Mechanical, thermal and ablative properties of zirconia, CNT modified carbon-phenolic composites

Mechanical, thermal and ablative properties of zirconia, CNT modified carbon-phenolic composites
Mechanical, thermal and ablative properties of zirconia, CNT modified carbon-phenolic composites

Mechanical, thermal and ablative properties of zirconia, CNT modi?ed

carbon/phenolic composites

I. Srikanth a ,c ,?,N. Padmavathi b ,Suresh Kumar a ,P. Ghosal b ,?,Anil Kumar a ,Ch. Subrahmanyam d

a

Advanced Systems Laboratory, DRDO, Hyderabad 500 058, India

b

Defence Metallurgical Research Laboratory, DRDO, Hyderabad 500 058, India c

Department of Material Science and Engineering, Indian Institute of Technology, Hyderabad, India d

Department of Chemistry, Indian Institute of Technology, Hyderabad, India

a r t i c l e i n f o Article history:

Received 15 November 2012

Received in revised form 26 February 2013 Accepted 2March 2013

Available online 14 March 2013 Keywords:

A. Polymer matrix composites (PMCs)A. Oxides

B. Mechanical property

B. High temperature property B. Thermomechanical properties

a b s t r a c t

Zirconium oxide (Zirconia)coating on carbon fabric (C-fabric)was developed by using zirconia sol. C-fabrics having different weight percentages (wt%)of zirconia namely 0wt% (Blank),3.5 wt%, 6.5 wt% and 9.5 wt% were used to make Zirconia–Carbon–Phenolic (Zr–C–Ph)composites. Similarly, 0.5 wt% multiwalled carbon nanotube (CNT)dispersed phenolic resin was used to make CNT–C–Ph composite .Thermal conductivity, ILSS and ?exural strength were measured for the prepared composites. Based on the initi a l results, subsequently a functionally graded carbon–phenolic composite (FG -C–Ph)having CNT–C–Ph composition up to certain thickn e ss followed by Zr–C–Ph composition for the remaining thickness was made .Thermal insulation and ablative properties for blank C–Ph,Zr–C–Ph, FG-C–Ph were

studied using plasma arc jet test which was carried out at a heat ?ux of 4.0 MW/m

2

for 30 s. Results from the plasma arc jet test show that, the temperature drop across the Zr–C–Ph composite was found to be highest while it was least for the blank. However the ablation rate was found to be highest for the FG-C–Ph while it was least for the blank .Ablation mechanisms for all the tested composites are proposed based on the SEM and XRD studies.

ó2013 Elsevier Ltd. All rights reserved.

1. Introduction

Rayon carbon fabric reinforced phenolic (C–Ph)composites are widely used as thermal protection systems (TPSs)for aerospac e applications due to the low thermal conductivity of the rayon based carbon fabric and the high char yielding properties of the phenolic matrix [1–3].Many research groups attempted to reduce the ther- mal conductivity of the C–Ph composites further, as it can offer sig- ni?cant weight saving for the aerospace systems. It is reported that, the spun yarn carbon ?bers carbonized at low temperature can bring down the thermal conductivity of C–Ph composites signi?-cantly besides imparting better interfacia l and ablative properties [4].Silicone based anti-ablation coatings on TPS, which can form oxidation resistant silica layer during ablation and silicone polymer based ablative composites which can undergo cermetisation during ablation forming tough oxidation resistant ceramic layer were explored by different research groups [5,6].On the other hand, addition of various nano materials like, nano silica, montmorilloni t e (MMT)nanoclays, polyhedral oligomeric silsesquiox a ne (POSS)to C–Ph composites are widely reported to reduce the thermal con- ductivity of the Phenolic composites besides reducing the ablation rate [7,8].Though, zirconia (ZrO 2)is known as better thermal insulator than silica, it was not explored much, as additive to C–Ph composites to reduce thermal conductivi t y. Recently, Chen et al. reported that addition of zirconium diboride to C–Ph compos- ites can signi?cantly improve their thermal insulation propertie s during ablation. This is primarily due to formatio n of insulating zirconia layer in the C–Ph composite during oxidative decompo s i- tion of zirconium diboride [9].Though, it is now well established that, ceramic additives can bring down the thermal conductivi t y of C–Ph composites, they pose new problems such as poor inter laminar shear strength (ILSS)especiall y at higher loadings which results in the delamination of the composites [7].It is essential for TPS to have a good inter laminar shear strength to resist the mechanical erosion due to high velocity aerodynamic shearing ex- erted by the harsh environments that they are generally exposed to. On the other hand, carbon nanotubes (CNTs)and nano-?bers are re- ported to enhance ILSS of the C-?ber reinforced polymer matrix composites [10,11].So far, limited studies have been reported on the effect of the ceramics and CNTs addition to C–Ph composites on their thermomechan i cal and ablative performanc e [7,12–14].Developing zirconia coating on C-fabrics and using them as rein- forcements to obtain low thermal conductive TPS is a novel concept

0266-3538/$ -see front matter ó2013 Elsevier Ltd. All rights reserved. https://www.360docs.net/doc/c610029053.html,/10.1016/https://www.360docs.net/doc/c610029053.html,pscitech.2013.03.005

?Corresponding authors. Address: CMCD/HTCC, Hyderabad, Andhra Pradesh 500 058, India. Tel.: +91 040 24306998 (I.Srikanth).

E-mail addresses: i_srikanth@https://www.360docs.net/doc/c610029053.html, (I.Srikanth),dr.parthaghosal@gmail.-com (P.Ghosal).

which is not explored so far by any research group. This study is aimed (i)To develop zirconia coating on the C-fabric, and to study the mechanical, thermal and ablative properties of phenolic composites made out of these fabrics, and (ii)To study whether en- hanced ?exural strength and shear strength of C–Ph composites due to CNTs can result into reduction in ablation rate.

