光纤

光纤
光纤

GBIC是Giga Bitrate Interface Converter的缩写,是将千兆位电信号转换为光信号的接口器件。GBIC设计上可以为热插拔使用。GBIC是一种符合国际标准的可互换产品。采用GBIC接口设计的千兆位交换机由于互换灵活,在市场上占有较大的市场分额。Gigac提供的GBIC产品在各公司的千兆位交换机上进行过严格的测试,性能指标符合各项要求。

何为SFP?

SFP是SMALL FORM PLUGGABLE的缩写,可以简单的理解为GBIC的升级版本。SFP模块体积比GBIC模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量。SFP模块的其他功能基本和GBIC一致。有些交换机厂商称SFP模块为小型化GBIC(MINI-GBIC)。

光纤分哪几种?

光纤分为多模光纤和单模光纤两种:其中,多模光纤由于发光器件比较便宜以及施工简易的特性,广泛用于短距离的通讯上,多模光纤又分为50um芯径和62.5um芯径两种,其中62.5um的比较常见,但性能上没有50um的好。Gigac 的GBIC-SX多模产品均适合这两种多模光纤,传输距离分别为550米(在50um 光纤上)和330米(在62.5um光纤上)。

单模光纤一般用于远距离通讯,芯径为9um,Gigac的单模GBIC产品在单模光纤上传输距离分别达到10公里、20公里、70公里、120公里。一般交换机厂商在单模上只提供10公里和70公里两种型号,20公里产品可以有效的节约系统集成商特定网络方案的总体造价。120公里产品用于特殊的超长运行环境。

光/电收发模块符合什么国际标准?

Gigac提供的所有GBIC、SFP、10G产品均符合最新的国际标准规范,Gigac 提供的GBIC、SFP、10G光纤模块产品与思科、华为、3COM、中兴、Extreme、Foundry、Juniper、凯创、北电、友讯、华三、安奈特、网件、IBM、戴尔、惠普、阿尔卡特、合勤等众多厂家交换机、路由器、服务器、防火墙产品完全兼容。

光/电收发模块质量保证?

Gigac提供的所有GBIC、SFP、10G产品均为进行严格兼容性测试和性能测试,从而保证一流的产品品质。所有销售的光/电收发模块产品均承诺三年的免

费保修。

Gigac的光/电收发模块有那些优势?

Gigac专业提供热插拔光模块产品,Gigac的竞争优势体现在三个方面:一是Gigac是专业的大型Transeiver生产厂商,拥有强大的研发和生产能力,所以型号齐全、交货及时,常用光模块产品均有大量库存保证;二是价格优势明显,品质优良;三是可以为用户提供更多的选择,拥有丰富的产品线。

光纤通信-重要知识点总结

光纤通信重要知识点总结 第一章 1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。 2.光纤:由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。 3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。光纤通信系统既可传输数字信号也可传输模拟信号。输入到光发射机的带有信息的电信号,通过调制转换为光信号。光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。 光接收机的作用是将光纤送来的光信号还原成原始的电信号。它一般由光电检测器和解调器组成。光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的RF信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。在这个过程中,受调制的RF 电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,恢复成原来的信息。这样就完成了一次通信的全过程。 4.光纤通信的优点:1通信容量大,一根仅头发丝粗细的光纤可同时传输1000亿个话路2中继距离长,光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上,因此光纤通信特别适用于长途一、二级干线通信。3.保密性能好4.适应能力强5.体积小、重量轻、便于施工维护6.原材料资源丰富,节约有色金属和能源,潜在价格低廉,制造石英光纤的原材料是二氧化硅(砂子),而砂子在自然界中几乎是取之不尽、用之不竭的 5.光发射机:功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。光发射机由光源、驱动器和调制器组成。光源是光发射机的核心。光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。 6.实现光源调制的方法:直接调制和外调制。直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。 6.光纤线路:光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。光纤线路由光纤、光纤接头和光纤连接器组成。光纤是光纤线路的主体,接头和连接器是不可缺少

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

视频、控制。光纤、电源线

视频线缆: SYV系列实芯聚乙烯绝缘射频同轴电缆 执行标准:GB/T14864-93 产品型号:SYV-75-5-1 产品说明:SYV 75-5-1 S: 射频 Y:聚乙烯绝缘 V:聚氯乙烯护套75:75欧姆 5:线缆外径为5mm 1:代表单芯 控制线缆: KVVRP聚乙烯绝缘、护套、屏蔽控制电缆 执行标准:GB9330-99 产品型号:KVVRP 2*0.75 产品说明:KVVRP 2*0.75 K:(真)空,卡(普隆),控制,铠装,空心。VV—聚氯乙烯绝缘或双层护套,P-编织屏蔽,R: 软线

供电线缆: RVV300/300V铜芯聚氯乙烯绝缘聚氯乙烯护套屏蔽软电缆执行标准:JD 0734 1990 Q/321003MLB02-2008 产品型号:RVV2.1 产品说明:RVV2.1 R: 软线V—聚氯乙烯绝缘或护套2:2芯多股线 光纤: 产品名称:GYXTW 中心管式W护套光缆 产品详细介绍: 产品描述:

