泄漏电缆安装介绍

高压电缆局放试验过程步骤及注意事项

试验过程 1、闭上总电源开关、闭上控制电源开关。 2、确认屏蔽室大门已关闭,系统处于通电状态。 3、根据电缆长度和截面,选择好适当的电抗器,高压抽头。当电抗器内电动切换抽头开关已处于完毕定(流)状态时,蜂鸣器应停止声响,表明高压抽头已就绪。 4、选择合适的电压测量量程。 5、检查“调谐速度”,将它调整到最大值的约30%。 6、接通高压电源主回路。 7、升压,以升高“励磁变压器的输出电压”直到所需试验电压值的1%处,例如:试验电压为10KV,那么励磁变压器的输出电压即为0.1KV。 8、在该励磁电压下,调节高压电抗器间隙位置,使试验回路达到谐振。应注意高压输出电压,输出值达到最高时,说明回路已达到谐振状态。 9、当试验回路处于谐振状态时,再按下“升压”按钮以升高输出电压至试验电压值。 10、当试验时间到,按下“降压”按钮,降低输出电压至最小值,再按下“高压分”按钮,试验系统便切断回路高压电源。注意:切勿在试验电压很高情况下直接按下“高压分”按钮,以防造成试品击穿。 11、试验结束后,断开调压器上的“空开”,必要时应断开整个设备电流的进线开关,以保证操作人员的安全。 试验前准备工作: 剥电缆头:1)半导体屏蔽剥(10kV)100~150mm长,(35kV)剥500~700mm长;要求:剥切口要光滑,不允许有尖端点。2)屏蔽铜带剥切长度要比半导体屏蔽长约100mm。3)铠装钢带要剪平并清理干净。 变压器油(氟里昂)准备:过滤、干燥,击穿场强应在40KV 以上。 注意事项:1、做试验时不能随意开操作室的门和窗,此时,如有放电,将会出现滤电的现象,导致出现误导数据。2、试验电缆两端都应浸入到油杯中,高压引到电缆上的叫近油杯,油杯内有弹性铜针。另一短为远油杯,无弹性铜针。3、油要浸过半导体屏蔽约5~10mm,以免放电,远油杯端电缆端部要离油杯底部约10mm。

隧道水沟电缆槽盖板施工技术交底

技术交底记录 编号:CLZQ-5-JSJD-2016-31 工程名称跃龙门、柿子园隧道技术交底单位工程部 交底项目水沟、电缆槽盖板施工 技术交底 交底日期2016年11月18日 一、适用范围: 适用于新建成都至兰州铁路中铁十九局CLZQ-5标段跃龙门、柿子园隧道施工段水沟、电缆槽盖板施工。 二、交底内容: 1、跃龙门、柿子园隧道单线区段总长29041.41m,双线段总长3417m;根据设计图纸,单双线隧道水沟、电缆槽盖板纵向长度均为40cm,则计算如下:单线隧道:1号盖板=2号盖板=29041.41/0.4*2=145207.05+1=145208块。 双线隧道:1号盖板=2号盖板=3号盖板=3417/0.4*2=17085+1=17086块。 4号盖板=3417/0.4=8543块。 2、单线隧道水沟、电缆槽盖板施工图如下:

①本图尺寸除钢筋直径以毫米计及注明者外,其余均以厘米计。 ②各种盖板适用范围: 1号盖板:水沟盖板;2号盖板:电缆槽盖板; ③盖板采用C35钢筋混凝土,板内钢筋采用HPB235钢筋,要求工厂化制作。 ④盖板内钢筋,N[1]、N[2]不设弯钩,N[3]、N[4]设直弯钩;为避免盖板倒置,制造时应在盖板面上作“上”字标记。 ⑤图中所示钢筋保护层厚度为钢筋边缘至盖板外缘的距离。 3、双线隧道水沟、电缆槽盖板施工图如下: 双线隧道水沟、电缆槽盖板示意图 双线隧道中心水沟盖板示意图

①本图尺寸除钢筋直径以毫米计及注明者外,其余均以厘米计。

②各种盖板适用范围:1号盖板:电力电缆槽盖板2号盖板:侧沟盖板;3号盖板:通信信号电缆槽盖板;4号盖板:中心水沟盖板; ③盖板采用C35钢筋混凝土,板内钢筋采用HPB235钢筋,盖板采用工厂化生产。 ④盖板内钢筋,N[1]、N[2]不设弯钩,N[3]、N[4]、N[5]、N[6]设直弯钩;为避免盖板倒置,制造时应在盖板面上作“上”字标记。 ⑤图中所示钢筋保护层厚度为钢筋边缘至盖板外缘的距离。 4、跃龙门、柿子园隧道综合硐室共计122个。(跃龙门隧道左线48个、右线44个;柿子园隧道左线17个、右线13个) 综合硐室共设置三种盖板:1号盖板=80块、2号盖板=10块;3号盖板=10块;4号盖板=10块;钢筋挡板=2块。 盖板总数:1号盖板=9760块、2号盖板=1220块;3号盖板=1220块;4号盖板=1220块;钢筋挡板=224块。

