火焰离子化检测器

火焰离子化检测器
火焰离子化检测器

火焰光度检测器fpd ()

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1.FPD是1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和气体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、H2S、CS2、、SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3.FPD检测硫化物是目前最好的方法,为了提高FPD灵敏度和操作特性,在单火焰气体的流路形式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏度 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测硫、 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大; 4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在300 ~ 450nm之间,最大波长约在 394nm 左右;磷化合物发射光谱波长范围约在480 ~ 575nm之间,最大波长约在526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于HPO的浓度,所以 FPD 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度 条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2 * )与 n 含硫化物的质量、流速之间的关系为IS2=I0[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差。三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应仅和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空 气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混合,然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比 较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既

氢火焰离子检测器

氢火焰离子化检测器 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。 氮火焰离子化检测器晌应机理 FID的工作原理是以氢气在空气中燃烧为能源,载气(N2)携带被分析组分和可燃气(H2)从喷嘴进入检侧器,助然气(空气)从四周导人,被侧组分在火焰中被解离成正负离离子,在极化电压形成的电场中,正负离子向各自相反的电极移动,形成的离子流被收集极收、输出,经阻抗转化,放大器(放大107~1010倍)便获得可测量的电信号,FID离子化的机理近年才明朗化,但对烃类和非烃类其机理是不同的。 对烃类化合物而言:在火焰内燃烧的碳氮化合物中的每一个碳原子均定里转化成最基本的、共同的响应单位——甲烷,再经过下面的反应过程与空气中氧反应生成CHO+正离子和电子。 CH+O→CHO++e 所以,FID对烃是登碳响应,这是最主要的反应,成为电荷传送的主要介质。在电场作用下,正离子和电子e分别向收集极和发射极移动,形成离子流,但在碳原子中产生CH的概率仅有1/106,因此提高离子化效率是提高FID灵敏度最有效的途径,目前仍然有不少关于这方面的研究和报道。

氢火焰离子化检测器详细介绍(包括原理等超详细!!!)

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID ),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

氢火焰离子化检测器详细介绍包括原理等超详细!!!

氢火焰离子化检测器详细介绍(包括原理等超详细!!!)

————————————————————————————————作者: ————————————————————————————————日期: ?

1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。 其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1μL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。 其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。 氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。 氮火焰离子化检测器晌应机理

可见光火焰检测器

可见光火焰检测器 使用说明书 安装、使用产品前,请阅读使用说明书

1、产品介绍 JNHT-5型火焰检测器适用于多种燃料、多种工况下的火焰检测,由火焰检测探头、信号放大器及它们之间连接的屏蔽电缆组成。光学敏感元件为可见光及红外线全光谱型,适用范围广。探头经特殊设计,坚固耐用,在有冷却风的情况下可长期工作于燃烧器附近的恶劣环境中。探头信号预处理板具有自检功能,并且可以在线更换。 JNHT-5型火焰检测器可以用来检燃油火焰及煤粉火焰,检测光谱范围从600纳米到3000纳米。信号处理部分采用了单片机,增加了人工智能控制,对目标火焰的强度、包络脉动和特征频率进行实时检测,可有效地避免偷看和漏看现象。功能特点: u具有上电自检功能; u检测器的电源完全独立; u所有信号数字化处理,抗干扰能力强; u适用性广,可以检测各种油、煤火焰。 2、工作原理框图 显示 3、主要技术指标 灵敏度≥100Lx (λ0= 2000nm) 着火≤1 s 响应时间 熄火≤3 s(可调) 检测对象燃油、燃煤火焰 方式两组常开/常闭触点 信号输出 容量AC220V 50Hz 2A ,DC24V 2A 模拟量输出4~20 mA ,1~5V DC 工作方式长期连续工作 探头≤80℃(风冷) 工作环境要求 信号处理箱≤50℃