GYXTW光缆的结构是将单模或多模光纤套入由高模量的聚酯材料做成的松套管中,套管内填充防水化合物。松套管外用一层双面镀铬涂塑钢带纵包,钢带和松套管之间加阻水材料以保证光缆的紧凑和纵向阻水,两侧放置两根平行钢丝后挤制聚乙烯护套成缆。 产品特点: .精确控制光纤余长保证光缆具有良好的机械性能和温度特性 .松套管材料本身具有良好的耐水解性能和较高的强度,管内充以特种油膏对光纤进行了关键性保护 .特别设计的紧密的光缆结构,有效防止套管回缩 .良好的抗压性和柔软性 .双面镀铬涂塑钢带(P SP)提高光缆的抗透潮能力 .两根平行钢丝保证光缆的抗拉强度 .聚乙烯(P E)护套具有很好的抗紫外辐射性能,直径小、重量轻、容易敷设 .较长的交货长度 结构参数: 光缆芯数Fib e r C ounts 光缆外径 O ute r d ia m e te r (MM) 重量 We ig ht (KG) 短时允许拉力 Allo we d ho rt-time P ulling (N) 允许侧压 Allo we d C rus h (N/100 mm) 抗冲 击 Lmp a ct (N. m) 允许变曲半径 Allo we d Be nd ing Ra d ius 静态动态 Sta tic Dyna mic 2-12 9.8 -10.5 105- 125 ≥3000 ≥3000 10 10D 20D 注:D=缆径D=C a b le d ia mete r 传输性能: 单模光纤50/125 62.5/125 1310/1550(NM) 850/1300(NM) 850/1300(N/M)

光纤通信的基本概念

摘要 光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。 关键词:通信系统光导纤维 Abstract Optical fiber communication system is based on the carrier, the use of high purity glass drawn into very fine optical fiber as a transmission medium by photoelectric conversion, light to transmit information in communication systems. With the Internet business and communications industry, the rapid development of information technology to the world's productive forces and the development of human society has brought great promotion. Optical fiber communication technology as the main pillars of information, one will become the 21st century's most important strategic industry. Keywords: optical fiber communication system

最全的光纤分类

光纤的种类 光纤可分为两大类:A类(多模光纤)和B类(单模光纤)。其详细分类请见以下表: 多模光纤的分类:

单模光纤的分类:1. 2. 3.

4. 5. 6.

IEC标准光纤分类详解 按照 IEC 标准分类,IEC 标准将光纤分为 A 类多模光纤: A1a 多模光纤(50/125μm 型多模光纤) A1b 多模光纤(62.5/125μm 型多模光纤) A1d 多模光纤(100/140μm 型多模光纤) B 类单模光纤: B1.1 对应于 G652 光纤,增加了 B1.3 光纤以对应于 G652C 光纤 B1.2 对应于 G654 光纤 B2 光纤对应于 G.653 光纤 B4 光纤对应于 G.655 光纤 A 类多模光纤 渐变型多模光纤工作于 0.85μm 波长窗口或 1.3μm 波长窗口,或同时工

作于这两个波长窗口。光纤适用于哪个窗口,主要由其带宽指标决定。多模光纤由于衰减大、带宽小,主要适合于低速率、短距离的场合传输需要,因其传输设备和器件费用低廉、连接容易,至今仍无法由单模光纤完全代替。 常规单模光纤(G.652 光纤) 常规单模光纤也称为非色散位移光纤,于 1983 年开始商用。其零色散波长在1310nm 处,在波长为 1550nm 处衰减最小,但有较大的正色散,大约为18ps/(nm?km)。工作波长既可选用 1310nm,又可选用 1550nm。这种光纤是使用最为广泛的光纤,我国已敷设的光纤、光缆绝大多数是这类光纤。 G.652 光纤中的三个子类 G.652A、G.652B、G.652C、G.652D 的区别主要在于:G.652A:最高传输速率为 2.5Gb/s G.652B:最高速率 10Gb/s,最高速率传输时需色散补偿适用于波长1310nm、 1550nm和1625nm的应用环境,优于ITU-T建议G.652标准和国家标 准技术规范。 产品特点 弯曲损失小;传输损失小;曲率小;几何尺寸稳定;可用于松套管及带 状两种用途;偏振模色散小。 G.652C:低水峰光纤,波长范围更宽,最高速率 10Gb/s,最高速率传输时需色散补偿。 G.652D:适用于多种波长范围(1300nm、1400nm和1550nm),品质优于ITU-T 建议G.652标准和国家标准技术规范。 产品特点

