数据仓库与数据挖掘实验指导

数据仓库与数据挖掘实验指导
数据仓库与数据挖掘实验指导

数据仓库与数据挖掘课程实验

本实验是《数据仓库与数据挖掘》课程的验证性实验环节。

课程共计8学时。

·实验目标:

1、掌握建立和配置数据仓库的基本操作技能。主要包括数据仓库系统的安装。

2、掌握数据仓库中数据的处理技术。主要包括数据仓库的建模、事务数据的转换、

备份数据的恢复。

3、掌握基于数据仓库的自动数据分析技术的基本操作技能。包括多维数据分析和

数据挖掘。

4、掌握一种专用数据挖掘软件,用以分析处理文本或电子表格的数据。

实验环境:

l Microsoft SQLServer2000

l Microsoft SQLServer2000 Analysis Servce

l DBMiner2.0

l Microsoft SQLServer2000 PACK4

l JAVA运行时环境:JRE5.0

l WEKA3.55

实验项目:

l实验1:安装数据仓库系统平台 1.5学时

l实验2:构建数据仓库数据环境 1.5学时

l实验3:多维数据分析 1.5学时

l实验4:基于数据仓库的数据挖掘实验 2.0学时

l实验5:数据挖掘平台应用实验 1.5学时

实验1:安装数据仓库系统平台

l实验任务:

1.掌握Microsoft Server2000 数据仓库系统的安装与配置

2.安装实验分析环境:

1)安装Microsoft Server2000 analysis Service

2)安装DBMiner2.0

3) 安装Java运行时环境JRE5.0

4)安装WEKA

l实验准备:

请从黑板或网上获取安装文件所在的网络地址。并记在下面:

网络资料的地址是:_____________________________________________

本实验不得超过1.5学时。

l实验指导:

Lab1.1检查并安装Microsoft Server2000

单元目标:

确保完整正确的数据仓库实验环境

工作步骤:

1.检查你所使用的电脑上是否有Microsoft Server2000。如果有,启动并检查Microsoft Server2000 是否安装了Server Pack3以上的补丁文件。

2.如果以上都没问题,则本实验结束。

3.下载相应的系统文件安装。先安装Microsoft Server2000,再安装Server Pack3或Server Pack4。

Lab1.2检查并安装数据分析环境

单元目标:

确保安装了相应的数据分析软件

工作步骤:

1.检查你所使用的电脑是否安装了Microsoft Server2000 analysis Service,DBMiner2.0, JRE5.0, WEKA3.5.5。如果都已安装且能正常

运行,则本实验结束。否则进入以下步骤。

2.如果没有安装以上软件。请按以下次序从网络资料地址上下载软件完成安装。

完成Lab1.1 和Lab1,2后,本实验结束。

实验2:构建数据仓库数据环境

l实验任务:

本实验主要验证ETL的数据处理过程。主要实验任务有:

1.构建数据仓库模型,并在数据仓库系统中生成相应的数据表。

2.将事务数据库中的数据转入数据仓库中。

3.还原备份和还原的数据仓库中的数据。

l实验准备:

请从黑板或网上获取数据文件所在的网络地址。并记在下面:

数据文件的地址是:_____________________________________________ 本实验不得超过1.5学时。

本实验将使用Microsoft SQLserver的示例数据库:Northwind,这是一个商贸公司的销售数据库。我们将这个事务型的数据导入到分析型的数据仓库中去。

l实验指导:

Lab2.1用caseStudio2.15 建立数据仓库的星型模型

单元目标:

建立Northwind_DW的数据仓库模型。如下图所示。并根据该模型生成相应的数据仓库的维表和事实表的结构。

工作步骤:

1. 按下图样式建立Northwind_DW的昨型数据模型,请根据原事务数据库中

相应字段的数据类型和宽度,对应地设计相应字段的数据类型和宽度。

2. 安装并启动CaseStudio2.15,设计以上模型。

3. 运行生成脚本(Generate script)生成相应的SQL代码。

Lab2.2将事务型数据加载到分析数据环境中

单元目标:

根据以上实验单元建立的数据模型,在MicrosoftSQL2000中建立相应的物理数据仓库。

工作步骤:

1. 请从教师课件中“数据仓库与数据挖掘”目录下的Lab2008中下载文档

“多维数据分析操作演练.pdf ”

2. 用Adobe reader打开该文档。

3. 在数据仓库创建部分,可以使用Lab2.1中的模型进行创建和转化。

4. 按照上面所列步骤进行操作。最终完成事实表和维表的数据转移。

Lab2.3数据仓库中数据的备份与恢复

单元目标:

