功能:20ms定时,11.0592M晶振 初值20ms 初值0.1ms *****************************************************************/ voidTimerInit() { control_signal=0; TMOD=0x01;//设置定时器0为工作方式1 EA=1;//开总中断 ET0=1;//定时器0中断允许 TH0=0xFF;//定时器装初值 TL0=0xA3; TR0=1;//启动定时器0 } /********************************************** 定时器0中断服务函数 ***********************************************/ voidtimer0(void)interrupt1using0 { TH0=0xFF; TL0=0xA3;//定时器0重新装入数值

单片机按键控制舵机转动

忆飞工作室 https://www.360docs.net/doc/c88982045.html, 忆飞电子淘宝店欢迎进入 设计者:曾传辉 时间2012年8月13号 手机:134******** QQ:36439133 旺旺:epiapl_cn 程序名称:按键控制舵机控制 程序效果:单片机两个按键控制左右转,转角90度单片 #include #define Sevro_moto_pwm P1_0 //接舵机信号端输入PWM信号调节速度 #define k1 P2_5 //按键控制舵机左转 #define k2 P2_6 //按键控制舵机右转 unsigned char pwm_val_left = 0;//变量定义 unsigned char push_val_left;// =14;//舵机归中,产生约,1.5MS 信号 unsigned int timer=0; //延时基准变量 unsigned char timer1=0; //扫描时间变量 void pwm_Servomoto(void); //函数申明 unsigned int val,val2,fl1,fl2; //变量申明 /************************************************************************/ void delay(unsigned int k) //延时函数 { unsigned int x,y; for(x=0;x

舵机控制型机器人设计要点

课程设计项目说明书 舵机控制型机器人设计 学院机械工程学院 专业班级2013级机械创新班 姓名吴泽群王志波谢嘉恒袁土良指导教师王苗苗 提交日期 2016年4 月1日

华南理工大学广州学院 任务书 兹发给2013级机械创新班学生吴泽群王志波谢嘉恒袁土良 《产品设计项目》课程任务书,内容如下: 1. 题目:舵机控制型机器人设计 2.应完成的项目: 1.设计舵机机器人并实现运动 2.撰写机器人说明书 3.参考资料以及说明: [1] 孙桓.机械原理[M].北京.第六版;高等教育出版社,2001 [2] 张铁,李琳,李杞仪.创新思维与设计[M].国防工业出版社,2005 [3] 周蔼如.林伟健.C++程序设计基础[M].电子工业出版社.北京.2012.7 [4] 唐增宏.常建娥.机械设计课程设计[M].华中科技大学出版社.武汉.2006.4 [5] 李琳.李杞仪.机械原理[M].中国轻工业出版社.北京.2009.8 [6] 何庭蕙.黄小清.陆丽芳.工程力学[M].华南理工大学.广州.2007.1 4.本任务书于2016 年2 月27 日发出,应于2016 年4月2 日前完 成,然后提交给指导教师进行评定。 指导教师(导师组)签发2016年月日

评语: 总评成绩: 指导教师签字: 年月日

目录 摘要 (1) 第一章绪论 (2) 1.1机器人的定义及应用范围 (2) 1.2舵机对机器人的驱动控制 (2) 第二章舵机模块 (3) 2.1舵机 (3) 2.2舵机组成 (3) 2.3舵机工作原理 (4) 第三章总体方案设计与分析 (6) 3.1 机器人达到的目标动作 (6) 3.2 设计原则 (6) 3.3 智能机器人的体系结构 (6) 3.4 控制系统硬件设计 (6) 3.4.1中央控制模块 (7) 3.4.2舵机驱动模块 (7) 3.5机器人腿部整体结构 (8) 第四章程序设计 (9) 4.1程序流程图 (9) 4.2主要中断程序 (9) 4.3主程序 (11) 参考文献 (13) 附录 (14) 一.程序 (14) 二.硬件图 (17)