环境湿度≤85%RH 冷却方式风冷:探头冷却风量≥100 m3/h,风温≤50℃,探头冷却风入口与炉膛压差≥2000 pa 供电电源AC220V 50Hz 功耗15 W 检测距离400~6000 mm 4 、外形尺寸图 探头外形及尺寸图 火检处理器外形尺寸图 5 、安装要求 5.1 探头安装位置的要求: 5.1.1视野要合适。 A 探头视角内应尽可能充满目标火焰; B 探头视角范围内的目标火焰应比较稳定,改变风量及调节燃烧时不致造成目标火焰脱离视角范围; C 任何在视角范围内妨碍检测的物体,如:炉墙、水管、筋板等都应修改,但所有修改应尽可能减小对风量的影响; D 视角应尽量避免与其它火焰相交叉;

db11t1367-2016固定污染源废气 甲烷-总烃-非甲烷总烃的测定 便携式氢火焰离子化检测器法.

ICS 13.040.40 Z 30 DB 11 北京市地方标准 DB 11/T 1367—2016 固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢火焰离子化检测器法 Stationary source emission-Determination of methane/total hydrocarbons/non-methane hydrocarbons-Portable hydrogen flame ionization detector method 2016-12-22发布2017-01-01实施北京市质量技术监督局发布

DB11/T 1367—2016 目次 前言... ................................................................................................................................ ... II 1 范围 ... ............................................................................................................................... . 1 2 规范性引用文件 ... .......................................................................................................... (1) 3 术语和定义 ... .................................................................................................................... . 1 4 方法原理 ... .................................................................................................................... (2) 5 干扰和消除 ... .................................................................................................................... . 2 6 标气和材料 ... .................................................................................................................... . 2 7 仪器和设备 ... .................................................................................................................... . 2 8 校准量程 ... .................................................................................................................... (3) 9 测试步骤 ... .................................................................................................................... (3) 10 计算和结果表示 ... ......................................................................................................... .. 5 11 精密度和准确度 ... ......................................................................................................... .. 6 12 质量保证与质量控制 ... ................................................................................................... . 6 13 注意事项 ... ................................................................................................................... .. 7 I

进口顶空进样器和氢火焰离子化检测器技术参数

进口顶空进样器和氢火焰离子化检测器技术参数 设备用途:与实验室现有SHIMADZU GC-2010PLUS气相色谱仪连接,并且色谱工作站可内嵌式控制顶空进样器,用于检测血醇及其他挥发性有机化合物的分析 一.主机 电源:220-240V,1200 VA 操作环境:15℃to 30℃湿度低于70%RH (18℃至28℃室温波动±1.3℃) 二.进样系统 1、样品流路 *1.1样品流路温度:中温设置时,室温+10℃至220℃;高温设置时,150℃至300℃ *1.2加热:电子加热 1.3进样阀:6 通阀 *1.4进样环:1ml Sulfinert 惰化处理(标配);0.2ml,3ml (可选) 2、传输管线 2.1材质:Sulfinert惰化处理 *2.2温度:室温+10℃至350℃,1℃增量,精度±0.5℃ *2.3加热:电子加热 3、样品瓶 *3.1样品瓶数量:≥90位 3.2样品瓶材料:中性玻璃 *3.3样品瓶规格:外径22.5mm x 高79mm(20mL);外径22.5mmx高46mm(10mL); 10mL和20mL样品瓶可以同时使用,无需额外附件。 3.4样品瓶垫片:带聚四氟乙烯层(PTFE)的丁基橡胶(标配,灰色,120℃) 带聚四氟乙烯层(PTFE)的硅橡胶(选配,红色,高温,200℃)3.5样品瓶盖:铝 3.6样品瓶恒温时:0.00 ~ 999.99 (min) 3.7样品瓶加压时; 0.00 ~ 9.99 (min) 4.恒温炉