漏泄同轴电缆选用探讨

漏泄同轴电缆选用探讨 1.引言 漏泄同轴电缆可以实现任何地方的无线通信,甚至在有电磁波干扰或没有电磁波的地方都可以,例如:隧道、矿山、地铁、建筑大楼和大型、复杂的象展览馆或机场那样的场所。因为漏泄同轴电缆能保证信号覆盖的不间断性。 2.选用漏泄同轴电缆的依据 选择适当的漏泄同轴电缆要看其应用的需要,选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。 选择漏泄同轴电缆有两个重要指标:传输衰减和耦合损耗。漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和。传输衰减,也叫介入损耗,主要指传输线路的线性损耗,随频率而变化,以分贝/100米表示。耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。因此在实际应用中,只要传输衰减能满足操作容限或链路容量的要求,就没必要选择那些传输衰减最低的漏泄同轴电缆,但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起,它还必须包括任何其他因素引起的损耗。如果计算结果为正值,那就表示有足够的容限允许环境发生变化,而系统仍可正常运行。 对漏泄同轴电缆而言,耦合损耗设计一般在55~85分贝之间。在狭长系统如隧道或地铁内,因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能,因此耦合损耗设计一般为75~85分贝,在这种条件下,把传输衰减减到最小非常重要。在建筑楼宇内,漏泄同轴电缆耦合损耗设计一般在55~65分贝之间,因为楼内漏泄同轴电缆单向长度在50~100米之间,因此传输衰减就不那么重要了,更重要的指标是漏泄同轴电缆能尽量多地发射信号,并穿透周围地区。 一个准备扩展的系统,可以选择传输衰减较小的漏泄同轴电缆。比如在办公楼内有一根顺电梯上行的漏泄同轴电缆,几个楼面共用一个接头,在这种情况下,若选择传输衰减低的漏泄同轴电缆,今后就可以提供更高频率上的服务或扩大服务覆盖区。

电源线安规知识

电线规格 北美线材的线规与国内的表示方法不同,是以“AWG”为单位。AWG 22------截面积0.5 mm2AWG 20------ 0.75 mm2 AWG 18------截面积1.0 mm2AWG 16------ 1.5 mm2 电源线标识如下:SJT SJTOW 18AWG/3C SPT-2 16AWG/3C SPT = 服务平行的热塑性的(服务性平行的热塑性塑料) HPN = 加热器平行的合成橡胶(加热器平行的橡胶) S = 服务服务性(因而, 大母猪, ST, STW) O -油油性W –湿的湿T –热塑性的热塑性塑料 SJ = 服务年少者小型服务性(SJO, SJOW, SJT, SJTW) O -油油性W –湿的湿T –热塑性的热塑性塑料 SV = 服务真空吸尘器吸尘器(SVT, SVO) O -油油性T –热塑性的热塑性塑料 电子线: 组不承受机械磨损;组B 承受机械磨损 W:潮态环境使用;O:防油;F:防燃料油 FT1:垂直燃烧测试;FT2:水平燃烧测试;FT4:垂直燃烧测试(电缆在电缆托盘);FT6:水平燃烧和烟熏测试。 例如:“CSA AWM我90 C 300 V FT1”表示AWM电子线,内部使用,不承受机械损坏,耐温90 C,额定电压:300 V,燃烧等级为FT-1。 1.电源线是指电线与其一端连接的插头或尾插的集合体。由此可 见,电源线分为两部分,电线和插头。 适用于电源线的北美标准为: CSA C22.2没有. 21-95 - 绳索设置和电源灯芯绒衣

CSA C22.2没有. 42-99 - 普通使用容器, 附件堵和相似的配线装置 UL 498 -附件堵和容器 UL 817 -绳索设置和电源灯芯绒衣 3. 插头的材料: 对于插片来说,要求为铜或铜合金。至于塑料外壳,所使用的必须是通过CSA或UL认证的塑料,要求最低的阻燃等级为HB级。 4. 测试: 电源线的测试可以分为三类,机械、电气和绝缘测试。极性测试,耐压测试,突拉测试吊重测试 电动工具测试: 1电动工具可能发生的危害: A 接触带电危险体 B 接触高温部件 C 器具自燃或自爆 D 接触到锋利边缘 F 接触到运动部件 G 有毒物质 2欧洲标准一般测试项目如下:

10kV 电缆振荡波局放测试系统测试要求

10kV电力电缆 阻尼振荡波局部放电检测试验方案 (试行)

10kV 电力电缆振荡波局部放电检测试验方案 一、试验标准和目的 根据要求,通过现场试验,在不损害电缆本体绝缘的情况下检查10kV 电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。 二、试验仪器 ONSITE MV 10 型电缆振荡波局放检测系统 三、试验内容 10kV 电缆振荡波局部放电检测基本原理如图1所示: 图1 电缆振荡波局放测试原理 用交流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。实时快速状态开关S 闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进行振荡。空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工频频率。图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。回路品质Q 一般为30~100,振荡波以谐振频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。 振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C 和δtan 值可通过振荡波的时间和频率特性来计算。 LC f π2/1=