1.将已生成的数据仓库的数据进行备份。

2.利用备份文件向新的数据库中还原数据仓库的数据。

工作步骤:

1、备份

打开Sqlserver企业管理器,在需要备份的数据库上点鼠标右键,所有任务中选备份数据库。

再从Sqlserver安装目录中的Data目录下,拷贝出要备份的数据库文件*.mdf,*.ldf,并备份这两个文件

2、还原

将要还原的数据库文件*.mdf,*.ldf拷贝到Sqlserver安装目录下的Data目录下。打开Sqlserver企业管理器,新建一个数据库,在数据库这一项上点鼠标右键,在所有任务中选导入数据库,以拷贝到Data目录下的mdf恢复数据库。

还原过程中,如果有什么异常,请参考“数据仓库与数据挖掘技术\上机\”目录下的“数据仓库实习指导.pdf”中的还原部分的内容。

实验3:多维数据分析

l实验任务:

本实验主要验证OLAP多维分析的过程。主要包括完成OLAP数据库的创建,多维数据集的创建。存储和处理多维数据,浏览多维数据集等实验任务。

l实验准备:

本实验使用的操作参考为Lab2.2中下载的文档,“多维数据分析操作演练.pdf ”。

本实验不得超过1.5学时。

l实验指导:

Lab3.1多维数据分析实验

单元目标:

1.掌握Microsoft analysis Service的中对OALP数据库的操作步骤

2.在使用过程中熟悉和理解相应的概念。

工作步骤:

1.在“多维数据分析操作演练.pdf ”中从P85开始进行相应的操作演练。

2.在实验过程中,如果对相应的操作还不是很理解,请在”数据仓库与数据挖掘技术\上机\”目录下有“Sqlserver数据分析.rar ”文档,解

压后,有详细的帮助和演练信息。

实验4:基于数据仓库的数据挖掘实验

l实验任务:

1.基于Microsoft SQLserver2000 Analyses Service的数据挖掘模型对数据仓库中的数据进行决策树分析和聚类分析;

2.使用DBMiner2.0对数据仓库中的数据进行聚类、关联分析;

3.使用DBMiner2.0对数据仓库的数据分析进行可视化。

l实验准备:

本实验的实验指导参考资料在网上,请下载参考。

本实验不得超过1.5学时。

l实验指导:

Lab4.1 基于Microsoft SQLserver2000 Analyses Service的数据挖掘

单元目标:

掌握Microsoft SQLserver2000 Analyses Service的数据挖掘模型的使用步骤工作步骤:

请在”数据仓库与数据挖掘技术\上机\”目录下有“Sqlserver数据分析.rar ”文档,解压后,按下图所指,完成“数据挖掘”的演练。

Lab4.2 基于DBMiner2.0的数据挖掘(选做)

单元目标:

掌握DBminer2.0对数据仓库中的数据进行可视化分类、聚类、关联分析

由于时间有限,指导教师将进行一些现场的演练指导。

工作步骤:

1. 在”数据仓库与数据挖掘技术\Lab2008\”目录下下载相应的操作手册

“DBMinerManual.pdf ”文档,阅读第一、二章。

2. 对多维数据集进行可视化分析。(chapter 4)

3. 对多维数据集进行关联分析。(chapter 6)

4. 对多维数据集进行分类挖掘。(chapter 7)

5. 对多维数据集进行聚类分析。(chapter 8)

实验5:数据挖掘平台应用实验

l实验任务:

1.熟悉WEKA数据挖掘平台的基本功能。

2.能够对存于文本或电子表格中的数据进行数据挖掘分析

3.本实验为选做,对毕业论文分析数据有利用价值。

l实验准备:

1.下载Java运行时环境JRE1.5。

2.下载WEKA并安装运行

3. 在”数据仓库与数据挖掘技术\Lab2008\”目录下下载“WEKA中文使用手册.pdf”,有较详细的使用说明

4.所需要的数据存放在“数据仓库与数据挖掘技术\Lab2008\WEKA_DATA”下。l实验指导:

Lab5.1用WEKA进行决策树分析

单元目标:

掌握WEKA进行决策树分析的步骤。

工作步骤:

WEKA把分类(Classification)和回归(Regression)都放在“Classify”选项卡中,这是有原因的。

在这两个任务中,都有一个目标属性(输出变量)。我们希望根据一个样本(WEKA中称作实例)的一组特征(输入变量),对目标进行预测。为了实现这一目的,我们需要有一个训练数据集,这个数据集中每个实例的输入和输出都是已知的。观察训练集中的实例,可以建立起预测的模型。有了这个模型,我们就可以新的输出未知的实例进行预测了。