*4.1温度范围:室温+10℃至300℃(1℃增量,精度±0.1℃) 4.2加热方式:电子加热 4.3加热孔数量:12个样品瓶位旋转托盘 4.4摇晃(平衡时):无, 1-5个级别(1 分钟内的搅拌次数随数值增大而增加)4.5加热时间:0 ~ 999.99 min ( 以0.01 分钟为单位设置)三、气体控制 载气控制:通过GC内置的AFC电子控制(0.5 ~ 0.9 MPa,流向AFC) 样品瓶加压控制:通过GC内置的APC电子控制(0.2 ~ 0.5 MPa,流向AuxAPC) 高纯氦气 ( 纯度在99.995 % 以上) 或高纯氮气 ( 纯度在99.995 % 以上) 四、界面控制 使用 USB 建立 PC 与顶空进样器的通讯。不限定 USB 端口。 *顶空进样器能用实验室气相色谱工作站控制,以方便控制和维护 五、操作软件 5.1软件操作环境:Windows XP , Windows VISTA ,Windows 7(32/64 bit) 5.2软件:具有eco生态模式,节省载气和耗电量; *5.3气相色谱仪工作站可以内嵌式控制顶空,符合FDA 21 CFR Part 11要求; 5.4顶空软件随主机标配,可独立操作; 六. 氢火焰离子化检测器(FID) *6.1 最高使用温度:450℃ 6.2 自动点火功能 *6.3 检测限:1.5×10-12g/s ( 十二烷 ) 6.4 动态范围:107 七、打印机 7.1 打印方式:激光打印 7.2 处理器:266Mhz 7.3 内存:2MB 7.4 接口类型:USB

固定污染源废气+非甲烷总烃的测定+便携式催化氧化-氢火焰离子化检测器法2020版

固定污染源废气 非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法 1 范围 本标准规定了测定固定污染源有组织排放和无组织排放废气中非甲烷总烃的便携式催化氧化-氢火 焰离子化检测器法。 本标准适用于固定污染源有组织排放和无组织排放废气中非甲烷总烃的催化氧化-氢火焰离子化检 测器法现场测定。 本标准中非甲烷总烃的方法检出限为0.1 mg/m3(以碳计),测定下限为0.4 mg/m3(以碳计)。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 55 大气污染物无组织排放监测技术导则 HJ/T 397 固定源废气监测技术规范 HJ 732 固定污染源废气 挥发性有机物的采样 气袋法 HJ 1012 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 总烃 total hydrocarbon;THC 在本标准规定的测定条件下,在便携式氢火焰离子化检测器上有响应的气态有机化合物的总和(结 果以碳计)。 注:改写HJ 38—2017,定义3.1。 3.2 非甲烷总烃 nonmethane hydrocarbon;NMHC 在本标准规定的测定条件下,从总烃中扣除甲烷以后其他气态有机化合物的总和(结果以碳计)。 注:改写HJ 38—2017,定义3.2。 3.3 校准量程 calibration span 仪器的校准上限,为校准所用标准气体的浓度值(进行多点校准时,为校准所用标准气体的最高质 量浓度值),校准量程(以下用C.S.表示)应小于或等于仪器的满量程。 [HJ 57—2017,定义3.2]

气相色谱仪器故障排除方法(氢火焰离子化检测器)

