电感的定义

电感的定义
电感的定义

一、电感器的定义

1.1 电感的定义:

电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。

由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。

1.2 电感线圈与变压器

电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。

变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。

1.3 电感的符号与单位

电感符号:L

电感单位:亨(H)、毫亨(mH)、微亨(uH),1H=103mH=106uH。

1.4 电感的分类:

按电感形式分类:固定电感、可变电感。

按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。

按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。

按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。

按工作频率分类:高频线圈、低频线圈。

按结构特点分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。

二、电感的主要特性参数

2.1 电感量L

电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。

2.2 感抗XL

电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL

2.3 品质因素Q

品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。

2.4 分布电容

线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。

2.5 允许误差:电感量实际值与标称之差除以标称值所得的百分数。

2.6 标称电流:指线圈允许通过的电流大小,通常用字母A、B、C、D、E分别表示,标称电流值为50mA 、150mA 、300mA 、700mA 、1600mA。

三、常用电感线圈

3.1 单层线圈

单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。

3.2 蜂房式线圈

如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导

线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小

3.3 铁氧体磁芯和铁粉芯线圈

线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。

3.4 铜芯线圈

铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。

3.5 色码电感线圈

是一种高频电感线圈,它是在磁芯上绕上一些漆包线后再用环氧树脂或塑料封装而成。它的工作频率为10KHz至200MHz,电感量一般在0.1uH到3300uH之间。色码电感器是具有固定电感量的电感器,其电感量标志方法同电阻一样以色环来标记。其单位为uH。

3.6 阻流圈(扼流圈)

限制交流电通过的线圈称阻流圈,分高频阻流圈和低频阻流圈。

3.7 偏转线圈

偏转线圈是电视机扫描电路输出级的负载,偏转线圈要求:偏转灵敏度高、磁场均匀、Q值高、体积小、价格低。四、电感在电路中的作用

基本作用:滤波、振荡、延迟、陷波等

形象说法:“通直流,阻交流”

细化解说:在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。

由感抗XL=2πfL 知,电感L越大,频率f越高,感抗就越大。该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t

成正比,这关系也可用下式表示:

电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:WL=1/2 Li2 。

可见,线圈电感量越大,流过越大,储存的电能也就越多。

电感的符号

电感量的标称:直标式、色环标式、无标式

电感方向性:无方向

检查电感好坏方法:用电感测量仪测量其电感量;用万用表测量其通断,理想的电感电阻很小,近乎为零。

电感器的基本定义

电感器的基本定义 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L 电感单位:亨 (H)、毫亨(mH)、微亨 (uH),1H=10*10*10mH=10*10*10*10*10*10uH。 1.4 电感的分类: 按电感形式分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。

电子元器件基本常识-电感

电子元器件基本常识——电感部分(全) 发表于 2007-8-10 13:27:34电感 3.1 电感基础知识 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 简单的说电感线圈就是由导线一圈*一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH), 1H=10^3mH=10^6uH。 3.2 电感的分类: 按电感形式分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 按工作频率分类:高频线圈、低频线圈。 按结构特点分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等 3.3 电感线圈的主要特性参数 电感量L:电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 感抗XL: 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL

专家教你如何透彻理解电感

一、电感器的定义。 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律-磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。 当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3电感的符号与单位

coil电感器件特性

认识电感器Inductor组件特性 电感器种类: 一般电感器依功能特性可区分为信号电路用及电源电路用两种. 依其形状则有卧式Axial, 座式Radial, 贴片式SMD三种不同的包装型态. 此外还有类似变压器结构之电感器, 及以铁粉芯产生电感量的EMC防护组件. 1.电感器主要电气规格: 电感量与误差值(与测试频率有关), 最低Q值(与测试频率有关), 最大额定工作 电流, 工作温度范围. 其它依组件使用特性另有其它特定之规格. 2.信号电路用电感器参考规格如下: Inductor for Signal Line Radial Winding *工作温度范围: (-20/+80) *Rated Current: Radial winding之定义为电感量-10%之工作电流, Axial winding之定义为温升超出20℃之工作电流. *Test Frequency: 一般信号电路用电感器, 需使用Q Meter测试频率依电感量标准设定. *Self Resonant Frequency: 高频电感器其内部有寄生电容量与本身电感量形成共振电路. 3.电源电路用电感器参考规格如下: Inductor for Power Line Radial Winding