光纤敷设控制要点

四、监理工作要点 1前期准备。 1.1熟悉各种有效技术资料和相关文件。“设计图、技术协议、补充技术协议、施工合同、招投标文件、中标通知书、工程概预算等”。 1.2参加图纸会审会议。 1.3审查施工组织设计,核对施工单位资质是否与中标通知书相符,进场人员资格证是否有效,进场施工设备是否安装可靠,能否满足工程施工要求。 1.4实地查看施工现场是否初具施工条件 1.5核对进场材料是否合格,具备不具备开工需要。 1.6前五条已无问题,具备开工条件,由现场专业工程师报请总监下达开工令。 2.中间控制。 2.1审查施工单位安全技术方案是否切实可行。 2.2审查施工单位制定的工程施工工艺流程,是否紧扣施工合同和施工组织设计。 2.3参加施工单位的安全交底和技术交底会议。 2.4 检查施工人员是否有相关资质 2.5检查施工设备是否安全可靠,符合规定 2.6隐蔽工程会同业主代表及时检查验收、签认。 2.7梯形敦促施工单位及时做好材料取样(现场见证)。送检和复检资料的收集、整理、保存。 2.8光缆敷设前检测衰减值与设计是否一致。 2.9检查杆子是否符合要求。 2.10检查光缆融接点位(距杆1.5m左右)和融接衰减率是否符合要求。 2.11检查所敷设线缆规格、长度(冗余量)是否符合设计,有无损伤、扭曲、打折。 2.12控制室内所有线缆应依据设备安装位置,配置相应的电缆槽沟与桥架,按顺序排列,捆扎整齐,编号并有永久性标志。

2.13检查光缆是否标有铭牌 3后期控制。 3.1检查分项、分部工程资料,并按规范进行抽查实体。 3.2检查系统调试记录,并按规范进行系统组织调试。 3.3单位工程试运行。 3.4审查施工单位单位工程竣工资料(包括竣工图)。 3.5向施工单位发出书面整改监理通知单。 3.6组织相关单位对工程作初验。 3.7接到施工单位整改完毕书面报告后,立即组织相关单位复验。 3.8向业主提交工程竣工验收报告。 3.9参加业主组织的验收,对提出的整改项目进行落实,并书面回复业主。 3.10编写工程评估报告,报送总监审核,公司批准。 3.11编写工程总结。 五、工程监理基本要求 1.电缆线路的安装应按已批准的设计进行施工。 2.采用的电缆及附件,均应符合国家现行技术标准的规定,并应有合格证件。设备应有铭牌。 3.与电缆线路安装有关的建筑物、构筑物的建筑工程质量,应符合国家现行的建筑工程施工及验收规范中的有关规定。 4.电缆及其附件安装用的钢制紧固件,除地脚螺栓外,应用热镀锌制品。 5.对有抗干扰要求的电缆线路,应按设计要求采取抗干扰措施。 6.电缆管不应有穿孔、裂缝和显著的凹凸不平,内壁应光滑;金属电缆管不应有严重锈蚀。硬质塑料管不得用在温度过高或过低的场所。在易受机械损伤的地方和在受力较大处直埋时,应采用足够强度的管材。 7.电缆管弯制后,不应有裂缝和显著的凹瘪现象,其弯扁程度不宜大于管子外径的10% ,电缆管的弯曲半径不应小于所穿入的最小允许弯曲半径。

光纤传输的特点优势及传输原理

光纤传输的特点优势及传输原理 优点 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。 组成部分 光源(又称光发送机),传输介质、检测器(又称光接收机)。计算机网络之间的光纤传输中,光源和检测器的工作一般都是用光纤收发器完成的,光纤收发器简单的来说就是实现双绞线与光纤连接的设备,其作用是将双绞线所传输的信号转换成能够通过光纤传输的信号(光信号)。当然也是双向的,同样能将光纤传输的信号转换能够在双绞线中传输的信号,实现网络间的数据传输。在普通的视、音频、数据等传输过程中,光源和检测器的工作一般都是由光端机完成的,光端机就是将多个E1信号变成光信号并传输的设备,所谓E1是一种中继线路数据传输标准,我国和欧洲的标准速率为2.048Mbps,光端机的主要作用就是实现电一光、光一电的转换。由其转换信号分为模拟式光端机和数字式光端机。因此,光纤传输系统按传输信号可分为数字传输系统和模拟传输系统。模拟传输系统是把光强进行模拟调制,将输入信号变为传输信号的振幅(频率或相位)的连续变化。数字传输系统是把输入的信号变换成“1”,“O”脉冲信号,并以其作为传输信号,在接受端再还原成原来的信号。当然,随着光纤传输信号的不同所需要的设备有所不同。光纤作为传输介质,是光纤传输系统的重要因素。可按不同的方式进行分类:按照传输模式来划分:光线只沿光纤的内芯进行传输,只传输主模我们称之为单模光纤(Single—Mode)。有多个模式在光纤中传输,我们称这种光纤为多模光纤(Multi-Mode)。 按照纤芯直径来划分:缓变型多模光纤、缓变增强型多模光纤和缓变型单模光纤按照光纤芯的折射率分布来划分:阶跃型光纤(Step index fiber),简称SIF;梯度型光纤(Graded index f iber),简称GIF;环形光纤(r iv er f iber);W 型光纤。 光缆:点对点光纤传输系统之间的连接通过光缆。光缆含1根光纤(称单纤),有2根光纤(称双纤),或者更多。 单、多模光纤传输设备的原理 光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。