2. Experimental work

2.1. Zr–C–Ph composite fabricatio n

Zirconia sol was prepared by mixing zirconium oxy chloride, ethanol and demineral i zed water in the molar ratio of 0.05:8:1.1 and stirring the mixture for one hour with a magnetic stirrer at room temperature. This sol was applied on the surface of the rayon carbon fabric (C-fabric)with the help of a spray gun and allowed to dry at room temperat u re (approximately 96 h)till the coated fabric attained the constant weight. Expected yield of the zirconia coating from the sprayed sol was calculated by using Eq. (1).

ZrOCl2tH2O!ZrO2t2HCle1TThus, four different compositions of zirconia coated C-fabrics (Zr–C-fabrics)having zirconia weight percentages (wt%)of 0.0 wt% (blank), 3.5 wt%, 6.5 wt% and 9.5 wt% were made by selecting the amount of the sol sprayed. Coating morphology on the Zr–C-fabrics was studied with scanning electron microscopy (ESEM-FEI Quanta 400, The Netherlands).Resol based phenolic re- sin was applied on the Zr–C-fabrics followed by drying at room temperature for 48 h to allow partial curing to get prepregs (Zr-C-prepregs).Zr–C-prepregs were cut into 150 mm ?150 mm pieces (approximately60 layers)and stacked up (job)followed by curing in an autoclave. Typical cure cycle involved raising the temperature of the job up to 120 °C and then soaking the job for 120 min. 5bar pressure was applied on the job at the time of gelling. Subsequentl y temperat u re was raised to 180 °C and maintained for four hours under the same load. Thus, four different Zr–C–Ph composites of approximate 20 mm thickness were pre- pared with 0.0 wt% (blank),3.5 wt%, 6.5 wt% and 9.5 wt% Zr–C-fab-rics. Representat i ve samples were collected from the laminate s to measure density and ?ber volume fraction (%V f).%V f was measured as per ASTM D3171.

2.2. CNT-C–Ph composite fabricatio n

0.5 wt% of Multiwal l ed carbon nanotubes (CNTs)which were amino functionalised were added to phenolic resin and ball milled for 3h at 250 rpm to ensure better dispersion of the CNTs in the resin. This CNT-resi n mixture was applied on the C-fabric and al- lowed to dry at room temperat u re for 48 h to allow partial curing to get prepregs (CNT-C-Prepreg).CNT-C-prepreg was cut into 150 mm ?150 mm pieces. These pieces were stacked up followed by curing similar to the curing process mentioned for Zr–C–Ph composites.

2.3. FG-C–Ph composite fabricatio n

Based on the subsequent thermal and mechanical characteriza- tion of the composites made in Sections 2.1 and 2.2 ,a FG-C–Ph composite was fabricated by using the combination of CNT-C-pre- pregs and Zr–C-prepregs made with 6.5 wt% zirconia coated C-fabric. To prepare the FG-C–Ph composite, initially nine layers of CNT-C-prepreg s were stacked up, over which approximat e ly 40 layers of Zr–C-prepregs were stacked. Curing cycle employed was similar to the curing cycle adopted for Zr–C–Ph composites. In the ?nished composite, approximately 3mm from the top was having CNT–C–Ph composition while the rest 17 mm of the com- posite was having Zr–C–Ph composition. Samples from this com- posite were tested only for ablation properties.

3. Characteriza t ion

3.1. Flexural strength and ILSS

Specimen s of size 5?10?100 mm and 5?10?50 mm were collected for ?exural strength and ILSS tests respectively from the prepared composites. Flexural strength was measured as per ASTM D790 while ILSS was measured as per the ASTM D2344 using universa l testing machine (United,Model STM 50 KN, USA). Minimum ?ve number of samples were tested for each property and the average values are shown in Table 1.Tested samples were analyzed with ?eld emission scanning electron microscope (FES-EM, Model FEI, Quanta 200, USA).

3.2. Thermal conductiv i ty

Cylindrical specimens of diameter 25 mm and height 5mm were machined from the prepared composites. Thermal conductiv- ity in the through thickness direction was measure d at 300 °C un- der steady state condition s as per ASTM E1225-99 using hot guard method. Two samples from each of the composite were tested and the average values of the thermal conductivity of the two samples is shown in Table 2.

3.3. Plasma arc jet test

Cylindrical specimens of diameter 10 mm and height 17.6 mm (±0.1mm)were machined from the blank C–Ph,Zr–C–Ph and FG- C–Ph composites. Length of the specimens was kept perpendicul a r to the direction of the fabric layup. Test specimen was encircled with the guard ring which was also machined out from the same composite. G uard ring was employed to ensure unidirecti o nal exposure of the test specimen to the plasma arc jet. ‘K’ type ther- mocoupl e was bonded to the rear surface (away from the surface facing the plasma arc jet)of each specimen to measure back face temperat u re. A schematic of the test specimen con?guration is shown in Fig. 1a. Specimen s were exposed to the plasma arc jet at a?ame velocity of about 1mach having a stagnant ?ux of 4.0 MW/m 2for 30 s(Fig. 1b).Raise in back face temperat u re is con- tinuously recorded as a function of time. Though the plasma jet was switched off after 30 s of test duration, back face temperat u re was recorded up to 70 s.In case of FG-C–Ph,test specimen was ori- ented in such a way that, CNT–C–Ph part of the composite faced the plasma jet while the back face temperature measure d was for Zr–C–Ph part of the composite. Ablation rate was determined by dividing the reduction in length of the specimen with the test duration in seconds. Average back face temperature and ablation rate was determined based on the average of two samples. Obtained values are shown in the Table 3.Microstructure of the ablated surfaces was studied with FESEM .Compositional changes resulted due to ablation was studied with X-ray diffraction Table 1

Physical and mechanical properties of the composites.