1、被测电缆要求及测试前准备 1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏; 2)尽量将电缆接头处PT、避雷器等其它设备拆除; 3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够; 4)收集电缆长度、型号、类型、投运日期等电缆参数; 5)电缆长度L:电缆一侧测量方式:50m≦L≦6km; 电缆两端测量方式:L>6km。 6)测试用电缆用发电机、10KV放电棒、接地线、220V电源插盘。 2、振荡波局部放电试验 2.1 电缆局放校准。 采用ONSITE MV 10型电缆振荡波局部放电测试和定位仪,图2所示为校准界面: 图2 局放校准界面 测试要求: 1)将局放校准仪连线的接线端分别夹在被测电缆的线芯和屏蔽上; 2)注意在高压测试开始时将校准器连线拆除; 3)局放校准仪的输出频率设定在100Hz; 4)校准区间从100pC~100nC均要校准。

漏泄同轴电缆的介绍

漏泄同轴电缆简介 漏泄同轴电缆是具有信号传输作用又具有天线功能通过对处导体开口的控制可将受控的电磁波能量沿线路均匀的辐射出去及接收进来实现对电磁场盲区的覆盖已达到移动通信畅通的目的。 绝缘采用高物理发泡的均匀细密封闭的微泡结构不仅较之传统的空气绝缘结构在特性阻抗、驻波系数、衰减等传输参数更加均匀稳定而且可抵御在潮湿环境中潮气对电缆的侵入可能传输性能的下降或丧失免除了充气维护的烦恼大大提高了产品的使用寿命和稳定可靠性是当今世界上最先进的射频和漏泄同轴电缆结构。 选用漏泄同轴电缆的依据选择适当的漏泄同轴电缆要看其应用的需要选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。选择漏泄同轴电缆有两个重要指标传输衰减和耦合损耗,漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和,传输衰减也叫介入损耗主要指传输线路的线性损耗随频率而变化以分贝/100米表示。 耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。 因此在实际应用中只要传输衰减能满足操作容限或链路容量的要求就没必要选择那些传输衰减最低的漏泄同轴电缆但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起它还必须包括任何其他因素引起的损耗。如果计算结果为正值那就表示有足够的容限允许环境发生变化而系统仍可正常运行。 对漏泄同轴电缆而言耦合损耗设计一般在5585分贝之间。 在狭长系统如隧道或地铁内因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能因此耦合损耗设计一般为7585分贝在这种条件下把传输衰减减到最小非常重要。 在建筑楼宇内漏泄同轴电缆耦合损耗设计一般在5565分贝之间因为楼内漏泄同轴电缆单向长度在50100米之间因此传输衰减就不那么重要了更重要的指

电缆槽安装技术交底(1)备课讲稿

中铁十局石济客专一分部第三架子队 技术交底书 交底级别:四级编号: 主送单位四电班组施工图号石济客专施路通-24 施工部位电缆井施工发送日期 一、工程概况: 齐河站路基附属工程电缆井分为三种型号,分别为Ⅰ型电缆井,Ⅱ型电缆井,Ⅲ型 电缆井。 二、施工工艺和施工方法 2.1.施工工艺: 2.1.电缆井施工工艺: 放线→人工开挖电缆井(钢筋加工)→现场技术员验收→C25混凝土垫层→绑扎钢筋→立模→报监理工程师验收→灌注混凝土→养护→拆模→回填→安装预制盖板由技术人员测量定出基础位置,撒出开挖轮廓线,在开挖线四周,用彩条布或塑料 布对级配碎石进行覆盖,以防土石等污染级配碎石。 基础开挖后,检查基底平面位置、尺寸大小、基底高程及承载力等,允许偏差符合 要求后,立即报监理工程师检查,合格后立即进行基础混凝土的施工。 电缆井允许偏差、检验数量及检验方法 序号检验项目允许偏差施工单位检验数量检验方法 1 距线路中心位置0,+20mm 沿线路纵向每100m 每侧各抽样检测5处尺量 2 形状尺寸10mm,-10mm 尺量 3 顶面高程10mm,-10mm 水准仪测 2.施工要求: 2.1.放线:根据设计里程放出十字线和标高,开挖采用1:0.1放坡,并用白灰洒出开挖线。 2.2、人工开挖电缆井:放线完毕后,采用人工配合机械开挖,机械开挖轮廓线要 比结构轮廓线每个方向小30cm,再采用人工修边及清底,以避免出现超挖并破坏路基本体结构。开挖时应特别注意不要破坏预埋的过轨钢管。