SMD Winding *工作温度范围: Axial Winding 为(-20/+80℃) 其它为(-40/+85℃) *Rated Current: 数值较高者为电感量-10%之工作电流, 数值较低者为温升超出20℃之工作电流. *Test Frequency: 一般电源电路用电感器, 需使用LCR Meter测试频率设定1KHz. 5. 铁粉芯EMC防护组件参考规格如下: EMC Ferrite Core Impedance (Z in Ohm) *Impedance 10MHz/100MHz: 一般EMI辐射较强的部分为30-300MHz, 故100MHz阻抗越高效果越佳, 10MHz阻抗则视信号电路频率响应需要决定. *上述阻抗数值为针对单一线所产生之数据. *注意上述资料显示HF40/HF70材质不同, 造成10MHz/100MHz相对阻抗的差异. 此外阻抗随铁芯厚度与深度成正比例增加.

电感的定义

电感的定义 在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感 电感的定义是L=phi/i, 单位是韦伯 电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么 L=φ/I 电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。1H=1000mH,1H=1000000uH 电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生 在主板上可以看到很多铜线缠绕的线圈,这个线圈就叫电感,电感主要分为磁心电感和空心电感两种,磁心电感电感量大常用在滤波电路,空心电感电感量较小,常用于高频电路 电感的特性与电容的特性正好相反,它具有阻止交流电通过而让直流电顺利通过的特性。电感的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等。 【电感器的种类】 按照外形,电感器可分为空心电感器(空心线圈)与实心电感器(实心线圈)。按照工作性质,电感器可分为高频电感器(各种天线线圈、振荡线圈)和低频电感器(各种扼流圈、滤波线圈等)。按照封装形式,电感器可分为普通电感器、色环电感器、环氧树脂电感器、贴片电感器等。按照电感量,电感器可分为固定电感器和可调电感器 电感的作用:通直流,阻交流 通直流:所谓通直流就是指在直流电路中,电感的作用就相当于一根导线,不起任 何作用. 阻交流:在交流电路中,电感会有阻抗,即XL,整个电路的电流会变小,对交流有一 定的阻碍作用 电感的原理-电感的工作原理 电感是导线内通过交流电流时,在导线的内部周围产生交变磁通,导线的磁通量与生产此磁通的电流之比

电路基本元件R,C,L(电阻,电容,电感) 介绍

电路基本元件R,C,L(电阻,电容,电感)介绍 1.电阻元件 电阻是表征电路中电能消耗的理想元件。一个电阻器有电流通过后,若只考虑它的热效应,忽略它的磁效应,即成为一个理想电阻元件。电阻元件的图形符号如图1-16所示。图中电压和电流都用小写字母表示,表示它们可以是任意波形的电压和电流。图1-16中,u和i 的参考方向相同,根据欧姆定律得出 即电阻元件上的电压和与通过的电流成线性关系,两者的比值是一个大于零的常数,称为这一部分电路的电阻,单位是欧姆(Ω)。 在直流电路中,电阻的电压与电流的乘积即为电功率,单位是瓦(W)。 在t时间内消耗的电能为W=Pt。 W的单位是焦[耳](J),工程上电能的计量单位为千瓦?小时(kW?h),1千瓦?小时即1度电,1度电与焦的换算关系为1kW?h=3.6×106J。这些电能或变成热能散失于周围的空间,或转换成其他形态的能量作有用功了。因此,电阻消耗电能的过程是不可逆的能量转换过程。 2.电容元件 电容是用来表征电路中电场能储存这一物理性质的理想元件。图1-17是一电容器,当电路中有电容器存在时,电容器极板(由绝缘材料隔开的两个金属导体)上会聚集起等量异号电荷。电压u越高,聚集的电荷q就越多,产生的电场越强,储存的电场能就越多。q与u的比值为C=q/u。C称为电容。式中,q的单位为库[仑](C);u的单位为伏[特](V);C的单位为法[拉](F)。由于法[拉]的单位太大,工程上多用微法( F)或皮法(pF),它们的换算关系为 1F=10-6pF,1pF=10-12F。 当极板上的电荷量q或电压u发生变化时,在电路中就要引起电流流过。其大小为 (1-5) 上式是在u和i的参考方向相同的情况下得出的,否则要加负号。