气相色谱仪器故障排除方法(氢火焰离子化检测器) 1、点火前不能调零 放大器预热之后,氢焰尚未点燃,基线应能被调节到记录仪的零点,此时改变放大器上的衰减比,基线应无偏离,如果在上述操作中发现,无论怎样调节微电流放大器旋钮,都不能使记录仪上的基线回到零位,则认为是不能调零故障。 点火前不能调零故障的发生原因有以下几个:接线错误;离子室绝缘不良;引线电缆有短路;微电流放大器损坏;记录仪故障。 2、点火故障 在色谱仪正常操作的条件下,按动点火器按钮,片刻后应能听到氢氧混合气点燃时的爆鸣声,此时将会观察到基线的偏移。点火后,用凉爽的玻璃片或表面光亮的金属片等物品放于火焰正上方气路出口处,片刻可观察到玻璃片或金属片表面上水蒸气冷凝的痕迹。如果出现上述现象,说明仪器点火正常。如果在点火过程中无上述点燃迹象,应再次尝试点火,若多次点火仍无反应,可认为发生了不能点火故障。 发生不能点火故障的原因有以下几个:点火组件故障;点火电源无输出;点火前后气路配比不当;漏氢气;气路中有堵塞;点火电路连线、接头断路。 不能点火故障具体按下面步骤检查排除: (1)点火丝发亮状态的检查:点火丝应呈现较明亮的黄红色,如看到点火丝能点亮,说明点火电路基本正常;如果点丝毫不反应则说明点火电路有问题,此时应转入(7)作进一步检查。 (2)气路中气流配比检查:正常点火时应增大氢气流量,适当减少空气流量,载气或尾吹气应调到很小或关死,如各流量操作不对,应进行调整。 (3)氢气漏气检查:停电后,关闭除氧气以外的各路流量控制阀,用硅橡胶垫或干净的软橡皮头堵住氢火焰离子室喷嘴,并稍向下用力,以阻断从喷嘴流出的氢气,此时氢气一路转子流量计中的转子应慢慢降到零。如转子不下降或虽然下降但降不到零,则说明氢气一路有漏气,按(4)处理;如果转子可降为零,转入(5)进行处理。 (4)消除漏气:试漏,找出漏气点,必要时也可对气路管线分段处理试漏。找到泄漏处之后应根据具体情况适当处理,详细方法见气路泄漏的检查与排除所述。在消除氢气漏气故障时有一点需给予注意,那就是载气气路下游的泄漏也会导致氢气气路转子降不到零位,这是由于载气和氢气两路在喷嘴前相互连通的缘故。 (5)气路中有堵塞:气路堵塞,特别是喷嘴处的气路堵塞,是造成不能点火或点火后又灭的一个常见原因。排除堵塞方法可见气路部件的清洗部分所述。 (6)气路配比的调整:不能点火或不易点火往往和点火状态时气路各流量配比有关。在点火状态时氢气流量应加大几倍,而空气可略微降低,用作载气的氮气应减少甚至关断,在点火后再缓缓增大。此项调整可反复做几次,直到能点着火为止。 (7)点火组件接触良好性检查。 (8)点火电路输出电压检查:直接测量点火电源的输出电压是否为额定值,便可知点火电源有否故障。 (9)连线与插头有断路。 (10)检测器接触不良。 3、点火后不能调零 氢火焰离子化检测器在点火前可以将基线调到零点,但点火后却不能将基线调到点