全光纤偏振波分复用器

全光纤偏振波分复用器 陈华上海大学光纤研究所引言:全光纤型偏振分束器是以熔融拉锥技术制成的一种特殊的耦合器。通过这一器件,能将构成基模的两个正交偏振模分离(分束),可以认为它是一个纤维型的Wollaston棱镜。他在相干通信、高级光纤传感系统和光纤测量技术方面均有广阔的应用前景。本文先对偏振分束器的结构及原理进行了描述与分析,进而通过对偏振分束器的偏振谱的测定与分析,最终我们发现,偏振分束器在一个较宽的波长范围内是一个极好的全光纤型偏振波分复用器。 原理:熔锥型光纤偏振分束器是以熔融拉锥的方法将两根局部裸露的光纤进行熔烧拉制所制成的熔锥型器件,该器件的结构可以用图1所示的结构来表示。其中, P1、P2分别为输入端的光功率,P3、P4分别表示输出端的光功率。熔锥型光纤偏振分束器耦合段的横截面为哑铃状如图2所示。 图1 偏振分束器的外形结构 图2 偏振分束器的横断面 其几何形状由2ρx和2ρy来描述。 (1) 其中 n=1.46 石英;n0=1 空气 假定偏振分束器拉细了的哑铃状耦合段中ρx=2ρy=10μm,当λ=1.3μm,其V值记作V(1.3),结果如下: V(1.3)≈26 这样大的V值当然已不满足单模条件,这表明在拉细了的耦合段已不能区分原有的芯子和包层,因此可以说熔锥型器件是一种包层模器件。 进而考虑两个最低阶模:LP01和LP11,他们对应的传播参数为β01和β11。由于原始的单模光纤不可能绝对圆对称,因此他们的偏振分量;。 偏振分量的功率写作, (或y) Ci为偏振模的耦合系数 当耦合器有足够长度时,在经整数N次耦合振荡后,在某一波长λ0,有可能出现如下的情况: (2) 即两个偏振分量恰好差了π/2。在这种情况下则有:; 这就是说,对某一波长λ0,当两个偏振分量恰好产生π/2的相位差时,可达到最大的偏振消光比。从而可以实现在λ0处的偏振分束。 进而我们可以推导出上述所需整数耦合振荡次数N的数学表达式: (3) 将λ0=1.3μm的有关数值代入,得到耦合振荡次数N: N(1.3) ≈37 再进一步可以推导出实现偏振分束所要求的耦合长度L。 经推导,最后获得下式(4)器件耦合长度: (4) 将λ0=1.3μm的有关数值代入式(4),可得到耦合长度L: L(1.3) ≈9mm

可实现超高清LED显示屏的光纤控制系统

可实现超高清LED显示屏的光纤控制系统 本文介绍了几种可实现4K2K显示需求的超高清LED显示屏的10Gbps光纤控制系统设计方案,其中XAUI分离式10Gbps单路光纤通讯方案性价比最高。 目前在市场上,夏普、东芝、三星、LG等公司相继推出了4K2K超高清电视或裸眼3D 电视(物理分辨率3840×2160),夏普的“ICC-4K”技术、东芝的“超解像”技术均可将 当前的1080p信号倍线到3840×2160,4K2K规格无论是水平方向还是在垂直方向,都是现有主流全高清显示设备1920×1080p分辨率的2倍,总像素数量达到了800万以上,是全高清的4倍。 而在LED全彩显示领域,因具有无限拼接特点,超过4K2K的LED显示屏和3D LED显示屏早已问世。不过当前市场主流LED显示屏控制系统主要为近距离DVI输入双口千兆网模式和远距离2~3.125Gbps光纤通讯模式,8位色阶输入时单板支持的最大分辨率仅能达到 1280×1024(60Hz,无压缩),若要支持超高分辨率显示,必须采用多卡或多控制器系统,并搭配昂贵的视频分割放大器才能实现,但支持的源信号输入依然是1280×1024。显然,

当前的LED显示屏控制系统已滞后于视频和通信技术的发展,满足不了市场和用户的更高需求。为此,我们在研制前一代2~3.125Gbps LED显示屏光纤控制器的基础上,采用成熟的万兆网通讯技术和器件,设计了一种支持HDMI 1.4a音视频输入的超高清LED显示屏10Gbps 光纤控制系统,大幅度提升了传统LED显示屏控制器的带宽、功能和性价比。 总体设计方案 图1所示为超高清LED显示屏10Gbps光纤控制系统整体逻辑设计,分为发送和接收两部分,其中发送部分包括HDMI输入口、DVI输入口、USB接口、ADV7619、CP2102、FPGA、DDR、Flash、PCIe插口、外设和光纤通讯,接收部分包括光纤通讯(与发送部分完全相同)、FPGA、10~12路千兆网PHY输出矩阵、DDR、Flash、外设、音频输出和多功能接口。 1. 音视频输入 音视频输入解码芯片采用AMD公司的HDMI/DVI双输入ADV7619代替传统单视频DVI芯片,支持HDMI 1.4a 36位色深1920×1080p高清电视、4k×2k超高清和3D电影视频播放,支持HBR和DSD S/PDIF多种数字音频格式。 2. 光纤通信 10Gbps光纤通讯设计是超高分辨率LED显示屏单卡控制系统的关键环节,其构建和成本控制基于10G以太网技术,尤其是10G以太网物理接口的发展。10G以太网标准IEEE 802.3ae定义了在光纤上传输10G以太网的标准,传输距离从300m到80km。 其中IEEE 802.3ae根据光纤类型、传输距离等进一步细分为7种类型。实际上目前建立在Cisco光学标准10GBASE-ZR上,可传80km的1,550nm冷却型电吸收调制激光器(Cooled EML)也已问世。 在这些七种接口类型中,10GBASE-LX4使用了粗波分复用(CWDM)技术,把12.5Gbps 数据流分成4路3.125Gbps数据流在光纤中传播,由于采用了8B/10B编码,因此有效数据流量是10Gbps。这种接口类型的优点是应用场合比较灵活,既可以使用多模光纤,应用于传输距离短对价格敏感的场合,也可以使用单模光纤,支持较长传输距离的应用。 10GBASE-SR、10GBASE-LR和10GBASE-ER的物理编码子层(PCS)使用了效率较高的 64B/66B编码,在线路上传输的速率是10.3 Gbps。其中,10GBASE-SR使用850nm的激光器,在多模光纤上的传输距离是300m;10GBASE-LR和10GBASE-ER分别使用1,310nm和1,550nm 的激光器,在单模光纤上的传输距离分别是10km和40km,适用于城域范围内的传输,是目前的主流应用。 10GBASE-SW、10GBASE-LW和10GBASE-EW是应用于广域网的接口类型,其传输速率和OC-192 SDH(同步数字体系)相同,物理层使用了64B/66B的编码,通过WIS把以太网帧封装到SDH的帧结构中去,并做了速率匹配,以便实现和SDH的无缝连接。 采用不同的万兆网络通讯器件构建超高分辨率LED显示屏10Gbps光纤控制系统,有以下几种方案,分述如下。