电感概念 试题

品管部人员培训试题 姓名:得分: 1:电感器的概念是什么,具体有什么作用?(8分) 答: 2:判断题,正确打√,错误打×(16分) 1)、相同圈数及磁芯:线径小的电感值要低一些() 2)、其他条件相同情况下:磁芯材质ui值较高的做出来的电感值要高一些,也就是说ui值跟电感值是成正比的() 3)、磁芯的外径、中柱、槽宽的大小:中柱大的电感值要高一些() 4)、相同圈数及中柱下:线径越小DCR越大() 5).如果要求双线并绕,作业时却绕单线,DCR会高出近一倍。绕线不平整时也会把线绕长,因此也会导致DCR变高() 6)、CP针(带磁性:钢针)要比TC针(不带磁性:铜针)的DCR小() 7)、相同的产品在相同的条件下测试,电感值低的耐电流会比较好一点。由于RI组装偏歪会导致电感值偏高,所以也可以解理为RI组装偏歪会导致耐电流变差() 8)、在产品上点磁胶也会导致耐电流变差,由于点磁胶会将电感值升高,但材料及产品结构并没有变化,仅仅是电感值升高了也同等于上述“第2点”的情况() 3.电感值,直流电阻值的单位换算是怎样换算的?(22分) 答:①1H= _________uH, ②1mH=_________ H, ③20uH=_________nH, ④1 uH= _________ H, 又= _________mH,又= _________ uH,又= _________nH ⑤1mΩ= _________mΩ, 又= _________Ω, 又=_________KΩ, 又= _________ MΩ 4.作为一款电感,它主要有哪些参数?(14分) 答: 6:通常电感值的数值是有三位數的代码来表示,代码前两位数也就是該感值的前两位数字,后一位则代表感值两位数后零的个数,请写出以下代码的实质感值。(20分) 0R6: 1R8: 101: 153: 100: 7:通常我们看到感值代码后面带着一个字母,象SMRH类的很多都是”M”,DR类的是”K”或”L”.其实这些字母代表的是该感值的公差范围,请对应写出以下字母的公差范围值?(20分) P= ±____%, N= ±____%, , K= ±____%, L= ±____%, M=±____%,

Q值的定义(精)

Q值的定义: Q值;是衡量电感器件的主要参数.是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比.电感器的Q值越高,其损耗越小,效率越高. 电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关. 也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大.降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值过大,引起电感烧毁,电容击穿,电路振荡. Q很大时,将有VL=VC>>V的现象出现.这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失.所以在电力系统中应该避免出现谐振现象.而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值. 品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量 通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽. Q=wL/R=1/wRC 其中: Q是品质因素 w是电路谐振时的角频率(2πf) L是电感 R是串的电阻 C是电容 结合自己的实践,对上面进行一下补充 由于在天线端都是采用的是RLC并联谐振电路,是在正弦电流激励下工作的 所以在计算电感的品质因数Q值时,R值为整个谐振电路的等效阻值,在计算时候要注意 下面的是一个案例,很有指导意义!!!! For optimum performance the antenna Q should not exceed 20 and to achieve reliable tuning at 125kHz the antenna inductance should be around 700uH. Higher Q and inductance values will still function but with a reduced range and performance. The formula for calculating Q = 2*pi*fL / Rant = 549 / Rant where f = Resonant frequency, 125 kHz, L = Antenna inductance, 700uH Rant = Overall antenna resistance = Rdriver + Ra + (Rcu + Rrf) pi = 3.14159 etc Rdriver = 3.5 R (from IC spec) and Ra = 22 R (series resistor in antenna loop) Rcu = Resistance of Copper (coil and cable) and Rrf = RF resistive component (eddy current losses etc) By measurement at 125kHz, (Rcu + Rrf) = approx 6R Therefore Rant = 3.5 + 22 + 6 = 31.5 Ohms, Q = 549 / 31.5 = 17 Max peak antenna current (with 22R series resistor), Iant max = 4Vdd / pi*Rant = 20 / pi*31.5 = 200ma Max peak antenna voltage, Uant max = Iant max . (2*pi*fL) = 110v

第三节电阻、电容、电感元件及其特性.