2.3、钢筋加工:钢筋加工的型号尺寸必须符合设计要求。 2.4、现场技术员验收:应对电缆井开挖的结构尺寸、标高进行检查,合格后方可 进入下道工序。 2.5、C25混凝土垫层:开挖经检查合格后,方可进行10cm厚C25混凝土垫层施工, 应严格按试验室施工配合比进行施工,顶面标高控制在电缆井结构底,且表面平整度应控制在1mm内。 2.6、钢筋:钢筋进场前,必须有出厂合格证,对使用钢筋应按规格、品种分批取 样并按规范进行检验,检验合格后方可使用,钢筋在加工前应调直,除去表面的油污、 锈渍,钢筋应平直,无局部弯曲。钢筋加工严格按设计图纸进行钢筋绑扎,并满足验收 标准要求。在加工棚内加工后运至现场安装。; 2.7、立模:内外模板采用竹胶板,加固采用钢管和方木,外模下面部分采用土模, 顶部露出基床表层底部分采用竹胶板。模板的强度及刚度必须满足验收标准要求,结构尺寸满足设计要求。 2.8、报监理工程师验收:立模完成后报监理工程师验收,验收合格后方可进行下 道工序。 2.9、灌注混凝土:经监理工程师验收合格后,开始灌注混凝土,混凝土采用1#搅 拌站生产的混凝土,通过混凝土罐车运输至现场,采用溜槽放入模板内,捣固采用插入式捣固棒捣固。当顶面混凝土开始初凝后,要求进行二次收光。 2.10、养护:混凝土初凝后,采用人工洒水养护,不小于14d。 回填:当混凝土达到80%强度后方可进行回填,回填采用挖出的路基填料回填,回填必 须采用冲击夯夯实。 2.11、安装预制盖板:盖板采用预制厂生产,安装时,电缆井顶部与盖板接触位置 涂沫沥青后再安装预制盖板,盖板安装必须平整,且不得有松动现象。 运至现场安装。; 3、施工注意事项: 3.1.放线特别注意与预埋过轨对应; 3.2.开挖时请特别注意不要把预埋的过轨管损坏; 3.3.顶面标高控制与该处基床表层顶相同,形成4%流水坡;

漏泄同轴电缆施工工法

漏泄同轴电缆施工工法 一前言 为了解决铁路在山区、弯道、隧道内等弱场强或无场强区段的无线列调通信工程问题,目前采用在这些区段沿铁路线一定距离架设漏缆,安装隧道中继器和中继器天线的方式使无线电信号电波沿漏缆传输并均匀向外漏泄,使这些区段内场强达到一定要求而保证无线列调通信畅通、可靠。我们公司于1993年承担了某无线列调通信工程连江口至广州段的施工,在无施工规范和技术标准的情况下,我们在施工过程中边学习,边实践,边总结,用较短的时间,质量良好地完成了该段的施工任务。在完成任务的同时,锻炼了一支技术熟练、工艺精良的施工队伍。为了更好地指导今后同类工程的施工,我们在总结实践的基础上,编写了400MHz漏泄电缆的施工工法。期望本工法在今后指导同类工程施工实践的同时,不断地进行补充和完善,以取得更大的经济和社会效益。 二工法特点及适用范围 2.1本工法有如下特点: 2.1.1漏缆架设前要进行严格的单盘测试及合理的配盘。 2.1.2漏缆须架设在铁路旁距轨道线路中心3~15米范围内,其高度须距轨面4.5~4.8米。 2.1.3漏缆的漏泄槽应朝铁路一侧。 2.1.4漏缆接续按漏缆的型号不同须配用不同的连接器件,为控制电缆的耦合损耗,还须根据不同类型的电缆,确定其连接器的安装位置。 2.2本工法适用于山区、隧道传输信号,整个铁路系统及地下铁路,厂矿等漏泄电缆组成的无线通信系统工程的施工,同时也适用于从事漏缆维修人员进行维修工作。 三工艺原理

本工法是无线列调通信系统中的部分设备——漏泄电缆的施工工艺,其原理可从以下三个方面来说明: 3.1漏缆既是无线信号电波的传输线,又可视为无线信号的天线。 调度、车站值班员、机车司机互相通话,一般情况下,是靠车站电台通过天线向空间发射信号电波,在铁路沿线的空间产生一定的场强,并通过机车电台的天线耦合接收来实现的。而在弯道、山区、隧道内无线电波被阻挡、反射、吸收,使得该区段通信困难或无法通信。漏缆沿铁路架设,通过中继器和中继器天线,将车站电台发射的信号电波接收,经中继器放大加强,沿漏缆传输并均匀向外漏泄信号电波,使这些弱场强和无场强区段的铁路沿线具有一定大小的场强分布,以便在这些区段运行的机车电台能正常接收信号。同样,机车电台发射的信号电波也通过漏缆耦合,传输到中继器放大加强后送到中继器天线发射,被车站电台接收,从而实现调度、车站、机车的通信。因此,漏缆起到了传输、漏泄(天线)两方面的作用,成为山区、弯道、隧道内等弱场强或无场强区实现无线通信的关键设备之一。 3.2采用分级补偿的原则,从而使列车收到平稳的电平信号,同时与采用单一的漏缆相比,能延长通信距离。下面举一例说明: 3.2.1漏缆特性 型号耦合损耗传输损耗 149 80 dB/Km 25 dB/Km 148 70 dB/Km 27 dB/Km 147 65 dB/Km 36 dB/Km 3.2.2中继段的漏缆配置方法:在电波信号正向传输方向上,漏缆的配置顺序原则是 正向传播方向 LCX 中继段漏缆配置图1 耦合损耗由大到小,传输损耗由小到大,以确保机车接收电平的曲线斜率最大限度最小,呈