火焰检测器的应用

火焰检测器的应用 引言 对于大型煤粉锅炉,炉膛燃烧火焰的稳定与否,是保证锅炉安全和经济运行的最重要条件。当锅炉燃烧不稳或操作不当时,会引起部分或全部煤粉燃烧器熄灭,不仅降低了锅炉热效率,同时还产生了污染和噪声。若继续向燃烧器提供煤粉,会引起煤粉在炉膛内的堆积进而产生爆燃现象,这将严重威胁锅炉炉膛设备的安全和使用寿命。为了防止爆燃现象发生,必须对炉膛内的火焰进行切实有效的检测。 火焰检测器是炉膛安全监视系统(FSSS)的“眼睛”,用来观察炉膛是否有火焰。目前,火焰检测器已从普通光学检测器(紫外光火焰检测器、可见光火焰检测器和红外光火焰检测器)发展到了火焰图像检测器。 2 火焰检测器 2.1紫外光火焰检测器 紫外光火焰检测器采用紫外光敏管作为传感元件,其光谱范围在O.006~0.4μm之间。紫外光敏管是一种固态脉冲器件,其发出的信号是自身脉冲频率与紫外辐射频率成正比例的随机脉冲。紫外光敏管有二个电极,一般加交流高电压。当辐射到电极上的紫外光线足够强时,电极间就产生“雪崩”脉冲电流,其频率与紫外光线强度有关,最高达几千赫兹。灭火时则无脉冲。 2.2可见光火焰检测器 可见光火焰检测器采用光电二极管作为传感元件,其光谱响应范围在0.33~0.7μm之间.可见光火焰检测器由探头、机箱和冷却设备等部分组成。炉膛火焰中的可见光穿过探头端部的透镜,经由光导纤维到达探头小室,照到光电二极管上。 该光电二极管将可见光信号转换为电流信号,经由对数放大器转换为电压信号。对数放大器输出的电压信号再经过传输放大器转换成电流信号。然后通过屏蔽电缆传输至机箱。在机箱中,电流信号又被转换为电压信号。代表火焰的电压信号分别被送到频率检测线路、强度检测线路和故障检测线路。强度检测线路设有两个不同的限值,即上限值和下限值。当火焰强度超过上限值时,强度灯亮,表示着火;当强度低于下限值时,强度灯灭,表示灭火。 频率检测线路用来检测炉膛火焰闪烁频率,它根据火焰闪烁的频率是高于还是低于设定频率,可正确判断炉膛有无火焰。故障检测线路也有两个限值,在正常的情况下,其值保持在上、下限值之间。一旦机箱的信号输入回路出现故障,如光电管至机箱的电缆断线,则上述电压信号立刻偏离正常范围,从而发出故障报警信号。 2.3红外光火焰检测器 红外光火焰检测器采用硫化铅或硫化镉光敏电阻作为传感元件,其光谱响应范围在0.7-3.2μm 之间。红外光火焰检测器也是由探头、机箱和冷却设备组成。燃烧器火焰的一次燃烧区域所产生的红外辐射,经由光导纤维送到探头,通过探头中的光敏电阻转换成电信号,再由放大器放大。该火焰信号由屏蔽电缆送到机箱,通过频率响应开关和一个放大器后,再同一个参考电压(可调)进行比较。 若火焰信号大于参考信号,则将对应的触发器置“1”,触发器输出信号被送至火焰检测线路,使机箱内红色火焰指示灯发亮(表示着火)。反之,如果探头没有检测到火焰,则起动一个3.5s的定时器,当3.5s过后,即将上述触发器置“0”,触发器输出信号被送至火焰检测线路,使机箱内的红色火焰指示灯熄灭(表示灭火)。 2.4火焰图像检测器 火焰图像检测器是20世纪80年代出现的一种新产品。火焰图像检测器主要由传像光纤、摄像机(简称 CCD)、视频输入处理器、图像存储器和计算机组成。 带有冷却风的传像光纤伸入炉膛(四角布置,以层为单位进行火焰检测),将所检测的燃烧器火焰图像以光信号的形式传到摄像机的靶面上,摄像机再将图像转换为标准的模拟视频信号,并通过视频电缆传给视频输入处理器。视频输入处理器将模拟视频信号经MD(模拟量/数字量)转换,变成数字图像存储于图像存储器中。 计算机则将图像存储器中数字化的图像信息按照一定的着火判据进行计算,从而得出燃烧器火焰的有或无 (0N/OFF)信号,并将其送至FSSS。 3 火焰检测器的应用

660MWFSSS系统FORNEY火焰检测器调试方法(rk)概论

FSSS系统FORNEY火焰检测器调试方法 1.概述 本调试手册适用用于电厂火焰检测检系统的现场调试。现场调试应参照本调试手册的规定来进行调试。本手册包括设备的上电及检查和设备调试及故障排查。 2.重要概念及参数 在说明光纤式的火检设备的安装原则时要理解如下重要概念及参数: 1.火焰燃烧区的划分 根据理论分析和试验验证,可以把火焰燃烧分为未燃烧区,燃烧区和燃尽区(如图),FORNEY公司的动态火焰检测器是通过检测火焰闪烁频率来检测燃烧器的着火和熄火,而燃烧区的火焰闪烁频率比较大,其频率与燃料种类和燃烧情况有关。单位体积内燃料颗粒浓度越大,燃烧越炽热,其亮度和频率越高。 火焰燃烧区的划分 3.设备现场调试 在火检设备安装后,并且现场具备调试条件,就可进行现场调试工作,不同构成形式的火检系统应使用不同的调试方法。 注意:火检系统的现场调试应重视并注意如下问题 1)安装内导管之前,应对外导管进行彻底的冷风吹扫,保证外导管的通畅。 2)安装好内导管,光纤,及探头后,就应开始持续的冷风吹扫。尤其在锅炉运行期间,一定要保持冷风持续吹扫,否则会烧坏光纤设备。 3)无论推进或拉出火检内导管组件,必须沿顺时针方向旋转拉出或推进,以防止内导管头部组件脱落。 4)在危险气体场合,打开就地接线箱一定要断电,以免发生危险。 5)连接探头时应避免其电缆扭扯、缠绕或打结,尤其注意电缆的位置应避免被易于扯断。3.1.UNIFLAME(Insight 95)系列火检系统的现场调试 UNIFLAME系列火检系统一般由火焰检测器,火检安装设备,电源柜,就地接线箱组成。