第三节电阻、电容、电感元件及其特性 —、电阻元件 1、电阻元件:是一个一端元件,其电斥与电流的关系,可 在平面上画线,称为伏安特性曲线。 2、线性电阻 (1)线性电阻:是伏安特性曲线为一条过原点的直线,即满 足II 二Ri 的电阻称为线性电阻。 (2)电阻的单位 第一* (3)电导:电阻特性的另一种表示, ① 表示符号G 。G =1/R 欧(Q ) 1MQ =10^0 lKO=10^O

② 电导G 的单位: 3、 欧姆定律数学表达式 Uj^=Rij^ 或 I R 二GU R 4、 线性电附元件吸收的功率 (1) 电压、电流相关联参考方向,线性电阻 元件吸收的 功率为 P 二U R I R 二 RI R I R 二 PR = IVG P 二U R I R = U/R/R 二 U2G = LI2/R (2) 电压、电流取关联参考方向,线性 电阻元件吸收的 功率为 P A U R I R 二 RI R U R Z/R (3) 关于电阻需注意儿点; 1) 若P>0,则R>0为“止电阻”,即此电阻恒为耗能元件。 2) 若P<0,则取0为“负电阻”,即此电阻向外传输功率 如 图1 4线性电阻元件的伏安特性 西门子 (S ) 图I 3线性电阻元件

运算放人器等)。 3) R-8,无论电压%为何值,电流iR恒等于零,称为开路。 4) R二0,无论iR为何值,电压U R恒等于零,称为短路。

第一*电給的辰#*命如矍律 5.电阻吸收的电能W W=;(I 7 = J to'R i2(11= J UoG ? 2(1 f 例1-1:一盏灯泡额定值为(220V,60W),每天累计明5小时,问: 1)一个月(按30天计算)用电多少度? 2)每度电电费为0.39元,则应付电费多少元? 解:W = pt = 6() X 1 (L3 X 5 X 3()kwh=0.9 度 ¥=0.39X0.9=0.35 元 第一*电給的辰#*命如矍律 二、电容元件 1、线性电容 (1)线性电容两端电圧为〃,正极板积累电荷量为G 则电容元 件的容Sc为: + //U 图1?5线性电容元件图 1?6线性电容元件的库伏特性

电容和电感要点

电感 电感是闭合回路的一种属性,是一个物理量。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,以美国科学家约瑟夫·亨利命名。它是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。 电感是自感和互感的总称。提供电感的器件称为电感器。[1]中文名 电感 外文名 inductance 实质 闭合回路的一种属性,一种物理量 单位 亨利(H) 目录 1. 1定义 2. ?自感 3. ?互感 1. 2单位及换算 2. 3计算公式

3. ?自感 1. ?互感 2. ?三相制均衡输电线的电感 定义编辑 导体的一种性质,用导体中感生的电动势或电压与产生此电压的电流变化率之比来量度。稳恒电流产生稳定的磁场,不断变化的电流(交流)或涨落的直流产生变化的磁场,变化的磁场反过来使处于此磁场的导体感生电动势。感生电动势的大小与电流的变化率成正比。比例因数称为电感,以符号L表示,单位为亨利(H)。[2] 电感是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

电感基础知识详细图示讲解

一、 电感概述 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟 电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电 流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有 阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火 花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势 ,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。 电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L 电感单位:亨 (H)、毫亨(mH)、微亨 (uH),1H=103mH=106uH。 1.4 电感的分类: 按 电感形式 分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。 按 工作性质 分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按 绕线结构 分类:单层线圈、多层线圈、蜂房式线圈。 按 工作频率 分类:高频线圈、低频线圈。 按 结构特点 分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。 二、 电感的主要特性参数 2.1 电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2.2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为 XL=2πfL 2.3 品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。 线圈的Q 值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常 为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。 2.4 分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。