(整理)35kv及以下交联电缆局放、耐压及故障定位试验系统 - 上海蓝波

PDT-1200kVA/120kV局部放电试验系统 电脑控制台使用说明书 上海蓝波高电压技术设备有限公司 一.系统简介

串联谐振试验装置的自动控制及测量系统由两大部分组成: 1.上位机;2.下位机及执行机构。上位机包括操作台、工业控制计算机以及操作软件。下位机包括PLC 及其扩展模块;执行机构由继电器、开关、接触器等器件构成。上下位机之间由光纤相连。 上位机能够接收下位机发送的状态信息,实时采集各个模拟量,并给下位机发送动作指令。操作人员通过操作上位机实现对整个系统的控制。 二.软件安装 1.概述 软件部分由四方面组成:操作系统,DAQBench控制器,ActiveX组件,控制软件。 在安装完Windows XP操作系统后,首先应该安装DAQBench控制器和ActiveX组件,最后安装控制软件。 2.安装DAQBench控制器 打开安装光盘,运行\\DAQBench\DISK1\SETUP.EXE,SN:A04-65534559。 3.安装ActiveX组件 打开安装光盘,运行\\ActiveX Register\ActiveX Register.exe。 4.安装控制软件 打开安装光盘,复制“SRS Tester”文件夹到硬盘驱动器。 全部安装完毕后,打开“SRS Tester”文件夹,运行“NSRS.exe”。 三.软件界面介绍 图1是系统的主界面,显示试验的相关数据信息,接受用户的操作。

图1 1.1 数显表 1.1.1 输出电流表 显示电抗器输出高压电流,其中包括了负载电流、高压滤波器电流,电流值是通过串接在励磁变压器次级低压端与接地端之间的电流互感器来测量的。精度为±5%。1.1.2 高压输出表 显示电抗器输出端的高压电压值,是通过电容分压器低压端耦合至测量回路来测量的,高压电压表精度为±3%。 1.1.3 励磁电压表 显示励磁变压器的输出电压,这个数值是参考值,试验员可以在远低于试验电压(相当于1%试验电压)的水平下稍加励磁,并将试验系统调至谐振状态,然后,升高励磁电压,直至所需试验电压。 1.1.4 间隙表 该表以百分数的形式来显示电抗器铁芯气隙位置,当该表指示在10%以下或90% 以上时,应控制调谐速度在25%以下,以防止损坏驱动系统。

长电力电缆振荡波局部放电检验测试验方案计划

国家电网合肥供电公司 10kV长电力电缆阻尼振荡波 测试方案 安徽立翔电力技术服务有限公司 二零一七年七月

目录 一、试验标准和目的............................................................................................................... - 2 - 二、试验仪器........................................................................................................................... - 2 - 三、试验内容........................................................................................................................... - 3 - 1、术语及定义.................................................................................................................. - 3 - 2、试验原理介绍.............................................................................................................. - 3 - 3、被测电缆要求及测试前准备...................................................................................... - 5 - 4、绝缘电阻测试.............................................................................................................. - 5 - 5、测试电缆中间接头位置及电缆长度.......................................................................... - 5 - 6、振荡波局部放电试验.................................................................................................. - 6 - 6.1 电缆局放校准...................................................................................................... - 6 - 6.2 振荡波局放测试.................................................................................................. - 6 - 1)试验接线步骤:................................................................................................... - 6 -2)加压测试程序....................................................................................................... - 7 -3)测试要求及注意事项:....................................................................................... - 7 - 7、振荡波局放诊断评价.................................................................................................. - 8 - 1)绝缘电阻:........................................................................................................... - 8 -2)电缆局部放电量:............................................................................................... - 8 - 8、电缆振荡波局放异常处理决策.................................................................................. - 8 - 1)绝缘电阻异常情况处理措施............................................................................... - 8 -2)电缆振荡波局放量超标异常情况处理措施....................................................... - 8 - 9、试验时间:1.5~2.5 小时/段..................................................................................... - 9 - 四、人员安排:....................................................................................................................... - 9 - 五、安全措施:....................................................................................................................... - 9 -

电缆槽安装技术交底

电缆槽安装技术交底 记录工程名称分部(分项)工程接底项目接底人 一、电缆槽安装范围XX特大桥左侧通信电缆槽全桥安装,槽安装范围:xxxo序号桥梁分类桥名中心里程桥全长m(台尾一台尾)电力电缆槽(m)通信电缆槽(m)信号电缆槽(m)设置于左、右侧电缆槽设置范围设置于左、右侧电缆槽设置范围设置于左、右侧电缆槽设置范围槽310槽210槽310槽210槽310槽2101大2特大3 特大4大 二、电缆槽安装位置所有电缆槽除了以下设声屏障梁和连续梁段落安装在人行道支架内侧其他段落电缆槽均安装在人行道支架外侧电缆槽托架上,按照设计图拼装,并用符合规范要求的直径1235六角螺栓将托架与槽身有效连接。在设置声屏障地段电缆槽角钢支架与H型声屏障立柱采用四周贴角焊缝焊接;在连续梁段电缆槽角钢支架预埋在连续梁栏杆上或焊接在声屏障立柱上。 设声屏障梁和连续梁段落序号桥名位置(线路左侧)位置(线路右侧)123 三、电缆槽安装类型线路右侧按设计图安装电力电缆槽,线路左侧安装通信电缆槽或通信、信号电缆槽(通信和信号电缆槽 (合槽)为310mm (宽)X200mm (高)隔离型电缆槽,通信、电力电缆槽为210mmX150nim普通型电缆槽)