光纤通信的优点

专业考试(选择+填空+简答+专业英语翻译)考的是通信的知识,涉及点网络知识(不是很多),记住的题目大概如下: 问答题是(10分/题)1.光纤通信的优点 2.CDMA软切换的优缺点 名词解释(5分/题) 1.ATM(异步传输模式) 2.这题忘记了 1.光纤通信的优点 (现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点: 1.频带宽,通信容量大。光纤可利用的带宽约为50000GHz,1987年投入使用的1. 7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。 2.损耗低,中继距离长。目前实用石英光纤的损耗可低于0.2dB/km,比其它任何传输介质的损耗都低,若将来采用非石英系极低损耗光纤,其理论分析损耗可下降至10-9dB/km。由于光纤的损耗低,所以能实现中继距离长,由石英光纤组成的光纤通信系统最大中继距离可达200多千米,由非石英系极低损耗光纤组成的通信系统,其最大中继距离则可达数千甚至数万千米,这对于降低海底通信的成本、提高可靠性和稳定性具有特别的意义。 3.抗电磁干扰。光纤是绝缘体材料,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受电气化铁路馈电线和高压设备等工业电器的干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。 4.无串音干扰,保密性好。光波在光缆中传输,很难从光纤中泄漏出来,即使在转弯处,弯曲半径很小时,漏出的光波也十分微弱,若在光纤或光缆的表面涂上一层消光剂效果更好,这样,即使光缆内光纤总数很多,也可实现无串音干扰,在光缆外面,也无法窃听到光纤中传输的信息。 5.光纤线径细、重量轻、柔软。光纤的芯径很细,约为0.1mm,它只有单管同轴电缆的百分之一;光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。利用光纤这一特点,使传输系统所占空间小,解决地下管道拥挤的问题,节约地下管道建设投资。此外,光纤的重量轻,光缆的重要比电缆轻得多,例如18管同轴电缆1m 的重量为11kg,而同等容量的光缆1m重只有90g,这对于在飞机、宇宙飞船和人造卫星上使用光纤通信更具有重要意义。还有,光纤柔软可挠,容易成束,能得到直径小的高密度光缆。 6.光纤的原材料资源丰富,用光纤可节约金属材料。光纤的材料主要是石英(二气化硅),地球上有取之不尽用之不竭的原材料,而电缆的主要材料是铜,世界上铜的储藏量并不多,用光纤取代电缆,则可节约大量的金属材料,具有合理使用地球资源的重大意义。光纤除具有以上突出的优点外,还具有耐腐蚀力强、抗核幅射、能源消耗小等优点,其缺点是质地脆、机械强度低,连接比较困难,分路、耦合不方便,弯曲半径不宜太小等。这些缺点在技术上都是可以克服的,它不影响光纤通信的实用。近年来,光纤通信发展很快,它已深刻地改变了电信网的面貌,成为现代信息社会最坚实的基础,并向我们展现了无限美好的未来。