电感工作原理

在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。电感是衡量线圈产生电磁感应能力的物理量。给一个线圈通入电流,线圈周围就会产生磁场,线圈就有磁通量通过。通入线圈的电源越大,磁场就越强,通过线圈的磁通量就越大。实验证明,通过线圈的磁通量和通入的电流是成正比的,它们的比值叫做自感系数,也叫做电感。如果通过线圈的磁通量用φ表示,电流用I表示,电感用L表示,那么 L=φ/I 。电感的单位是亨(H),也常用毫亨(mH)或微亨(uH)做单位。1H=1000mH,1H=1000000uH。电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。板上可以看到很多铜线缠绕的线圈,这个线圈就叫电感,电感主要分为磁心电感和空心电感两种,磁心电感电感量大常用在滤波电路,空心电感电感量较小,常用于高频电路。电感的特性与电容的特性正好相反,它具有阻止交流电通过而让直流电顺利通过的特性。电感的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等。 电感通直流,阻交流。通直流:所谓通直流就是指在直流电路中,电感的作用就相当于一根导线,不起任何作用. 阻交流:在交流电路中,电感会有阻抗,即XL,整个电路的电流会变小,对交流有一定的阻碍作用。 电感的基本作用:滤波、振荡、延迟、陷波等 通直在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。 由感抗XL=2πfL 知,电感L 越大,频率f 越高,感抗就越大。该电感器两端电压的大小与电感L 成正比,还与电流变化速度△i/△t 成正比, 电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示: WL=1/2 Li2 。 可见,线圈电感量越大,流过越大,储存的电能也就越多。 电感在电路最常见的作用就是与电容一起,组成LC 滤波电路。我们已经知道,电容具有 “阻直流,通交流”的本领,而电感则有“通直流,阻交流”的功能。如果把伴有许多干扰 信号的直流电通过LC 滤波电路,那么,交流干扰信号将被电容变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高 的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 LC 滤波电路 在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的 圆形磁芯

电阻电容电感特性

再谈电阻、电容、三极管等电子元件基础 第一章:基本元件 第一节电阻器 电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母"Ω"表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。电阻的主要职能就是阻碍电流流过。事实上,"电阻"说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。师傅对徒弟说:"找一个100欧的电阻来!",指的就是一个"电阻值"为100欧姆的电阻器,欧姆常简称为欧。表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。 一、电阻器的种类 电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻应用最多。而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。而红颜色的电阻,是RJ型的。一般老式电子产品中,以绿色的电阻居多。为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。 电阻器当然也有功率之分。常见的是1/8瓦的"色环碳膜电阻",它是电子产品和电子制作中用的最多的。当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了 二、电阻器的标识 这些直接标注的电阻,在新买来的时候,很容易识别规格。可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。所以在弯脚的时候,要特别注意。在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。而且,电阻器元件越做越小,直接标注的标记难以看清。因此,国际上惯用"色环标注法"。事实上,"色环电阻"占据着电阻器元件的主流地位。"色环电阻"顾名思义,就是在电阻器上用不同颜色的环来表示电阻的规格。有的是用4个色环表示,有的用5个。有区别么?是的。4环电阻,一般是碳膜电阻,用3个色环来表示阻值,用1个色环表示误差。5环电阻一般是金属膜电阻,为更好地表示精度,用4个色环表示阻值,另一个色环也是表示误差。下表是色环电阻的颜色-数码对照表:

电感Q值定义

电感Q值定义 电感Q值:也叫电感的品质因素,是衡量电感器件的主要参数。是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。 电感Q值的高低的功用 Q值过大,引起电感烧毁,电容击穿,电路振荡。Q很大时,将有VL=VC>>V的现象出现。这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失。所以在电力系统中应该避免出现谐振现象。而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值。 电感Q值的换算 品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量通频带BW与谐振频率w0和品质因数Q的关系为:BW=wo/Q,表明,Q大则通频带窄,Q小则通频带宽。Q=wL/R=1/wRC 其中: Q 是品质因素w是电路谐振时的电源频率L是电感R是串的电阻C是电容Q值是品质因素,它是有用功与总功只比 影响电感Q值的因素 电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大。降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。对不同的应用对Q值有不同的要求。元件的品质因数,即Q值的大小取决于元件的制作工艺、制作材料以及应用环境。例如,同样一个电感,如果其他参数不变,仅改变绕制电感导线的粗细,则导线粗的电感Q值要比导线细的电感Q值高。如果再在导线上镀银,则镀银导线所绕制的电感要比不镀银导线绕制的电感Q值高。至于介质谐振器其Q值更是取决于构成介质谐振器材料和制作工艺。Q值的大小还与工作频率有关。一般的电感随着频率的变高其Q值也会增高。但它有一个极限,当超过这个极限频率点后电感的Q值要陡然下降,这个电感就失去了电感的作用。在这点上介质谐振器、声表面波谐振器和晶体谐振器更为明显。当工作频率偏离他们的谐振频率后,其Q值将急剧下降,同时他们也将不能工作。品质因数描述了回路的储能与它一周耗能之比。因为同频带与品质因数之积为回路的谐振频率。所以,在保证谐振点的情况下品质因数与通频带的宽窄是一对矛盾。所以不能说品质因数越高越好,还要看对频带的要求的Q值越大,谐振的通频带就越宽,也就是包含的频率范围更宽,如果需要宽一点的通频带,Q值越大越好。在选频电路(选用某一频率)、阻波电路(阻止某一频率)、吸收电路(衰减某一频率)、陷波电路(去掉某一频率)中都是利用或者去掉某一个频率f,此时Q值越小越好,这是利用谐振电路在谐振时的频率f,当LC并联谐振电路发生谐振时,电路阻抗最大,相当于断路,使频率为f的频率信号不能通过,达到阻止此信号的目的。当LC串联谐振电路发生谐振时,阻抗最小,相当与短路,此时频率为f的频率很容易通过,而其它的信号频率被阻止,就能达到选频的目的。