3.1.1.系统上电前的检查工作 1.检查火焰检测器是否按照图纸要求安装完毕。 2.检查就地接线箱内的接线,看是否符合图纸要求。 注意:尤其要检查探头的电源线不要接反,且无短路现象。 3.检查探头的通讯接线,注意通讯终端电阻(150Ω)要并接在最后一个探头的通讯接线端。 4.检查探头的4-20MA火焰强度输出信号端接线,应能量出≤750Ω的阻值信号。 5.检查电源柜内所有24VDC空开的输出端无短路现象。 6.检查进入电源柜的两路电源存在且为220VAC(±10%)。 3.1.2.系统上电 1.检查结束后,合上火检电源柜内部的强电空开,给柜内的直流24VDC电源装置上电。 2.依次合上到各个探头的分路空开,给各个探头上电。 3.探头上电后,检查所有探头,正常状态下,探头的显示屏上应显示FQ 0。 4.如探头无显示或显示乱码,请遵照3.1.4.项步骤进行故障排除。 3.1.3.火检探头的调试 1.根据不同的项目锅炉操作工艺要求,制定具体的火检探头调试顺序。 2.在燃烧器最低工况下(次工况为锅炉操作可实现的最低负荷,并要求相对稳定),开始进行探头的有火参数设定 3.401111-21型探头有火参数按下列步骤设定。 1)先设定探头增益煤火检GAIN=26,油火检GAIN=24。 2)改变探头的频率波段BAND值(煤火检BAND=31,油火检BAND=46),观察并记录在每个频率段的有火/无火时的火焰强度值,选取有火/无火比例最大并且最稳定的频率段。 注意:光纤安装方式的探头,光纤的视角大小会影响调试的效果。 4.为了避免火检探头偷看,应使用不同的两组火检参数文件来存储火焰参数,并在不同的情况下作相应的火检调试。 3.1.4.火检故障排除 火检的故障及相应处理手段如下: 1.上电后,火检探头无任何显示。 拆下火检探头的快装12芯插头,用万用表检查插头的A插孔和B插孔之间有无24VDC电压,并且A 插孔为(+),B插孔为(-)。 A)有电压,且电压正确。则此探头内部电器元件损坏,返厂处理。 B)有电压,且电压正负接反。调整相应电源部分接线。 C)无电压,依次检查就地接线箱,火检电源柜找到电源线断点。 2.上电后,火检探头显示故障码。 纪录火检探头显示故障码,并按探头操作键盘任意键 A)故障码消失并显示正常。此探头可继续使用。