浅谈现代光纤通信传输技术的应用

龙源期刊网 https://www.360docs.net/doc/c111008373.html, 浅谈现代光纤通信传输技术的应用 作者:杨华宇 来源:《数字技术与应用》2019年第06期 摘要:本文探讨了现代光纤通信传输技术的特点,分析了光纤通信技术的应用现状,研究了现代光纤通信传输技术的应用。 关键词:光纤通信传输技术;实际应用;信号传输 中图分类号:TN929.11 文献标识码:A 文章编号:1007-9416(2019)06-0043-02 1 现代光纤通信传输技术的特点 1.1 通信传输容量较大 光纤通信技术是以光波为媒介的通信传输方式,光波的电磁波比正常的无线电波的频率高,但是波长低于无线电波的波长。从中可以看出,光纤传输技术的传输频带十分的宽,这样的带宽提高了通信过程中传送数据的能力,在一定的单位时间内,传输信息数据的人员借助光纤通信技术能够传输大容量的数据。它不仅仅具有通信传输数据容量大的特点,而且其通信传输速度非常快。 1.2 节省传输成本 目前,光纤通信传输使用的材料是石英,石英比其他的通信传输介质相比,是目前损耗最低的材料,开展跨度较大的距离中继传输时,能够较少石英材料的消耗,节省整体通信系统的建设投资。其次,在光纤的建设过程中,光纤的线芯径十分的细,大约为零点一毫米,直径也很小,如此能够节省大量的金属材料,建设设计光纤时所占用的传输空间较小。另外,光纤自身的重量非常轻,比正常的电缆要轻上好几倍,质地柔软,原材料的建设成本较低。使用光纤通信传输技术能够大大地节省了建设成本,具有经济性。 1.3 抗干扰力强,保密性较强 由于光纤是绝缘性材料,所以在通信信息传输过程中不会受到外界的干扰,而致使通信数据受损,光纤通信传输技术的数据保护性强,具有很强的抗干扰力。另外,光纤通信传输的信息数据在传输过程处于光缆之中,光缆的芯径十分地细,即便通信信息传输遇到转弯处,泄露的通信信息光波也非常地微弱,难以被人截取信号,信息几乎不可能从光纤中泄漏出去。即便是泄露了信号光波,也会被光纤表面的不透明的包皮包裹着,而致使外面的人接收不到光波信号。而且,光纤在进行传输信号的过程中,不论是存在多少的光纤,也可实现无串音干扰,这保证了光纤通信传输技术使用时通信信息的高度保密性。

光纤生产环境控制规程

管理体系文件 文件名称:生产环境控制规程 文件编号: 版本号:A.1 页数:2 生效日期: 编制部门:生产技术部 文件需发放部门 □营销部□研发部□光棒生产部 □生产技术部□设备部□工程部 □物控部□质保部□人力资源行政部□IT部□财务部

生产环境控制规程修改履历表 记录编号:

1 范围 创造并维持良好的生产环境,以保证产品质量、减少环境污染、保障员工健康安全。本程序适用于通鼎事业部的生产环境管理。 2 职责 2.1 各部门负责维持各自工作场所的环境卫生。 2.2 生产根据设备点检表和设备保养计划定期对空调设施、净化设施进行检查和保养,保证所有设施正常运行,保障生产区的温度、湿度、净化度。 3 生产环境 3.1 生产区10000级净化 3.1.1 必须保证生产区达到10000级净化度,生产区环境要求见下表: 3.2 拉丝塔区域净化 必须保证拉丝塔通道达到100级净化度,根据下面内容对百级净化设施进行保养、维护、保持。 3.2.1 测量 3.2.1.1 制定测量计划,每天对车间环境进行一次净化度测试,同时对一条生产线进行一次百级净化度的 测量并记录在<<洁净室温湿度、洁净度记录表>>中,如有异常,及时通知设备部处理。 3.2.1.2 制定测量计划,每天对车间环境进行一次温、湿度测试,同时对温、湿测量结果进行记录,记录 在<<洁净室温湿度、洁净度记录表>>中。 3.2.1.3 对净化度进行抽检,发现异常,及时通知生产部相关人员。 3.2.2 维护、保养 3.2.2.1 设备部制定保养计划,按计划进行二级保养。 3.2.2.2 生产部按照保养计划进行一级保养。

对光纤通信认识

对光纤通信的认识 专业:电子信息工程 学号:2008127107 姓名:陈洁潘 1,光纤通信发展的历史与现状。 1960年,第一台相干振荡光源——红宝石激光器问世,世界性的光纤通信研究热潮开始。 而真正为光纤通信奠定基础的是1970年研究出的在室温下连续工作的双异质结半导体激光器。标志着光纤通信进入商业应用阶段的是1976年在美国亚特兰大进行的世界上第一个实用光纤通信系统的现场实验。此后,光纤通信技术不断发展:光纤从多模发展到单模,工作波长从0.85um发展到1.31和1.55um,传输速率从几十发展到几十。另一方面,随着技术的进步和大规模产业的形成,光纤价格不断下降,应用范围不断扩大:从初期的市话局间中继到长途干线进一步延伸到用户接入网,从数字电话到有线电视(CATV),从单一类型信息的传输到多种业务的传输。目前光纤已成为信息宽带的主要媒质,光纤通信系统将成为未来国家基础设施的支柱。 2,光纤通信的优点和应用 光纤通信系统的频带很宽,传输容量很大。就损耗而言,光纤的损耗也很小,中继距离很长,而且误码率很小。重量轻,体积小也是光纤相对电缆通信的一大优点。光纤的抗电磁干扰性能也很好,在抗闪电雷击等干扰有着很好的性能。光纤还有保密性好,泄露小的优点。此外,光纤的原材料是石英,在地球的存储量可以说是取之不尽,这可以节约金属材料。由于有如此多的优点,所以光纤通信目前有着广泛的应用。主要应用有(1)通信网,包括全球通信网(比如横跨大西洋和太平洋的海底光缆和跨越欧亚大陆的洲际光缆干线),各国的公共电话网,各种专用通信网,特殊通信手段(如石油、化工、煤矿等部门易燃易爆环境下使用光缆,以及飞机、军舰、潜艇、导弹和宇宙飞船内部的光缆系统);(2)计算机局域网和广域网;(3)有线电视网的干线和广域网;(4)综合业务光纤接入网,分为有源接入网和无源接入网,可实现电话、数据、视频及多媒体业务综合接入核心网,从而提供各种各样的社区服务。 3,光纤通信的新技术 a)光纤放大器 光纤放大器是指在光纤通信系统中,用于放大信号的一种放大器。半导体光放大器 有体积小,容易与其他半导体器件集成的优点,但缺点是性能和光偏振方向有光,器件与光纤耦合损耗较大,而光纤放大器的性能与光偏振方向无关,器件与光纤的 耦合损耗很小。 b)光波分复用技术 光波分复用技术是将两种或多种不同波长的光载波信号在发送端经合波器汇合在 一起,并耦合到光线路的同一根光纤中进行传输的技术。光波分复用能充分利用光 纤的巨大带宽资源,同时传输多种不同类型的信号,节省线路投资,降低器件的超 高速要求,有着高度的组网灵活性、经济性和可靠性。