《电感元件》.

电感元件 1. 电压与电流的相量关系 图1(a )是一个线性电感L 的交流电路,根据电感元件L 的物理特性,在取关联参考方向情况下,u L 和i L 满足微分关系 t i L u d d L L = 对直流电路而言,由于稳态时电感电流i L 为一恒定值,故这时没有感应电压u L ,即u L =0,所以在直流电路中电感元件L 相当于两端短接;而在交流电路中,由于i L 随时间按正弦规律变化,就会在L 两端产生感应电压u L ,它仍为一正弦函数,这时它的物理特性是起阻碍电流变化的作用。 设t I i m ωsin L =,则有 ()() 90sin cos d sin d d d L L +====t LI t LI t t I L t i L u m m m ωωωωω () 90sin +=t U m ω (1) 由此看出在理想电感电路中,u L 和i L 是同频率的正弦量并且在相位上u L 超前于电流i L 90,如图1(b)所示。 如用一个相量式来表达电感中电压和电流之间的大小和相位两方面的关系,则此相量式可表述如下 m m I L j U ω= 或 I L j U ω= (2) 若令L X ω=L ,则上式可写成 I jX U L = (3) 可用相量图表示为图1(c)所示。 X L 称为电感元件的感抗,它同样具有电阻的量纲即其单位也是欧姆(Ω),其大小与频率f 及电感量L 成正比。频率越高或者是电感量越大则感抗X L 就越大,它对电流的阻碍作用也就越大,所以在高频电路中X L 趋于很大,电感元件L 可看作开路;而对直流电路来说由于f =0,感抗X L =0,此时电感元件就相当于短路,这和我们在前面所介绍的有关内容是十分符合的。 需提请注意的是,感抗X L 是电感中电压与电流的幅值或有效值之比,而不是瞬时值的比值,所以不能写成i u X =L ,这与电阻电路是不一样的。在电感元件中电压与电流之间成

工字电感定义

工字电感,带屏蔽罩为避免有些电感线圈在工作时产生的磁场影响其它电路及元器件正常工作,工字电感的产品特点:具有高功率及高磁饱和性,低阻抗、体积小的特点。工字电感的定义工字电感是我们在插件作业中会经常看见电子元器件中的一种;一般是在工字磁芯上,根据不同参数要求进行绕线圈,并有引出两个引脚,这样制成的电感叫做工字电感。常用工字电感(PK型电感):被视为轴向电感的立式版,应用方便与轴向电感类似,但是常用工字电感可以拥有更大的体积的电感类型,电流自然也能得到一定的应用提升。工字电感由于采样延迟、采样精度、驱动级延迟等因素,会导致输出电流产生误差。工字电感在不同的电源电压和负载条件下,从表一中可以看到输出电流精度均能很好的控制在5.5%以内。同时也可以看到,要实现较好的电流精度,固定负载下需要相应的电源电压与之匹配。工字电感所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。 工字电感性能变现在以下几个方面 1.工字电感在电路中使用的工作频率是:40kHz-5MHz 2.工字电感在电路中所能承受的工作温度:-30℃ to +125℃ 3.电感感量能够储存的温度是在:-25℃ to +85℃ 4.电感储存湿度的比例是在:30 to 95% 5.工字电感的规格具有尺寸小,工字型的电感在绕制上是比较方便,安装简单、价格便宜,可靠性高的特点。