Sample description Density (g/cc)%V f a F.S (MPa)ILSS (MPa)

Blank C–Ph 1.44 53 225(22)20(1.0)

3.5 wt.%Zr–C–Ph 1.40 50 222(36)19(2.8)

6.5 wt.% Zr–C–Ph 1.25 37 146(10)14(2.9)

0.5 wt% CNT-C–Ph 1.42 51 262(21)22(2.1)

a Flexural strength, values in the parentheses are standard deviations.

2I. Srikanth et al. /Composites Science and Technology 80 (2013)1–7

(XRD-Philips PWD, Model 1830, The Netherlands).Representative samples after the test are shown in Fig. 1b (i–iii).4. Results and discussion

4.1. Microstructu r e of the coated fabric and prepregs

Microstruct u re of the representat i ve C-fabric samples coated with zirconia are shown in Fig. 2.Thicknes s of the coating was observed to be approximately 700–900nm for 3.5 wt% zirconia coating (Fig. 2b).It can be seen from the ?gures (Fig. 2a–c)that, the liquid precursor based coating method employed in the pres- ent study can penetrate and spread to every ?lament and develop uniform coating surrounding their surface. However, as the wt% of zirconia on C-fabric was increased, lumps of zirconia coating were observed to be forming on the C-?ber surface (Fig. 2d and e).On the other hand, CNTs were observed to be well dispersed on the C-fabric surface (Fig. 2f).4.2. Density, %V f

It is observed that, as the wt% of the zirconia on the C-fabric increased, density and %V f of the composites have come down (Table 1).This is due to the increased coating thickness that is deposited over the C-fabric with increased wt% of the zirconia which seeks more space during compaction of the C-fabric layers. CNT–C–Ph composite has not shown signi?cant variation in density and %V f as compared to blank C–Ph,indicating better com- pressibility of the CNT–C–Ph prepregs. ILSS properties. Hence physical and mechanical property data can’t be generated for this composition. Reason for the reduced ILSS for Zr–C–Ph composites can be attributed to the fact that, once the zirconia layer is deposited on the C-?ber,effective interfacial inter- action area between the matrix to the ?bers is reduced. This lead to poor interfacial bond strength, resulting in lower ILSS. Signi?cantly poor ILSS at higher loading can be attributed to the large crystal- lites/lum p s of the zirconia that were observed at higher wt% of zirconia coating (Fig. 2d and e)which could have acted as defect zones in the composite. Besides this, reduction in %V f of the composites made with Zr–C-prepregs is also responsible for the reduction in the mechanical properties for the Zr–C–Ph compos- ites. On the other hand, CNT–C–Ph composite displayed enhanced ?exural and shear properties. It can be seen that, well dispersed CNTs present in C–Ph composites ,are strengtheni n g the ?ber–ma-trix interface by bridging the interfacial micro cracks (Fig. 3a)lead- ing to enhanced ILSS for the CNT–C–Ph.Similar strengthening mechanis m s for the ILSS improvement of CFRPs due to CNTs were reported previously by some other research groups [15,16].Enhanced ?exural strength due to CNTs can be attributed to the strengthening of the ?ber matrix interface (Fig. 3b)and stiffening of the matrix which can effectively resist the bending forces [17].4.4. Thermal conductiv i ty

Through thickness thermal conductivity of Zr–C–Ph composites is found to be signi?cantly less as compare d to blank C–Ph (Table 2).This is due to the fact that, signi?cant proportion of the advancing heat energy is consumed in generating lattice vibration s (phonons)in the zirconia layer which is sandwiching Table 2

Thermal conductivity values of the composites. Sample description Thermal conductivity (W/m K)Percentage change

a

Blank C–Ph

0.59(±0.05)–3.5 wt% Zr–C–Ph 0.41(±0.15)à30

6.5 wt% Zr–C–Ph 0.33(±0.10)à44

0.5 wt% CNT–C–Ph

0.69(±0.05)

+17 a

[(Sample-Blank)/Blank]?100. Values in the parentheses are maximum and minimum deviation from average value.

Schematic con?guration of the sample and the holder used for plasma arc jet testing and (b)Plasma arc jet testing under progress; (i)after test; (iii)FG-C–Ph after test.

Table 3

Ablation rate and back face temperature of composit e s in plasma arc jet test.

Sample description Ablation rate (mm/s)

Temp (°C)a

Blank C–Ph

0.054 169

3.5 wt% Zr–C–Ph 0.078 114 6.5 wt% Zr–C–Ph 0.105 104

F G

-C–Ph 0.103 135

a

Back face temperature at the end of test (30s).

I. Srikanth et al. /Composites Science and Technology 80 (2013)1–7

3

4.5. Back face temperature and ablation rate

Observed back face temperat u res with respect to time, for the samples that were subjected to plasma arc jet test are shown in As it can be seen from the graphs shown in Fig. 4,back face temperature of the test specimens continue d to raise even after the plasma jet is switched off after 30 s of test duration. This is due to the accumulated heat energy from the ablated surface reaching the back face of the test sample. Back face temperat u re of the tested samples at the end of the test (30s after the plasma jet hit the front face of the specimen)and ablation rate of the test specimens are

Results show that, there is a signi?cant reduction in the back face temperature of the Zr–C–Ph composites as com- pared to the blank. It indicates that, the insulating coating layer of the zirconia present on the C-fabric layers is able to reduce the back face temperature signi?cantly under harsh testing environ- ment. It is observed that, as the wt% of zirconia increased in composites, there is more reduction in the back face tem- perature (Table 3)as the ceramic skin (zirconia coating)structure

present on the C-?bers,can effectively insulate the virgin material beneath the ablation surface [20].More thermal insulation capability of the Zr–C–Ph composites, is also evidenced by the low- er depth of penetration of pyrolytic decompo s ition zone (char Fig. 4. Back face temperatures of the blank C–Ph,Zr–C–Ph and FG-C–Ph composites.

coated with 3.5 wt% of zirconia showing thin layer of coating (indicated by arrows),(b)3.5 wt% zirconia coating on C-?bers

nm, (c)3.5 wt% zirconia coating on C-?bers showing coating formation on all carbon ?laments,(d)6.5 wt% zirconia coating on C-?bers

9.5 wt% of zirconia coating on C-?ber having lumps of zirconia and (f)CNT–C-prepregs showing good dispersion of CNTs.