火焰检测器系统

第1章概述 1.1 用途 火焰检测设备是火力发电厂锅炉炉膛安全监控系统(FSSS)中的关键设备,它的作用贯穿于从锅炉启动至满负荷运行的全过程,用于判定全炉膛内或单元燃烧器火焰的建立/熄灭或有火与无火,当发生全炉膛灭火或单元燃烧器熄火时,火焰检测设备触点准确动作发出报警,依靠FSSS系统连锁功能,停止相应给粉机、磨煤机、燃油总阀或一次风机等的运行,防止炉膛内积聚燃料,异常情况被点燃引起锅炉爆炸恶性事故的发生,因此设备性能即设备运行的可靠性与检测的准确性直接关系到机组的运行安全与稳定性,ZHJZ-IV型火焰检测器适用于按各种方式分类的锅炉,包括按燃料类型分为燃油、燃煤、燃气锅炉,按机组容量分类的各种大中小型锅炉,按炉型分类的四角切圆燃烧、对冲燃烧、循环流化床等各种锅炉。 1.2 火焰检测原理 油、煤或气体燃料的燃烧其实质是燃料化学能以电磁波的形式释放,燃烧器火焰一般都能发射几乎连续的发光光谱,其发射源是燃烧过程中生成的高温炭素微粒子、微粉炭粒子群和气体等,不同的燃料燃烧过程中的中间产物不完全相同或中间产物的所占比例各不相同,不同的燃烧中间产物所发射的光谱不完全一样,这是选择不同类型火焰检测器依据,C2发射可见光(发射波长为473.7纳米左右)、CH化合物发射紫外到蓝光区波段的光谱、炭素粒子群发射红光区光谱、CO2、H2O和SO2等三原子气体发射红外光,不同燃料的光谱分布特性是油火焰含有大量的红外线、部分可见光、和少量紫外线,煤粉火焰含有少量紫外线、丰富的可见光和少量红外线。气体火焰有丰富的紫外线、红外线和较少的可见光,而且对于单只燃烧器火焰,其辐射光谱沿火焰轴线分布是有规律的,例如煤粉锅炉中煤粉燃烧器沿轴线从里至外分为4个区域即预热区、初始燃烧区、安全燃烧区和燃尽区,在初始燃烧区不但可见光较丰富而且能量辐射率变化聚烈,因此火焰检测探头准确对准燃烧器的初始燃烧区是最佳选择。 ZHJZ-IV型火焰检测器的火焰检测设备是一种间接辐射型可见光式火焰检测设

可见光火焰检测器

可见光火焰检测器 Q/XSX 咸阳三星电源设备制造有限责任公司企业标准 Q/XSX 06—2009 IFM-IH可见光火焰检测器 2009-04-01发布 2009-05-01实施 发布咸阳三星电源设备制造有限责任公司 Q/XSX 06—2009 前言 本标准由咸阳三星电源设备制造有限责任公司提出。 本标准由咸阳三星电源设备制造有限责任公司负责起草。 本标准主要起草人:解虹超 I Q/XSX 06—2009 IFM-IH可见光火焰检测器 1 范围 本标准规定了IFM-IH可见光火焰检测器(以下简称可见光火检)的适用范围、基本参数、技术要求、试验方法、检验规则及标志、包装、运输与贮存的要求。 本标准适用于可见光火检。IFM—IE火焰检测器由三部分组成。光导管,光电传感器及信号检测器组成。可见光火检广泛应用于各种煤、油和天然气的火焰检测,能准确探测各种燃料燃烧所发出的可见光火焰的强度和频率待性。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然

而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T191 包装贮运图示标志 GB2900 电工名词术语 GB4728 电气图用图形符号 GB/T5226.1 工业机械电气设备第一部分:通用技术条件 GB5465.2 电气设备用图形符号 GB/T13306 标牌 GB/T13384 机电产品包装通用技术条件 Q/XSX06-2009 3 技术要求 3.1 可见光火检应符合本标准的规定,并经按规定程序批准的图样和技术文件制造。 3.2 基本参数应符合以下的规定。 3.2.1 探头 当光线全黑时,信号输入(在SIGN和GND之间测量)的电压为1.99,2.10V。当有光时(在距40W白织台灯2cm光照下),信号输入端的电压为0.08,0.20V。 3.2.2显示器的参数设置 表1:F02,F16功能定义、范围和推荐的设定值 代码意义数值范围典型值 F02 低强度跳闸点 10,80 30 F03 火焰频率跳闸点 5,100 10 F04 幅度死区 4,8 5 F05 识别火焰强度同F02 0 F06 识别火焰频率 0,100 0 F07 识别方式选择方式1,2 1 F08 频率检测方式选择 0、1 0 F09 滤波系数设定 2,8 4 F10 强度跳闸延时 1,3S 2 F11 输出电流信号设定 1、2、3、4 1 F12 输出高电流信号设定 20,30 30 1