。交底记录工程名称桥面系分部(分项)工程电缆槽安装接底项目电缆槽安装接底人 四、相关安装要求 1、通信与型号电缆槽(合槽)为310mm (宽)*200nini (高) SMC隔离型电缆槽,通信、电力电缆槽为210mm (宽) *150mm (高)SMC普通型电缆槽,槽盖及槽身均采用5nmi厚SMC槽盖。 2、通信、电力、信号电缆槽以①12六角螺栓连接于支架上。 3、电缆槽槽体与槽盖应配合紧密。 4、为提高电缆槽的整体性,避车台电缆槽、桥头上下桥斜电 缆槽(异形构件)均按整体设计,但弯头处制作、运输、安装中属于易损部位,需特别注意。 5、斜电缆槽槽身(异形构件)采用整体生产、制作、安装。 6、手孔尺寸:通信接头手孔尺寸为2000*300*200mm (长*宽* 高),电力接头手孔尺寸为2000*1200*200mm (长*宽*高),手孔要求与通信、信号(电力)电缆槽连接。 7、电缆槽盖板采用包箍方式进行固定,包箍每1、0m设置一个,采用高频热镀锌钢板(钢板宽20mm,厚4mm)制作,采用8nini 螺栓进行连接,固定螺栓采用热镀锌带销螺栓,并设弹簧垫圈及垫片。 五、其他说明

电缆局部放电试验方法

如对您有帮助,请购买打赏,谢谢您! 电缆局部放电试验方法 [ 作者:admin 转贴自:中国电力试验设备网点击数:505 更新时间:2008-8-29 ] 对于制造中没有包上屏蔽的电缆线,可用图(1)的牵引试验装置对局部放电定位和检测。 图(1)未加屏蔽的电缆芯用牵引法对局部放电定位 其原理是把不屏蔽的电缆芯子通过一个紧贴着试验的管状电极,电极上施加试验电压,并把电极连到试验回路。管子都浸在绝缘液中(如离子水),并把这区域中不会发生干扰试验的边缘放电,液体不断循环与过滤。电缆芯接地,从缆盘经管状电极被匀速牵引至第二个电缆盘。 如放电脉冲正好被检测仪观察到,放电在图中A处开始出现,在B处开始消失,这两位置都在芯子表面的C处标记离A、B为已知距离I1、I2,这些长度沿芯子标出,则放电就可确定在电缆A、B之间。 至于成品电缆则不能用这种办法定位和检测。 在长电缆的测试时,要考虑到行波及其在端部的反射和衰减。可归纳以下几点: 1)在没有反射波的情况下,放电所产生的电压行波在进行中其幅值虽有很大衰减,但波形与放电量成正比的面积基持不变。 2)在有反射波的情况下,传输波和反射波在检测仪的响应上要形成交迭。在检测仪具有α响应时总是形成正迭加,时则既可能正送加,也可能负迭加,而负迭加是局部放电测试的大忌,应尽量避免。因此,如没有附加措施(例如迭器)的话。应尽量采用具有α响应的检测仪。 至于检测短电缆,可以当作集中参数元件考虑。测试就没有什么困难了。 现在的问题是究竟多少长度的电缆可视作短电缆?说法很不统一,第二个问题是这个电缆长度和检测仪有没有关系?为此,IEC最近对此作了比较具体的规定: 1、首先用可调脉冲间隔的双脉冲发生器(模拟电缆上两个交迭的脉冲波)对检测仪测试其交迭响应特性,即所谓At/A t交线。(其中t为双脉冲峰与峰间的时间间隔,A100是t达到相当大,不会产生交迭效应时的脉冲响应检测量,先定t时的脉冲检测量)。 绘制At/A100~t曲线的测试电路图见图(2)。 根据检测仪响应特性的不同,大体上可作出三种类型的交迭响应特性,见图(3)-(5)。 上图中不同的t值对应于脉冲传播的电缆长度。I1k=0.5·tk·U,I1=0.5 t1·U,·I2=0.5·t2·U (U约170~200m/μs) 图(2)双脉冲发生器的连接图 图(3)α响应检测仪的双脉冲响应关系 图(4)α响应检测仪的双脉冲响应 图(5)严重β响应检测仪的双脉冲响应 由图(3)-图(5)可知: ①所谓短电缆,应按1≤1k作为判断依据,它与检测仪响应特性有关,1k可短至100米以下,也可长达1000米以 ②当1≤2I1,可1≥2 I2,时,虽然按长电缆考虑,但因无负交迭,所以也可以与1≤1k的短电缆一样当作集中参数试,而不必在电缆端部接匹配的特性阻抗。 ③测试长度I在2I1≤I≤2 I2范围内的长电缆时,如无附加措施,则应在电缆端部接匹配特性阻抗以抑制反射。或者用α响应的检测仪以免迭加(图4-25) 。 ④检测仪的β响应愈是显著(见图5),则2I1≤I≤2 I2的I范围愈是大。 局部放电检测仪的响应特性与频带选择有关,故使用时选择放大器频带时应考虑这些因素。 2、根据At/A100~t图,确定电缆长度所处的范围后,选择合适的测试电路。 (1)对于I≤Ik,或I≤2 I1,或I≥2 I2的情况,可采取终端不接匹配阻抗的路:(图(6)-图(8)) (2)对于长度在2Ik≤I≤2 I2范围内的长电缆,必须在电缆终端采取消除终端反射波的终端匹配阻抗(或用反射抑见图(9)。