FESEM images of the CNT–C–Ph composites failed under shear and ?exural loads (a)Image showing well dispersed CNTs bridging the matrix micro cracks at the interface (encircled zone)during shear failure and (b)Image showing CNT reinforced matrix holding the C-?bers together during ?exural

zone)in the through thickness direction from the ablated surface (Fig. 5).It can be seen that, compared to the thickness of the char zone (char depth)that is observed for the blank C–Ph composites , the char depth for the Zr–C–Ph composites has come down signif- icantly (Fig. 5).Effective thickness of the insulating Zr–C–Ph layers the ablated surfaces shown in Fig. 6indicates that the matrix char- ring and it’s subsequent removal is preceding the ?ber erosion (Fig. 6a and b).Fiber damage and their erosive losses will be signif- icantly low, when the char that is forming during ablation is re- tained for long duration. This is due to the fact that, char not

Stereo microscope images of samples after plasma arc jet test. Left end of the sample surface is the ablated surface (surface exposed to plasma).

Blank C–Ph,(b)3.5 wt% Zr–C–Ph,(c)6.5 wt% Zr–C–Ph and (d)FG-C–Ph.

I. Srikanth et al. /Composites Science and Technology 80 (2013)1–75

network formation (Fig. 6b)in the remaining matrix. Similar obser- vations regarding enhanced matrix removal for C–Ph composites in presence of zirconia (derived from high temperature oxidative decompositi o n of ZrB 2)is reported recently by Y.Chen et al. [9]. The above proposed reaction, showing consump t ion of the solid char by ZrO 2giving gaseous by products (reaction(3))is also validated by carrying out through thickness SEM studies of the char zone of the tested samples (approximately0.3 mm behind the ablated surface).It can be observed that, compare d to the blank

Fig. 6c),porosity in Zr–C–Ph composite is signif- Fig. 6d,e).Lower rate of matrix removal from the blank resulted in better protection of the ?bers as evidenced by the formation of needle like structure with less ?ber breakage Higher rate of matrix removal in Zr–C–Ph composites,

under protected from the high velocity shear forces of plasma jet, which resulted in severe breakage of lumps of ?bers(Fig. 6g,h).The cumulative effect of enhanced rates of ma- trix and ?ber removal resulted into enhanced ablation rate for Zr–C–Ph composites. As the wt% of zirconia in C-Ph increased, net reduction in solid char volume will become more prominent which resulted in more ?ber damage (Fig. 6i)with further enhancement in the ablation rate.

4.5.2. Ablation mechanism in FG-C–Ph composite

FG-C–Ph composite which was exposed to the plasma jet to- wards the surface having CNT–C–Ph compositi o n, has shown high- est ablation rate among the tested composites. Considerable damage to the ?bers on the ablated surface is observed (Fig. 8).It is clearly visible that, the ?bers near the crossover points eroded higher than the ?bers from the other areas (Fig. 8a).This could be explained as follows. CNT reinforceme n t in the C–Ph composite has increased the thermal conductivity of the composite (Table 2). Enhanced thermal conductivi t y of the composite resulted in faster rate of the heat front advancement which in turn led to accelerated charring and degradation of the matrix along the thickness. Similar observati o ns on enhanced rate of matrix pyrolysis for CNT rein- forced phenolics was reported recently by Natali et al. [14].As the crossover points which are matrix rich areas in composites will become char rich areas during the ablation, degradation at the crossove r points is observed to be more severe. Accelerat e d charring and subsequent erosion of the matrix resulted in en- hanced ?ber breaking (Fig. 8b)resulting in enhanced ablation rate.

[21].Enhanced ?exural,shear strength of C–Ph due to CNTs could

SEM images of samples after plasma arc jet test (a)Blank C–Ph showing matrix removal ahead of ?ber damage (pockets of matrix removed zones indenti?ed

3.5 wt% Zr–C–Ph showing more matrix removal up to considerable depth, (c)Blank C-Ph showing low matrix porosity in the char zone (approximately

behind the ablated surface, (d)and (e)3.5 wt% Zr–C–Ph showing high level of matrix porosity in the char zone, (f)Blank C-Ph showing needle like structure formation for

3.5 wt% Zr–C–Ph showing broken ?bers without needle like structure formation, (h)Magni?ed view of the encircled zone of Fig.g. showing initiation of ?ber

6.5 wt% Zr–C–Ph showing lumps of broken ?bers.

Fig. 7. XRD of the ablated surface of Zr–C–Ph composite showing formation of ZrC.

not result into enhanced resistance to erosive loss of composite, primarily due to the fact that, the room temperature mechanical property improvements due to CNTs, lost their signi?cance in the charred matrix.

5. Conclusions

(i)Carbon–Phenolic (C–Ph)composites fabricated with zirconia

coated carbon fabrics can show low thermal conductivity ,

leading to reduced back face temperature when exposed to

high temperature and high ?ux environments.

(ii)Presence of zirconia in C–Ph composites has increased the ablation rate. This is due to enhanced conversion of solid char into zirconium carbide (ZrC)and carbon monoxide (gaseous product)leading to under protectio n of the carbon

?bers facing the plasma jet.

(iii)CNTs can improve the room temperature ?exural and shear strength of C–Ph composites. However enhancem e nt in these properties lost their prominence in the charred matrix.

Enhanced thermal conductivity due to CNTs improved the

ablation rate of C–Ph composites.

References

[1] Savage G. Carbon–carbon composites. London: Chapman &Hal; 1993.