光纤传输技术复习要点

《光纤传输技术》复习要点 第1章 PCM30/32帧结构(帧时隙数、话路时隙和时隙数、同步时隙、信令时隙),帧周期、帧速率、时隙速率等,话路与时隙的对应关系,帧同步码和复帧同步码的重复周期;我国采用的PDH复接等级和系列(表1.1中“系列2”),相邻等级的复用关系;数字复接的基本原理(时分复用),按位置分类的3类复接方式(按位、按字节、按帧),PDH的基本按时钟关系分类的3类复接方式(同步、异步、准同步);复接过程中缓存器的作用和容量计算(公式1-1,注意公式中各个参量的物理意义计算方法);准同步复接过程包含码速调整和同步复接2个步骤。 第2章 SDH最核心的特点(同步复用、标准的光接口和强大的网管能力),SDH的主要缺陷(频带利用率不及PDH、指针调整机理复杂、软件大量应用影响系统安全性);SDH的NNI标准速率及等级(STM-N模块速率等级、各等级电信号和光信号速率);STM-N二维帧结构(9行、270N列),STM-N帧的字节长度,帧频率和帧周期(8000Hz,125μs),SDH帧大致分为3个区域(名称、作用、各自在帧中的位置以及信号速率的计算);SDH段开销的分类(复用段开销和再生段开销),两种段开销在帧中的位置以及RSOH、MSOH速率的计算;再生段和复用段开销中J0、B1、B2、K1、K2等字节的作用,BIP-x的原理及计算方法, BIP-x方法的优点。 第3章 业务信号复用成STM-N帧3个步骤:映射、定位、复用(注意次序),SDH基本复用映射结构,我国的基本复用映射结构(图3.2);SDH基本复用单元(重点是容器、虚容器),它们之间的相互关系,我国规定的3种SDH容器,这3种容器接口在带宽利用率和应用灵活性方面的特点;映射的本质是什么?如何解决映射中信号与虚容器帧之间的速率差?异步映射中的2种码速调整方法(正码速调整,正∕零∕负码速调整)及适用场合;通道开销的分类(高阶通道开销和低阶通道开销),高阶通道和低阶通道开销中的几个重要字节(J1、J2、B3、V5的b1~b2等)的作用;SDH的两类指针(AU指针和TU指针),指针的作用;AU-4指针(AU-4 PTR)的组成,新数据标志NDF的作用与判读,AU-4 PTR偏移量首地址位置(行、列)与指针值之间的关系,AU-4 PTR偏移单位(3个字节),AU-4 PTR取值范围(0~782);AU-4指针调整规则;发送端根据VC-4帧速率与AUG帧速率的相对关系决定指针调整方向;根据指针调整规则写出发送端AU-4指针值,根据接收端解释规则如何写出接收端AU-4指针值;SDH基本复用方式(按字节间插复用)。 第4章 多业务传送平台(MSTP)的技术基础、应用领域,目前承担的主要业务;MSTP的关键技术;SDH 传送数据业务的3种主要封装技术;基于LAPS协议的EoS的数据帧封装;PPP/HDLC、LAPS的帧定界方法, LAPS协议封装中的透明性操作(发送端和接收端分别如何操作);GFP帧定界方式;3种主要封装技术主要性能比较;级联的基本概念,两种级联方式,两种级联方式的表示方法,共同点和不同点;利用虚级联实现各种速率以太网信号的映射;LCAS的作用以及与虚级联的关系;LCAS的基本思想,LCAS 是如何保证收发两端容量变化的同步。