固定污染源废气甲烷总烃非甲烷总烃的测定便携式氢火焰离子化检测

ICS点击此处添加ICS号 点击此处添加中国标准文献分类号DB11 北京市地方标准 DB XX/ XXXXX—XXXX 固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢火焰离子化检测器法 Stationary source emission-Determination of methane/total hydrocarbons/non-methane hydrocarbons-Portable hydrogen flame ionization dertector method 点击此处添加与国际标准一致性程度的标识 (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX

目次 前言.................................................................................................................................................................... I I 1范围.. (1) 2规范性引用文件 (1) 3术语和定义 (1) 4方法原理 (2) 5干扰及消除 (2) 6标气和材料 (2) 7仪器和设备 (2) 8校准量程 (3) 9测试步骤 (3) 10排放浓度计算 (4) 11精密度和准确度 (4) 12质量保证与质量控制 (4) 13注意事项 (4) 参考文献 (6)

前言 本标准为推荐性标准。 本标准按照GB/T 1.1-2009给出的规则起草。 本标准由北京市环境保护局提出并归口。 本标准为首次制定。 本标准由北京市环境保护局组织实施。 本标准起草单位:北京市环境保护监测中心。 本标准主要起草人:

气相色谱仪氢火焰操作指导

氢火焰操作步骤 开机步骤:, 一:先通载气 气体压力定值: 1.打开钢瓶,氮气压力钢瓶上的减压阀压力为0.3--0.4MPa; 打开空气与氢气发生器 二:升温: 具体步骤为:选择柱室/ 进样2 / 检测器在目标温度下设定所需温度,输入后按下“输入”健,等温度恒温后点火。 GC8100检测器参数设定: 柱箱:50℃进样2:250℃检测器:250℃柱前压:0.06MPa 氢气1:0.1MPa 空气: 0.1 MPa 尾吹:0.1 MPa 程升:50℃保持10min,然后以5℃/min升到250℃。 三:点火: 具体步骤为: 空气:点火时0.0.6MPa,点火后0.1MPa,即30ml/min 即300ml/ min ;氢气压力点火时0.2-0.25MPa;为 0.1MPa氢气: 点火后0.1MPa,即30ml/min ; 先把主机上氢气压力缓慢的升至0.25MPa左右,用电子点火器在氢焰

检测器上方点火,点着后氢气压力缓慢的降至0.1MPa左右,可维持火焰燃烧的氢气最小值,不必拘于0.05。点火后,离子头上方的出口处会有水汽产生此举可判断火焰是否可以在燃烧。 四: 打开N2000工作站online,选择通道一选择“ok”在“数据采集”栏下选择“查看基线”。 在分析条件下,等到基线稳定后,用主机上的调零旋钮将基线位置调至合适位置(一般选择0mv-5mv之间的位置)。此时可以进样了。进样后,等到所有的峰都完后,单击“停止采集”,“预览”含量即可得到所需物质含量。 关机步骤:关机步骤大体上和开机步骤相反。 1.熄火:即是把主机上氢气压力关掉。 2.降温:就是把所有的温度设为0度。 3.关闭主机电源。此步骤需等到汽化室和氢焰的温度降到80 度以下 柱室温度降到室温方可进行。 4.关气。关闭发生器与钢瓶上的旋转开关。 5.关闭工作站。 五: 在关机时,主机上柱前压或尾吹的压力可以不必关掉。但是钢瓶上减压阀的压力最好关掉。 六:温度及气体压力设定: 以上参数不是固定参考值,可按测试参考条件设置好各温度值,

火焰光度检测器FPD

火焰光度检测器F P D 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1. FPD是 1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、 H2S、 CS2、 SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3. FPD检测硫化物是目前最好的方法,为了提高 FPD灵敏度和操作特性,在单火焰气体的流路式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在 300 ~ 450nm之间,最大波长约在 39左右;磷化合物发射光谱波长范围约在 480 ~ 575nm之间,最大波长约在 526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成 HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于 HPO的浓度,所以 FP 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2)与含硫化物的质量、流速之间的关系为IS2=I[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既 1

相关文档
最新文档