[2] D’Aelio G F, Parker JA. Ablative plastics. New York: Marcel Dekker; 1971.

[3] Trick KA, Saliba TE. Mechanisms of the pyrolysis of phenolic resin in a carbon/

phenolic composite. Carbon 1995;33:1509–15.

[4] Park JK, Cho D, Kang TJ. A comparison of the interfacial, thermal and ablative

properties between spun and ?lament yarn type carbon fabric/phenolic composites. Carbon 2004;42:795–804.

[5] Xiao J, Chen JM, Zhuo HD, Zhang Q. Study of several organic resin coatings as

anti-ablation coatings for supersonic craft control actuator. Mater Sci Eng A 2007;452-453:23–30.

[6] Koo Joseph H, Miller Mark J, Weispfenning Jon, Blackmon Charles. Silicone

polymer composites for thermal protection of naval launching system. J spacecraft rockets 2001;48:904–19.https://www.360docs.net/doc/c610029053.html,/10.2514/1.46534.

[7] Srikanth I, Alex Daniel, Suresh Kumar, Padmavathi N, Vajinder Singh, G hosal P,

et al. Nano silica modi?ed carbon –phenolic composites for enhanced ablation resistance. Scripta Mater 2010;63:200–3.

[8] Koo Joseph, Stretz Holly, Bray Alan, Weispfenning Jon, Luo ZP, Blanski Rusty.

Nanostructured materials for rocket propulsion system: recent progress. In: 44th AIAA/ASME/ASCE/AHS structures, structural dynamics and materials conference. 7-10th 2003 April Norfolk, Virgenia. AIAA paper no: AIAA; 2003. p.

1769.

[9] Chen Yaxi, Chen Ping, Hong Changqing, Baoxi Zhang, Hui David. Improved

ablation resistance of carbon–phenolic composites by introducing zirconium diboride particles. Composites Part B2013;47:320–5.

[10] Lubineau G, Rahaman A. A review of strategies for improving the degradation

properties of laminated continuous ?ber/epoxy composites with carbon based nanoreinforcements. Carbon 2012;50:2377–95.

[11] Park JM, Wang ZJ, Kwon DJ, Gu GY, Lee WI, Park JK. Interfacial properties and

self sensing of single carbon ?ber reinforced CNT–Phenolic nanocomposites using electro-micro mechanical and wettability tests. Composites Part B 2012;43:1171–7.

[12] Natali Maurizio, Monti Marco, Kenny JoséMaria, Torre Luigi. A nanostructured

ablative bulk molding compound: development and characterization.

Composites Part A2011;42:1197–204.

[13] Patton RD, Pittman CU, Wang Jr L, Hill JR, Day A Ablation, et al. Mechanical and

thermal conductivity properties of vaporgrown carbon?ber/phenolic matrix composites. Composites Part A2002;33:243–51.

[14] Natali M, Monti M, Puglia D, Kenny JM, Torre L. Ablative properties of carbon

black and MWNT/phenolic composites: a comparative study. Composites Part A2011;43:174–82.

[15] G reen KJ, Dean DR, Vaidya UK, Nyairo E. Multiscale ?ber reinforce composites

based on a carbon nano?ber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermo mechanical behavior. Composites Part A 2009;40:1470–5.

[16] Cho J, Daniel IM, Dakin DA. Effects of block copolymer dispersant and

nanotube length on reinforcement of carbon/epoxy composites. Composites Part A2008;39:1844–50.

[17] G ojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K. Carbon nanotube-

reinforced epoxy –composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 2004;64:2363–71.

[18] G au C, Chen SY, Tsai HL, Jenq Syh-Tsang, Lee Cheng-Ching, Chen Yu-Der, et al.

Synthesis of functionalized carbon nanotubes/phenolic nanocomposites and its electrical and thermal conductivity measurements. Jpn J Appl Phys 2009;48. 06FF10-1–4.

[19] Kim YA, Kamio S, Tajiri T, Hayashi T, Song SM, Endo M, et al. Enhanced thermal

conductivity of carbon ?ber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. https://www.360docs.net/doc/c610029053.html,/10.1063/1.2710778.

[20] Ho WK, Koo JH, Ezekoye OA. Thermo plastic polyurethane elastomer

nanocomposites: morphology, thermo physical and ?ammability properties.

J Nanomater 2010. https://www.360docs.net/doc/c610029053.html,/10.1155/2010/58323.

[21] Cho Donghwan. Byung Il Yoon. Microstructural interpretation of the effect of

various matrices on the ablation properties of carbon-?ber-reinforced

composites. Compos Sci Technol 2001;61:271–80. SEM images of FG-C–Ph samples after plasma arc jet test. (a)Signi?cant erosive loss at the crossover points (indicated by arrows)and (b)

pr值计算方法

2012谷歌pr值计算方法大揭秘(将启用新颖度算法) 一,2012年谷歌友情链接计算新方法 + 十大谷歌参数值(为了方便理解姑且定义为参数) A B N代表不同的站点 很少有SEO人员懂的这种终极算法,这种谷歌参数超级重要,就算没有友情链接,只要将参数作到极致,完全可以提高pr值.这就是量变而引起的质变,也就是说不设置一个友情链接,pr照样可以提高到5,这篇文章我会好好解答其中的奥妙,以及谷歌在2012年pr值计算方面的新改变。 二,对pr计算公式的解析 谷歌对于网站友情链接或者是页面pr的计算方式是: PR(A)=(1-d)+d(PR(t1)/C(t1)+PR(t2)/C(t2)..........PR(tn)/C(tn))+(参数) 大家不知道这个d0.85是啥意思,d为固定的常数,也就是0.85 而PR(A)则是你网站可以获得的pr值,PR(t1)是交换网站的pr值,C(t1)则表示该网站所含有的导出的友情链接数,以此类推。专业名词叫阻尼因数(damping factor),实际上是计算PR分值所设置的系数,Google 的阻尼因数一般是0.85PR(A)表示的是从一个外部链接站点t1上,依据Pagerank(tm)系统给你的网站所增加的PR分值PR(t1)表示该外部链接网站本身的PR分值;C(t1)则表示该外部链接站点所拥有的外部链接数量,很多SEO们的行家们迷信这个基础算法,而忽视了后边的参数,如果简单的利用这个基本的公式计算,发现会有一个漏洞,就是老网站获得的PR值会高,新网站即使很受欢迎仍然不能获得PR!