工字电感的骨架是由铜芯线圈的绕线支架的。工字电感是电子电路或装置的属性之一,指的是:当电流改变时,因电磁感应而产生抵抗电流改变的电动势一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),常用的工字电感被视为轴向电感的立式版,应用方便与轴向电感类似,但是常用工字电感可以拥有更大的体积的电感类型,电流自然也能得到一定的应用提升;大多数是将漆包线(或纱包线)直接绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。小型电感线圈(例如工字电感)一般不使用骨架,而是直接将漆包线绕在磁芯上。 工字电感的绕组是指具有规定功能的一组线圈,它是工字电感的基本组成部分。绕组有单层和多层之分。单层绕组又有密绕(绕制时导线一圈挨一圈)和间绕(绕制时每圈导线之间均隔一定的距离)两种形式;多层绕组有分层平绕、乱绕、蜂房式绕法等多种。 磁心与磁棒磁心与磁棒一般采用镍锌铁氧体(NX系列)或锰锌铁氧体(MX系列)等材料,它有“工”字形、柱形、帽形、“E”形、罐形、环形等多种形状。工字电感铁心材料主要有硅钢片、坡莫合金等,其外形多为“E”型。 屏蔽罩为避免有些电感线圈在工作时产生的磁场影响其它电 路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。

电感的特性

什么是电感?及电感的特性 电感是开关电源中常用的,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:

1. 当电感L中有电流I流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。 从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽

正确理解电感

正确理解电感 在失效分析和器件可靠应用分析工作中,经常遇到电感、磁珠、变压器、继电器等磁性元件,磁芯材料的线性度通常远比电容里的电介质差很远,有时我们很难直接套用教科书教给我们的解题思路。 下面是一个为了便于突出说明问题而经过变形的单板电源滤波电路示意图。 开关管Q(比如说是缓启动开关管)导通,为方便思考,缓变的磁化曲线使用折线代替。假设截面积、匝数已经包含在ψ中,即ψ为磁通匝链数。问题是,假设其它条件不变,当负载电阻RL减小时负载端的纹波大小会如何变化(假设与负载并联的容抗远小于负载电阻)?如果负载的直流电流超过电感线圈L的饱和点,比如说负载电流超过了磁化曲线的I1点,电感还有滤波效果吗?该用什么模型表征此时的电感线圈? 有人说直流偏置电流达到I1时电感线圈的电感量应该用L=(ψ的变化量/I的变化量)进行计算,应为零,所以此时没有滤波效果了,有人说

不对,根据定义L=ψ/I,此时电感还有。还有人说都不对,即使L=ψ/I 不成立了,电感线圈这个物理实体没什么变化,怎么能说电感量等于零呢?但又怎么解释电感没有滤波效果了呢?此时还能用感抗ωL表示电感线圈对某个频率电流的阻抗吗? 如果电感量此时为零,那么当开关管Q关断时,要不要考虑给电感设计泻放回路以避免过高的感生电动势损坏开关管呢?有人说当电感工作在I2时不需要考虑防护,因为此时电感量为零,储存的能量为零,关断时不会有过高的感生电动势。有人说需要,电感储存的能量有公式W=(1/2)L×(I的平方),而此时电感量L=ψ/I,不为零,电流也不为零,设计防护电路时泻放电路的能量吸收和功率应该以该式为依据。 下图的反激型开关电源是另一个实际问题(取样反馈电路未在电路中画出)。如果发现本来电路在一定负载电流(比如2安培)下工作一切正常,但当负载取用的电流稍微大一点点,比如只是增加到2.1安培,开关管就剧烈发烫甚至立刻烧毁,而开关管的耐压似乎又是足够的,问题的原因可能是什么?换一个更大功率的开关管行不行? 出于工艺和成本原因,开关电源变压器大都需要工作在非线性区。假设变压器磁芯磁化曲线同上图右边曲线,实际的磁化曲线是缓变的,为了简化分析,用折线代替。问题是,为了保证开关管不烧毁,驱动信号的高电平脉宽有限制吗?如果超过这个限制,流过开关管的电流将会怎样?会不会剧增?为了保证电路的可靠性,对变压器的选择应该注意哪些?变压器副边的带负载能力显然取决于原边充电结束后储存的能量,这个能量或者副边的驱动能力怎么估算呢?可 以用W=(1/2)L×(I的平方)计算吗?

相关文档
最新文档