PWM控制舵机 C程序

#include "reg52.h" sbit control_signal=P0^0; sbit turn_left=P3^0; sbit turn_right=P3^1; unsigned char PWM_ON=15 ;//定义高电平时间 /******************************************************************/ /* 延时函数 */ /******************************************************************/ void delay(unsigned int cnt) { while(--cnt); } void display() { if(PWM_ON>=5&&PWM_ON<=7) P1=0xFD; //1灯亮,舵机接近或到达右转极限位置if(PWM_ON>7&&PWM_ON<=10) P1=0xFB; //2灯亮 if(PWM_ON>10&&PWM_ON<=13) P1=0xF7; //3灯亮 if(PWM_ON>13&&PWM_ON<=16) P1=0xEF; //4灯亮,舵机到达中间位置 if(PWM_ON>16&&PWM_ON<=19) P1=0xDF; //5灯亮 if(PWM_ON>19&&PWM_ON<=22) P1=0xBF; //6灯亮 if(PWM_ON>22&&PWM_ON<=25) P1=0x7F; //7灯亮,舵机接近或到达左转极限位置} /******************************************************************/ /* 主函数 */ /******************************************************************/ void main() { //bit Flag; TMOD |=0x01; //定时器设置 0.1ms in 11.0592M crystal TH0=(65536-78)/256; TL0=(65536-78)%256; //定时0.1mS ET0=1;//定时器中断打开 EA=1;//总中断 //IE= 0x82; //打开中断 TR0=1; // PWM_ON=15 //的取值范围是6-25 while(1) { if(turn_left==0) { delay(1000); if(turn_left==0) { while(!turn_left){}

舵机及转向控制原理

舵机及转向控制原理 1、概述 2、舵机的组成 3、舵机工作原理 4、舵机选购 5、舵机使用中应注意的事项 6、辉盛S90舵机简介 7、如何利用程序实现转向 8、51单片机舵机测试程序 1、概述 舵机也叫伺服电机,最早用丁船舶上实现其转向功能,由丁可以通过程序连续控制其转角,因而被广泛应用智能小车以实现转向以及机器人各类关节运动中,如图1、图2所示。

舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特点,无论是在硬件设计还是软件设计,舵机设计是小车控制部分重要的组成部分,图3为舵机的外形图。 2、舵机的组成 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计、直流电机、控制电路等,如图4、图5所示。

变速齿轮组 诃调电位器小型宜流电机 fff 图4舵机的组成示意图 图5舵机组成 舵机的输入线共有三条,如图6所示,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有 两种规格,一是4.8V, 一是6.0V,分别对应不同的转矩标准,即输出力矩不同, 6.0V 对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANW曲某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。

输出转轴 电源线知 地线GND 控制线 图6舵机的输出线 3、舵机工作原理 控制电路板接受来自信号线的控制信号, 控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘 转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进 行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到 目标停止。其工作流程为:控制信号T控制电路板T电机转动T齿轮组减速T舵盘转动T位置反馈电位计T控制电路板反馈。流,才可发挥舵机应有的性能。 舵机的控制信号周期为20MS的脉宽调制(PWM信号,其中脉冲宽度从0.5-2.5MS,相对应的舵盘位置为0—180度,呈线性变化。也就是说,给他提供一定的脉宽,它的输出轴就会保持一定对应角度上,无论外界转矩怎么改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应位置上如图7所求。舵机内部有一个基准电路,产生周期为20MS宽度1.5MS的基准信号,有一个比出较器,将外加信号与基准信号相比较,判断出方向和大小,从而生产电机的转动信号。由此可见,舵机是一种位置伺服驱动器,转动范围不能超过180度,适用丁那些需要不断变化并可以保持的驱动器中,比如说机器人的关 节、飞机的舵面等。

舵机控制

利用单片机PWM信号进行舵机控制(图) 基于单片机的舵机控制方法具有简单、精度高、成本低、体积小的特点,并可根据不同的舵机数量加以灵 活应用。 在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。 图1舵机的控制要求 舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设

舵机工作原理要点

舵机工作原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。

3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。

有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的: 收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能

提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用图3来表示。 可变脉宽输出试验(舵机控制) 原创:xidongs 整理:armok / 2004-12-05 / https://www.360docs.net/doc/c88982045.html,

舵机控制原理

舵机的相关原理与控制原理 1. 什么是舵机: 在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 还是看看具体的实物比较过瘾一点: 2.其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5m s的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。

3.舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 请看下形象描述吧: 这只是一种参考数值,具体的参数,请参见舵机的技术参数。 小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的

舵机控制(读书)