实则不然!大家都会发现三个怪现象, 1,有的网站刚上线没几天pr会更新到4 , 2,有的网站友情链接做的越来越多,而pr却不断的在下降 3,有的网站根本没有友情链接,pr却也很高 这就是中国式的常规猜想,而忽略了后边的后浪参数,所以搜索引擎会有很复杂的算法来解决。不要深究算法,因为你不是搜索引擎工程师,研究提高PR没有更大的意义,所谓万变不离其宗,网站要获得高的PR值,友情链接不管是质量和数量上都有优势的时候才能走向PR的巅峰。同样,光靠参数,pr也可以走向一个巅峰。 三,友情链接因参数而不同 交换友链要考虑三方面的因素: (1)pr越高越好(最好是让高PR值的网站首页链接上你的网站,这是大部分人在做的) (2)pr不太高,但是导出连接比较少(很多做友情链接都不能彻底明白这一点,但通过计算公式很多人就明白了,pr不太高,但导出链接少的,甚至比pr高的网站,但为啥pr高是首要因素呢?因为导出链接少的pr还凑合的网站比较稀少) (3)权威网站的主要页面,或者叫后浪参数比较高的页面(很多做友情链接的都忽视这一点,网站是否权威,网站权威性与网页权威性这两个概念是有所区此外。网站权威性是由一张张高质量的网页、网站声望、用户口碑等等身分形成。搜索引擎判定一张网页的主要性,可能会优先判定网站的权威性。基于网站的权威性,再判定某一网页

seo中pr值什么意思

Seo中pr值的意思 Seo中pr值的意思?这是seo学习过程中必须了解的一个常识,pr值越高说明该网页越受欢迎。pr值是什么。影响网页PR值的因素有很多,但主要的有: 一、网站被三大知名网络目录DMOZ,Yahoo和Looksmart收录 众所周知,Google的PageRank系统对那些门户网络目录如DMOZ 、Yahoo和Looksmart尤为器重。特别是对DMOZ。一个网站上的DMOZ链接对Google的PageRank来说,就好象一块金子一样有价值。如果你的网站为ODP收录,则可有效提升你的页面等级。 如果你的网站为Yahoo和Looksmart所收录,那么你的PR值会得到显著提升。如果你的网站是非商业性质的或几乎完全是非商业性质的内容,那么你可以通过https://www.360docs.net/doc/c610029053.html, 使你的网站为著名的网络目录Looksmart所收录。 如果你是一个网站管理员,而你的网站又已经收录在三大知名的开放目录DMOZ、Yahoo和Looksmart中,我想你的网站的PR值一定比较高,而且搜索排名也不会差。 二、Google抓取您网站的页面数量 让搜索引擎尽量多的抓取你网站的网页,这样搜索引擎才会认为你网站的内容非常丰富,因为搜索引擎喜欢内容丰富的网站,才会认为你的网站很重要。而且这些内容最好是原创的文章,因为搜索引擎同样喜欢原创的东西。 三、网站外部链接的数量和质量 Google在计算PR值时,会将网站的外部链接数量考虑进去,但并不是说一个网站的外部链接数越多其PR值就越高,因为网页的PR值并不是简单地由计算网站的外部链接数来决定的,还要考虑外部链接的质量,与相关网站做交换链接的分值要比与一般网站做敛接的分值高。让我们来看一下PR值的计算公式: PR(A)=(1-d)+d(PR(t1)/C(t1)+…+PR(tn)/C(tn)) 其中PR(A)表示的是从一个外部链接站点t1上,依据PageRank系统给你的网站所增

黑龙江省外贸发展历程与现状分析

黑龙江省外贸发展现状、技术评析与优化研究 目录 摘要1 1 近十年黑龙江省外贸发展现状2 1.1 黑龙江省外贸现状简介3 1.2 黑龙江省外贸商品的优劣势分析3 1.3 黑龙江省的对外贸易条件分析6 1.4 黑龙江省外贸比较优势和贸易条件的关系10 2 黑龙江省外贸比较优势与GDP贡献率的相关性评析11 2.1 黑龙江GDP的贡献率11 2.2 比较优势和GDP 贡献率的相关分析12 3 黑龙江对外贸易发展存在的优势分析14 3.1黑龙江对外贸易优势原因分析16 3.2 黑龙江省对外贸易发展方式转变的结果进行评价16 3.3 黑龙江省对外贸易发展方式转变的原因分析17 3.4 黑龙江省对外贸易发展方式转变的主要指标评价18 4 黑龙江对外贸易发展中存在的问题22 4.1 对外开放程度不足,外贸对经济增长的贡献率低22 4.2 没有良好的环境进行外资吸引,过低的外资流入22 4.3 区位优势发挥不健全,自身的特色贸易并未彻底形成22 4.4 外贸结构与产业结构为了促进良性机制的发展并未形成基本的模式23 5黑龙江对外贸易发展优化措施23 5.1 开拓市场23 5.2 调整结构25 5.3商业贸易多元化发展26 参考文献28