漏泄同轴电缆技术规范

1漏泄同轴电缆技术规范 1.1.适用范围 本技术规范书适用于客运专线GSM-R系统漏泄同轴电缆的购置、安装、调试、开通、质量保证期及质量保证期满后的相关技术服务。 1.2.总体要求 ★及安装附件的设计、制造及安装应符合下列中华人民共和国相关现行标准: ★铁路通信漏泄同轴电缆(TB/T 3201-2008)标准。 铁路通信工程质量评定验收标准(TB10418-2000)。 国际电联ITU-T及ITU-R的相关建议。 IEC相关标准。 其他未详尽部分均按中华人民共和国相关现行标准执行。 以上标准如有更新,按最新标准执行。 ★制造厂生产的Ⅲ型漏缆应具有在客运专线铁路GSM-R系统良好的运行业绩,能提供铁路局或铁路(集团)公司电务处的GSM-R漏缆用户报告。 1.3.漏泄同轴电缆主要技术要求 1.3.1.电气性能 采用《铁路通信漏泄同轴电缆》(TB/T 3201-2008)规定的Ⅲ型漏缆。 导体的连续性:电缆的内导体、外导体应分别沿电缆长度连续。 频率范围:900MHz; ★漏泄同轴电缆电气性能指标

(2)机械性能 漏泄同轴电缆机械性能指标

注:表中温湿度范围可根据现场情况适当调整。 (3)结构要求 满足《通信电缆-物理发泡聚乙烯绝缘漏泄同轴电缆》(YD/T1120-2001)的要求。 应有隧道内外设置的防火措施。 内导体直径:15-20mm 外导体直径:45-50mm 最小弯曲半径:700mm 重量:≤1200kg/km 电缆护套采用低烟、无卤、阻燃、防日晒、老化材料 电缆的使用寿命在30年以上 发泡绝缘结构 (4)环境要求 温度:-40--+650C 相对湿度:95%(在35o C时)能可靠工作 敷设最低温度:-1O o C 1.3. 2.漏缆配件 投标人应提供与LCX相配套的接头、终端负载、直流隔断器、固定接头以及必要的避雷器、隧道内外安装的漏泄电缆固定系统卡具(普通卡具和防火卡具)、接地套件、防雷套件、防水套件等配套设备,配套设备均应包含在总价中。所有配件均应能满足列车时速350km/h以上时的运营环境需求,并应有相关部门的检测报告。 1.3. 2.1.漏缆固定系统卡具主要技术要求: 为保证350Km/h高速铁路的行车安全,供应商提供的漏泄电缆固定系统卡具必须拥有350km/h高速铁路300公里的使用业绩,并对隧道内漏泄电缆固定系统卡具做如下技术要求: (1)隧道内漏缆固定系统应采用金属锚栓,相关固定配件符合隧道内固定

电缆局部放电试验学习资料

电缆局部放电试验学习资料保定华电电气有限公司

电缆局部放电试验学习资料 目录 一、电工原理的有关基本概念 1.什么叫交流电? 2.什么叫正弦电流和电压及其有效值? 3.放电脉冲信号基本特征 4.什么叫容抗、感抗? 5.什么叫电场强度、击穿场强? 二、局部放电的基本概念 1. 什么叫局部放电 2. 局部放电的基本名词概念 3. 局部放电出现的部位 4. 局部放电产生的危害 5. 局部放电产生的过程 三、局部放电测试方法 1.局部放电测试原理 2. 局部放电测试设备 3.局部放电测量步骤 4.产品标准对局部放电考核指标要求的变化 5. 典型的放电谱图

一、电工原理的有关基本概念 1.什么叫交流电? 在实际电路中(如仪器设备的工作回路、电力传输线路)电流、电压都随着时间而变动,有时不仅大小随时间在变动,而且方向也可能不断反复交替地变动着。工程上所常遇到的变动电流,其方向和大小均随时间作周期性变化,这种电流称为周期电流。 图1中的曲线就表示一种周期电流,通常把这种曲线称为波形。 图1:周期电流i 的波形 周期电流经过一定时间T ,电流的变动就完成一个循环,故T 称为周期;周期以秒(s )为单位。单位时间内电流变动所完成的循环(或周期)数称为频率,用字母f 表示。根据这个定义,频率恰好是周期的倒数,即 T f 1 频率的单位为1/秒,又称为赫兹(Hz ),简称赫。 大小和方向都随时间变动,而在一定周期内平均值等于零的周期电流称为交变电流,简称交流。当然如果上述是电压波形时我们称为交变电压,也简称交流电。 变动电流或电压在任何一个时刻的值叫它们的瞬时值,瞬时值是时间的函数。在交流电路中,欧姆定律仍然适用。 2.什么叫正弦电流和电压及其有效值? 电力工程中所用的交变电流和电压是按照正弦规律变动的,换句话説,这些交