光纤通讯技术

TDM (Time Division Multiplex)时分多路复用,即在一个传输介质上传输多路数字化信号的技术,具有可靠、快速等特点。在MACH2系统中,TDM总线主要用于传输电压、电流等模拟信号,并具有以下特点:串行通讯连接,最大31个数据槽(每个数据槽32字节)加一个校验和数据槽,时钟频率达10.6 MHz(32Hz/3),数据单向传输,一发多收。 ETDM:Electrical Time Division Multiplexing电时分复用 光纤通信系统技术的发展<1> 在电信的发展史上,还没有哪一种业务象IP那样对通信网带宽的增长速度有如此高的要求,以18个月集成度加倍为标志的摩尔定律对此也有些力不从心,每9个月传输带宽加倍的光纤通信发展为光纤通信技术的进步提供了广阔的用武之地。同时,光电子与光纤技术的进步为光纤通信系统技术发展提供了强劲的动力。 电时分复用系统比特率更上一层楼 1999年以来,10Gbit/S SDH系统和以10Gbit/S为基础的密集波分复用(DWDM)系统迅速投入应用,反映微电子先进水平的是具有768×768VC4交叉连接能力的STM-64分插复用器ADM。另外,InP材料工艺和HEMT器件的进步使电时分复用(ETDM)的STM-256(40Gbit/s)系统即将走出实验室,这代表了当今微电子技术在传输比特率方面的最高水平。为此ITU-T已修改G.707建议,增加了40Gbit/s帧结构标准。 随着比特率的提高,光接收机灵敏度下降,如果要限制因光纤影响带来的光功率代价不超过2dB,10Gbit/s系统与2.5Gbit/s系统相比,接收机最低光信噪比OSNR要提高约6dB,40Gbit/s系统又要再提高约6dB,OSNR的提高意味着放大段距离需缩短。为了使系统升级扩容时能维持放大段距离不变二加大发送光功率似乎是一种解决办法,但这将加剧光纤的非线性影响。可行的办法是采用前向误码纠错(FEC),以便在再生器接收机输入端低OSNR 情况下仍可得到较好的误码性能。ITU-T在2000年4月对G.707建议进行修改,利用SDH 的段开销SOH中空余字节以BCH-3码方式增加了FEC可选功能,这一功能可应用到2.5Gbit/s、10Gbit/s和40bit/s SDH系统,预期这一功能可获得2dB的误码性能改善。对40Gbit /s系统还可以考虑利用喇曼技术来提高OSNR,即在EDFA输入端之前加入1450nm波长的喇曼泵,对靠近EDFA输入端的上游区段光纤上的光信号进行放大,在1550nm有望可获得23dB的喇曼峰值增益。10Gbit/S和40Gbit/S ETDM系统走向实用还需解决色散补偿问题,与G.652光纤相比,非零色散位移光纤(G.655)所需的色散补偿量可以较少,DCF

通信光缆工程质量控制点

光缆工程质量控制关键点: 1、本工程质量控制点的设置 A.管道光缆 (A)子管的布放 a.中间不能有接头 b.有无缠绕、打扎、车轧 c.子管有无绑扎 d.有无管卡、堵塞 e.子管出管长度 (B)光缆的布放 a.管孔占用情况 b.光缆的敷设 c.人手孔内光缆的保护 d.人手孔内光缆的挂牌 e.人手孔内光缆的预留 f.人手孔内光缆的安装 B.架空光缆杆路 (A)电杆的位置及洞深 (B)电杆的垂直度 (C)角杆的位置 (D)杆根装置的规格、质量 (E)杆洞的回土夯实 (F)杆号 C.拉线与撑杆 (A)拉线程式、规格、质量 (B)拉线方位与缠扎或夹固规格 (C)地锚质量(含埋深与制作) (D)地锚出土及位移

(E)拉线坑回土 (F)拉线、撑杆距、高比 (G)撑杆规格、质量 (H)撑杆与电杆接合部位规格、质量 (I)电杆是否进根 (J)撑杆洞回土等 D.架空吊线 (A)吊线的规格 (B)架设位置 (C)装设规格 (D)吊线终结及接续质量 (E)吊线附属的辅助装置质量 (F)吊线垂度等 E.架空光缆 (A)光缆的规格、程式 (B)挂钩卡挂间隔 (C)光缆布放质量 (D)光缆接续质量 (E)光缆接头安装质量及保护 (F)光缆引上规格、质量(包括地下部分)(G)预留光缆盘放质量及弯曲半径 (H)光缆垂度 (I)与其他设施的间隔及防护措施 F.局内光缆 (A)局内光缆的走向 (B)局内光缆的预留 (C)局内光缆的挂牌 (D)局内光缆的程式 G. ODF的安装

(A)机架的固定 (B)光纤在机架内的曲率半径 (C)熔接单元及配线单元的配置 (D)尾纤的缠绕 (E)工作地线的安装 (F)熔接单元的标签 (G)配线单元的标签 H.终端盒的安装 (A)上足四个爆炸螺丝 (B)余留光缆盘留应符合设计规范和保持外形美观 (C)余留光缆绑扎要美观,钉固要稳 (D)适配器中FC接头摆放应同一方向 (E)纤芯和尾纤的盘放应要合理畅顺,曲率半径不能超过设计的要求(F)终端盒内应贴好标签 (G)安装应与墙体垂直,高度适中 (H)余留光缆绑扎和钉固应符合要求 I.光交接箱的安装 (A)光缆加强芯要固定 (B)光缆加强芯要落地 (C)光缆铝护层要接地 (D)光交箱箱体要接地 (E)光交箱内要贴好标签 (F)光交箱内尾纤的盘放要顺畅 (G)箱底要堵好防火泥 (H)箱内应保持清洁,不可以乱摆放杂物 (I)箱内尾纤不能出现与上期工程尾纤相交叉的现象 (J)箱内尾纤的去向要贴好标签 光缆工程施工过程质量控制: A.架空光缆

相关文档
最新文档