黑龙江省外贸发展现状、技术评析与优化研究 摘要:通过对黑龙江省2004-2013年间外贸进出口数据的分析,对黑龙江省的外贸发展进行简要的分析,建设和发展黑龙江省的经贸区,进行多元建设来进行对外贸易,将会对黑龙江省外贸经济的发展产生极大地促进作用。 关键字:外贸发展黑龙江分析优化 大卫·李嘉图这位英国古典经济学派集大成者在1817年的代表作《政治经济学及赋税原理》中提取出比较优势理论,并在未来百年内将此优势理论称之“国际贸易理论的基石”。在这样的理论指导下,英国顺利完成产业革命,并在19世纪成功成为全球的第一个“世界工厂”。在整个贸易实践中,发展中国家若只是遵循比较优势理论来推动社会的发展,很容易陷入到比较优势陷阱当中。初级产品和劳动密集产品的发展主要集中在发展中国家,从比较优势理论的角度上分析,相比于发达国家的资本和技术密集型产品为主要出口产品的贸易相比处于相当不利位置,甚至有可能会出现贸易利益流失的情况。 现阶段国内对于比较优势理论的研究还不是很多,但是实证研究确实不少,对其研究方法也是角度方法各一。国内主要代表研究作品主要有:张鸿(2006)采用RCA指数和NEPR(纯出口比较优势指数),

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

4-5 对流传热系数关联式

知识点4-5 对流传热系数关联式 【学习指导】 1.学习目的 通过本知识点的学习,了解影响对流传热系数的因素,掌握因次分析法,并能根据情况选择相应的对流传热系数关联式。理解流体有无相变化的对流传热系数相差较大的原因。 2.本知识点的重点 对流传热系数的影响因素及因次分析法。 3.本知识点的难点 因次分析法。 4.应完成的习题 4-11 在一逆流套管换热器中,冷、热流体进行热交换。两流体进、出口温度分别为t1=20℃、t2=85℃;T1=100℃、T2=70℃。当冷流体流量增加一倍时,试求两流体的出口温度和传热量的变化情况。假设两种情况下总传热系数不变,换热器热损失可忽略。 4-12 试用因次分析法推导壁面和流体间自然对流传热系数α的准数方程式。已知α为下 列变量的函数: 4-13 一定流量的空气在蒸汽加热器中从20℃加热到80℃。空气在换热器的管内湍流流动。压强为180kPa的饱和蒸汽在管外冷凝。现因生产要求空气流量增加20%,而空气的进出口温度不变,试问应采取什么措施才能完成任务,并作出定量计算。假设管壁和污垢热阻可忽略。 4-14 常压下温度为120℃的甲烷以10m/s的平均速度在列管换热器的管间沿轴向流动,离开换热器时甲烷温度为30℃,换热器外壳内径为190mm,管束由37根ф19×2的钢管组成,试求甲烷对管壁的对流传热系数。

4-15 温度为90℃的甲苯以1500kg/h的流量流过直径为ф57×3.5mm、弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。 4-16 流量为720kg/h的常压饱和蒸汽在直立的列管换热器的列管外冷凝。换热器的列管直径为ф25×2.5mm,长为2m。列管外壁面温度为94℃。试按冷凝要求估算列管的根数(假设列管内侧可满足要求)。换热器的热损失可以忽略。 4-17 实验测定列管换热器的总传热系数时,水在换热器的列管内作湍流流动,管外为饱和蒸汽冷凝。列管由直径为ф25×2.5mm的钢管组成。当水的流速为1m/s时,测得基于管外表面积的总传热系数为2115W/(m2.℃);若其它条件不变,而水的速度变为1.5m/s时,测得系数为2660 W/(m2.℃)。试求蒸汽冷凝的传热系数。假设污垢热阻可忽略。 对流传热速率方程虽然形式简单,实际是将对流传热的复杂性和计算上的困难转移到对流传热系数之中,因此对流传热系数的计算成为解决对流传热的关键。 求算对流传热系数的方法有两种:即理论方法和实验方法。前者是通过对各类对流传热现象进行理论分析,建立描述对流传热现象的方程组,然后用数学分析的方法求解。由于过程的复杂性,目前对一些较为简单的对流传热现象可以用数学方法求解。后者是结合实验建立关联式,对于工程上遇到的对流传热问题仍依赖于实验方法。 一、影响对流传热系数的因素 由对流传热的机理分析可知,对流传热系数决定于热边界层内的温度梯度。而温度梯度或热边界层的厚度与流体的物性、温度、流动状况以及壁面几何状况等诸多因素有关。 1.流体的种类和相变化的情况 液体、气体和蒸汽的对流传热系数都不相同,牛顿型流体和非牛顿型流体也有区别。本书只限于讨论牛顿型流体的对流传热系数。 流体有无相变化,对传热有不同的影响,后面将分别予以讨论。 2.流体的特性

直方图统计及均衡化matlab代码

自己编的代码 Matlab中自带的函数 clc;clear all; %用自己编的函数 pic1=imread('188_2.jpg');%修改数字可以看到另一幅图片的效果pic1=rgb2gray(pic1); subplot(221);imshow(pic1);title('均衡化前的图像'); subplot(222);imhist(pic1);title('均衡化前的直方图'); L=256;%设置灰度级为256 [width,height]=size(pic1); %求nk nk=zeros(1,L); for i=0:L-1 num=find(pic1==(i+1)); nk(i+1)=length(num);

end %求pr(rk)=nk/MN pr=zeros(1,L); for i=1:L pr(i)=nk(i)/(width*height); end %pc存储的就是累计的归一化直方图 pc=zeros(1,L); for i=1:L for j=1:i pc(i)=pc(i)+pr(j); end end sk=zeros(1,L); for i=1:L sk(i)=round((L-1)*pc(i)); end %求pr(sk),即计算现有每个灰度级出现的概率并显示在屏幕上for i=0:L-1 pr(i+1)=sum(pc(find(sk==i))); end pr %显示pr值 %替换原有图片 pic2=pic1; for i=1:L pic2(find(pic2==(i-1)))=sk(i); end subplot(223);imshow(pic2);title('均衡化后的图像'); subplot(224);imhist(pic2);title('均衡化后的直方图'); %用matlab自带的函数 pic1=imread('188_2.jpg');%先把要处理的图像读入 pic1=rgb2gray(pic1);%转化成灰度图像 %显示灰度图像与直方图 figure;