高压电力电缆局放测试的方法

https://www.360docs.net/doc/c011241534.html, 高压电力电缆局放测试的方法 高压电力电缆局放测试的方法首先是交流耐压试验电源处理,交流耐压试验电源处理用到的装置是串联谐振 1、交流耐压试验电源处理 高压电缆交流耐压采用的是变频谐振装置产生试验电源,变频柜是装置的核心部件,变频柜通过晶闸管的整流和逆变获取试验所需的频率,在电源变换过程中引入了大量的高频脉冲电流成份。

https://www.360docs.net/doc/c011241534.html, . 变频谐振系统输出的电源不能直接作为电缆局放试验的电源直接施加于被试对象进行局部放电测试,必须采取有效措施对试验电源进行预处理,通过设置串联电抗、防晕导线、均压环进行对试验电源质量进行改善,其电气原理所下图所示。 . 2、电缆终端局放测试回路 电缆终端的局放测试回路如下图,当被试电缆内部发生了局部放电时,耦合电容瞬时对电缆终端充电,形成高频的脉冲充电电流波形,脉冲电流的幅值、发生的频度反映了电缆

https://www.360docs.net/doc/c011241534.html, 内部局部放电的严重程度,通道1、通道2两个传感器将局放信号传送至局放诊断系统进行分析处理。 . 在电缆的中间接头,测试原理如图所示,一侧电缆的铠装与电缆导体之间存在电容Ca,另一侧电缆的导体与铠装之间存在电容Cb,如果在电缆的中间接头发生局部放电,那么形成两个电容C1和C2,此时Ca和Cb就会通过导体向C1和C2充放电,从而形成局放电流回路,在两侧电缆屏蔽层桥接一个高频低阻的电容臂C0和高频电流传感器,就可以检测到局放的脉冲电流信号。 .

https://www.360docs.net/doc/c011241534.html, . 3、高压电缆局放测试的技术难点 a) 测试系统灵敏度要求高 高压电缆发生局放时产生的脉冲信号微弱,要求传感器及测试系统有相当高的检出灵敏度。 b) 现场干扰因素复杂 在现场实施电缆局放试验时干扰信号会严重影响电缆局放的检测和诊断,主要有临近试验现场的运行设备产生的电晕或者局部放电信号、交流耐压试验装置自身的局部放电信号、交流耐压试验回路的引线产生的电晕信号三个方面的因素。 因此甄别并排除干扰信号、提取有效的信息并根据其特征诊断电缆的绝缘状态是一项具有挑战性的技术难题。 c) 对测试人员的要求高 高压电缆局放的信号主要集中在0-30MHz范围内,信号频带较宽,加上现场存在一定的干扰信号,测试人员通过信号抑制、识别、分类、提取、判断等技术手段,准确的解析复杂的电子信号成份实现电缆的状态诊断。这项技术要求测试人员熟练使用示波器、频谱仪、滤波器等电子设备,并具备高频电子信号分析判断能力。u d) 国家标准及行业标准没有明确的指引 高压电缆局放测试是目前国内比较新的技术应用课题,国内仅有北京供电局进行过类似尝试,佛山局在这一技术领域走在了国内前列。 4、局放诊断判据

漏泄同轴电缆

漏泄同轴电缆 漏泄同轴电缆是具有信号传输作用,又具有天线功能,通过对处导体开口的控制,可将受控的电磁波能量沿线路均匀的辐射出去及接收进来,实现对电磁场盲区的覆盖,已达到移动通信畅通的目的。 绝缘采用高物理发泡的均匀细密封闭的微泡结构,不仅较之传统的空气绝缘结构在特性阻抗、驻波系数、衰减等传输参数更加均匀稳定,而且可抵御在潮湿环境中潮气对电缆的侵入可能传输性能的下降或丧失,免除了充气维护的烦恼,大大提高了产品的使用寿命和稳定可靠性,是当今世界上最先进的射频和漏泄同轴电缆结构。 中文名 漏泄同轴电缆 外文名 leaky coaxial cable 作用 信号传输作用 目的 移动通信畅通的 特点

特性阻抗、驻波系数等参数稳定 学科 电子工程 目录 .1电缆介绍 .2基础理论 .?无线移动通信 .?工作原理 .?纵向衰减 .?耦合损耗 .3选用依据 .4比较 电缆介绍 漏泄同轴电缆是具有信号传输作用,又具有天线功能,通过对处导体开口的控制,可将受控的电磁波能量沿线路均匀的辐射出去及接收进来,实现对电磁场盲区的覆盖,已达到移动通信畅通的目的。 绝缘采用高物理发泡的均匀细密封闭的微泡结构,不仅较之传统的空气绝缘结构在特性阻抗、驻波系数、衰减等传输参数更加均匀稳定,而且可抵御在潮湿环境中潮气对电缆的侵入可能传输性能的下降或丧失,免除了充气维护的烦恼,大大提高了产品的使用寿命和稳定可靠性,是当今世界上最先进的射频和漏泄同轴电缆结构。[1] 基础理论 无线移动通信 在基站与移动站之间的通讯,通常是依靠无线电传送。目前通讯业的不断发展越来越要求基站与移动站之间随时随地能接通,甚至要求在隧道中也是如此。 然而在隧道中,移动通信用的电磁波传播效果不佳。隧道中利用天线传输通常也很困难,所以关于漏泄同轴电缆的研究也应运而生。无线电地下传输有着极其广泛的用途,例如: 1、用于建筑物内、隧道内及地铁的移动通信(GSM,PCN/PCS,DECT…) 2、用于地下建筑的通讯,例如停车场、地下室及矿井 3、公路隧道内 FM 波段(88-108MHz)信息的发送

相关文档
最新文档