由于rocky于Sun May 18, 2003 12:59 pm 向本人提出希望了解有关舵机的知识,现将本人在航空模型运动中和机器人制作中积累的一点点经验写出来,奉献给大家,希望本文能起到抛砖引玉的作用。但由于时间仓促,难免有不正确的地方,热情欢迎大家批评指教。 1、概述 舵机最早出现在航模运动中。在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。举个简单的四通飞机来说,飞机上有以下几个地方需要控制: 1.发动机进气量,来控制发动机的拉力(或推力); 2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动; 3.水平尾舵面,用来控制飞机的俯仰角; 4.垂直尾舵面,用来控制飞机的偏航角; 遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。舵机因此得名:控制舵面的伺服电机。 不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。由此可见,凡是需要操作性动作时都可以用舵机来实现。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。 工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。 舵机的基本结构是这样,但实现起来有很多种。例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。需要根据需要选用不同类型。 舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有两种规格,一是4.8V,一是6.0V,分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。 舵机的控制信号为周期是20ms的脉宽调制(PWM)信号?,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。舵机内部有一个基准电路,产生周期20ms,宽度1.5ms的基准信号,有一个比较器,将外加信号与基准信号相比较,判断出方向和大小,从而产生电机的转动信号。由此可见,舵机是一种位置伺服的驱动器,转动范围不能超过180度,适用于那些需要角度不断变化并可以保持的驱动当中。比方说机器人的关节、飞机的舵面等。常见的舵机厂家有:日本的Futaba、JR、SANWA等,国产的有北京的新幻想、吉林的振华等。现举Futaba S3003来介绍相关参数,以供大家设计时选用。之所以用3003是因为这个型号是市场上最常见的,也是价格相对较便宜的一种(以下数据摘自Futaba产品手册)。 尺寸(Dimensions):40.4×19.8×36.0 mm

舵机控制与程序

1、概述 舵机最早出现在航模运动中。在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。举个简单的四通飞机来说,飞机上有以下几个地方需要控制: 1.发动机进气量,来控制发动机的拉力(或推力); 2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动; 3.水平尾舵面,用来控制飞机的俯仰角; 4.垂直尾舵面,用来控制飞机的偏航角; 遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。舵机因此得名:控制舵面的伺服电机。 不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。由此可见,凡是需要操作性动作时都可以用舵机来实现。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。 工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。 舵机的基本结构是这样,但实现起来有很多种。例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。需要根据需要选用不同类型。舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有两种规格,一是4.8V,一是6.0V,分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。 舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。舵机内部有一个基准电路,产生周期20ms,宽度1.5ms的基准信号,有一个比较器,将外加信号与基准信号相比较,判断出方向和大小,从而产生电机的转动信号。由此可见,舵机是一种位置伺服的驱动器,转动范围不能超过180度,适用于那些需要角度不断变化并可以保持的驱动当中。比方说机器人的关节、飞机的舵面等。常见的舵机厂家有:日本的Futaba、JR、SANW A等,国产的有北京的新幻想、吉林的振华等。现举Futaba S3003来介绍相关参数,以供大家设计时选用。之所以用3003是因为这个型号是市场上最常见的,也是价格相对较便宜的一种(以下数据摘自Futaba产品手册)。 尺寸(Dimensions):40.4×19.8×36.0 mm 重量(Weight):37.2 g 工作速度(Operating speed):0.23 sec/60°(4.8V) 0.19 sec/60°(6.0V) 输出力矩(Output torque):3.2 kg.cm (4.8V) 4.1 kg.cm (6.0V) 由此可见,舵机具有以下一些特点:

51单片机控制舵机程序

#include <> #define Stop 0 //宏定义,停止 #define Left 1 //宏定义,左转 #define Right 2 //宏定义,右转 sbit ControlPort = P2^0; //舵机信号端口 sbit KeyLeft = P1^0; //左转按键端口 sbit KeyRight = P1^1; //右转按键端口 sbit KeyStop = P1^2; //归位按键端口 unsigned char TimeOutCounter = 0,LeftOrRight = 0; //TimeOutCounter:定时器溢出计数 LeftOrRight:舵机左右旋转标志 void InitialTimer ( void ) { TMOD=0x10; //定时/计数器1工作于方式1 TH1 = ( 65535 - 500 ) / 256; // TL1 = ( 65535 - 500 ) % 256; EA=1; //开总中断 ET1=1; //允许定时/计数器1 中断 TR1=1; //启动定时/计数器1 中断 } void ControlLeftOrRight ( void ) //控制舵机函数 { if( KeyStop == 0 ) { //while ( !KeyStop ); //使标志等于Stop(0),在中断函数中将用到

LeftOrRight = Stop; } if( KeyLeft == 0 ) { //while ( !KeyLeft ); //使标志等于Left(1),在中断函数中将用到 LeftOrRight = Left; } if( KeyRight == 0 ) { //while ( !KeyRight ); //使标志等于Right(2),在中断函数中将用到 LeftOrRight = Right; } } void main ( void ) //主函数 { InitialTimer(); for(;;) { ControlLeftOrRight(); } } void Timer1 ( void ) interrupt 3 //定时器中断函数 { TH1 = ( 65535 - 500 ) / 256;

相关文档
最新文档