谷歌pr值算法变化概要

2012谷歌p r 值计算方法大揭秘(将启用新颖度算法 参考来源深圳网站优化 h t t p ://w w w . s e o r e . c o m /s e o -g o o g l e / h t t p ://w w w . s e o e r e . c o m /s e o -g o o g l e /130. h t m l 谷歌p r 是什么? 什么是网站P R 值?p r 值4到10P R 值全称为P a g e R a n k (网页级别,取自G o o g l e 的创始人L a r r y P a g e 。它是G o o g l e 排名运算法则(排名公式的一部分,是G o o g l e 用来标识网页的等级/重要性的一种方法,是G o o g l e 用来衡量一个网站的好坏的一项重要标准。在揉合了诸如T i t l e 标识和K e y w o r d s 标识等所有其它因素之后,Go o g l e 通过P a g e R a n k 来调整结果,使那些更具“等级/重要性”的网页在搜索结果中令网站排名获得提升,从而提高搜索结果的相关性和质量。PR 级别级别从1到10级,10级为满分。P R 值越高说明该网页越受欢迎(越重要。例如:一个P R 值为 1的网站表明这个网站不太具有流行度,而P R 值为7到10则表明这个网站非常受欢迎(或者说极其重要。一般P R 值达到4,就算是一个不错的网站了。G o o g l e 把自己的网站的P R 值定到10,这说明G o o g l e 这个网站是非常受欢迎的,也可以说这个网站非常重要。 一,2012年谷歌友情链接计算新方法

《教育统计与测量评价》复习题及参考答案

本课程复习题所提供的答案仅供学员在复习过程中参考之用,有问题请到课程论坛提问。 本复习题页码标注所用教材为: 如学员使用其他版本教材,请参考相关知识点 福师1203考试批次《教育统计与测量评价》复习题及参考答案一 一、单项选择题(每题1分,共10分) 1、体育运动会中各个项目的名次为“第1名,第2名,第3名……”,这一变量属于 ()。 A、称名变量 B、顺序变量 C、等距变量 D、比率变量 2、某次考试之后对数据进行统计分析,求得第46百分位数是64分,这意味着考 分高于64分的考生人数比例为()。 A、36% B、46% C、54% D、64% 3、下列分类是属于按照解释结果的参照点划分的() A、形成性与总结性测量与评价 B、智力与成就测量与评价 C、常模参照与标准参照测量与评价 D、诊断性与个人潜能测量与评价 4、标准分数Z与百分等级之间关系()。 A、可以互相推出 B、没有关系 C、百分等级PR大于Z分数 D、在一定条件下Z分数和PR值一一对应 5、在正态分布中,已知概率P(0<Z≤1.96)=0.4750,试问:概率P(Z>1.96)的 值为()。 A、0.9750 B、0.9500 C、0.0500 D、0.0250 6.下列分类属于按照教学时机划分的是() A、形成性与总结性测量与评价 B、智力与成就测量与评价 C、常模参照与标准参照测量与评价 D、诊断性与个人潜能测量与评价 7.适合于某些用于选拔和分类的职业测验的效度种类是()。 A.时间效度 B. 内容效度 C. 效标关联效度 D. 结构效度

8. 统计学中反映一组数据集中趋势的量是下面哪个选项()。 A、平均差 B、差异系数 C、标准差 D、中数 9.某次考试之后对数据进行统计分析,求得第90百分位数是78分,这意味着考分 高于78分的考生人数比例为()。 A、90% B、10% C、78% D、22% 10. 考试中对学生进行排名,常见的名次属于什么变量() A、称名 B、顺序 C、等距 D、比率 答案提示: 1.B 2.C 3. C 4.D 5.B 6.A 7.B 8.D 9. B 10.B 二、绘制统计图(共10分) 请按以下的分布统计资料,绘制相对次数分布直方图与多边图(可画在同一个坐标框图上)

深度解读PR值以及PR输出值计算公式

云客网您网站的流量加油站 深度解读PR值以及PR输出值计算公式 笔在这里者将自己对于谷歌PR的传递原理,以及PR值的深层次含义分享一下,下面主要以问答的形式来深度解析! 问:PR值是指网站的还是页面的? PR的对象是单个网页,也就是单个页面。换言之,“网站”PR值的说法是不严谨的。 问:PR输出值计算公式计算的是网站全部的PR输出值吗? 答:不是,PR输出值计算公式计算单个站外导出链接所获取的PR值。想要知道全部的PR输出值,只需要把计算的结果乘以站外导出链接的数量即可。 问:PR输出值计算公式是单个页面的所有导出链接吗? 答:不是,PR输出值计算公式只用于计算单个页面所有导出链接中的站外链接。站内链接则是分开计算的,至于计算公式谁也不清楚,不过有一点,站内链接继承的PR仍然是此单个页面的全部PR,而不是站外链接剩下的那部分。 问:页面的PR值会因为导出链接的增多而降低吗? 答:不会。作为导出链接,对本身网页的PR是没有影响的。拿投票来举例:我的这个页面的权威性是通过别的页面投票得来的,至于我这个页面是否要给别的页面投票这件事,和我这个页面本身的PR值没有半毛钱的关系。 问:友情链接没有我网站的PR高,我会吃亏吗? 答:不会,上面已经说了,作友情链接对本身网站的PR是没有影响的。 PR是网站权重的一部分,虽然PR只是谷歌的技术专利,不过百度一直都在追随谷歌的搜索引擎技术,相信这些PR原理在百度处理网页的权重问题时同样适用! 原文地址:https://www.360docs.net/doc/c610029053.html,/seo-dy/115.html 版权所有:天星seo培训 SEO排名https://www.360docs.net/doc/c610029053.html,/

相关文档
最新文档