衡量模型的好坏就在于预测的准确程度。在WEKA中,待预测的目标(输出)被称作Class属性,这应该是来自分类任务的“类”。一般的,若Class属性是分类型时我们的任务才叫分类,Class属性是数值型时我们的任务叫回归。

选择算法

我们使用C4.5决策树算法对bank-data建立起分类模型。我们来看原来的“bank-data.csv”文件。“ID”属性肯定是不需要的。由于C4.5算法可以处理数值型的属性,我们不用像前面用关联规则那样把每个变量都离散化成分类型。

尽管如此,我们还是把“Children”属性转换成分类型的两个值“YES”和“NO”。另外,我们的训练集仅取原来数据集实例的一半;而从另外一半中抽出若干条作为待预测的实例,它们的“pep”属性都设为缺失值。经过了这些处理的训练集数据在这里下载;待预测集数据在这里下载。

我们用“Explorer”打开训练集“bank.arff”,观察一下它是不是按照前面的要求处理好了。切换到“Classify”选项卡,点击“Choose”按钮后可以看到很多分类或者回归的算法分门别类的列在一个树型框里。

3.5版的WEKA中,树型框下方有一个“Filter...”按钮,点击可以根据数据集的

特性过滤掉不合适的算法。我们数据集的输入属性中有“Binary”型(即只有两个类的分类型)和数值型的属性,而Class变量是“Binary”的;于是我们勾选“Binary attributes”“Numeric attributes”和“Binary class”。

点“OK”后回到树形图,可以发现一些算法名称变红了,说明它们不能用。选择“trees”下的“J48”,这就是我们需要的C4.5算法,还好它没有变红。

点击“Choose”右边的文本框,弹出新窗口为该算法设置各种参数。点“More”查看参数说明,点“Capabilities”是查看算法适用范围。这里我们把参数保持默认。现在来看左中的“Test Option”。我们没有专门设置检验数据集,为了保证生成的模型的准确性而不至于出现过拟合(overfitting)的现象,我们有必要采用10折交叉验证(10-fold cross validation)来选择和评估模型。若不明白交叉验证的含义可以Google一下。建模结果OK,选上“Cross-validation”并在“Folds”框填上“10”。点“Start”按钮开始让算法生成决策树模型。很快,用文本表示的一棵决策树,以及对这个决策树的误差分析等等结果出现在右边的“Classifier output”中。同时左下的“Results list”出现了一个项目显示刚才的时间和算法名称。如果换一个模型或者换个参数,重新“Start”一次,则“Results list”又会多出一项。

我们看到“J48”算法交叉验证的结果之一为Correctly Classified Instances 206 68.6667 % 也就是说这个模型的准确度只有69%左右。

也许我们需要对原属性进行处理,或者修改算法的参数来提高准确度。但这里我们不管它,继续用这个模型。

右键点击“Results list”刚才出现的那一项,弹出菜单中选择“Visualize tree”,新窗口里可以看到图形模式的决策树。建议把这个新窗口最大化,然后点右键,选“Fit to screen”,可以把这个树看清楚些。看完后截图或者关掉。

这里我们解释一下“Confusion Matrix”的含义。

=== Confusion Matrix ===

a b <-- classified as

74 64 | a = YES

30 132 | b = NO

这个矩阵是说,原本“pep”是“YES”的实例,有74个被正确的预测为“YES”,有64个错误的预测成了“NO”;原本“pep”是“NO”的实例,有30个被错误的预测为“YES”,有132个正确的预测成了“NO”。74+64+30+132 = 300是实例总数,而(74+132)/300 = 0.68667正好是正确分类的实例所占比例。

这个矩阵对角线上的数字越大,说明预测得越好。

模型应用

现在我们要用生成的模型对那些待预测的数据集进行预测了,注意待预测数据集和训练用数据集各个属性的设置必须是一致的。

WEKA中并没有直接提供把模型应用到带预测数据集上的方法,我们要采取间接的办法。

“Test Opion”中选择“Supplied test set”,并且“Set”成“bank-new.arff”文件。

重新“Start”一次。注意这次生成的模型没有通过交叉验证来选择,“Classifier output”给出的误差分析也没有多少意义。这也是间接作预测带来的缺陷吧。现在,右键点击“Result list”中刚产生的那一项,选择“Visualize classifier errors”。我们不去管新窗口中的图有什么含义,点“Save”按钮,把结果保存成“bank-predicted.arff”。这个ARFF文件中就有我们需要的预测结果。在“Explorer”的“Preprocess”选项卡中打开这个新文件,可以看到多了两个属

性“Instance_number”和“predictedpep”。“Instance_number”是指一个实例在原“bank-new.arff”文件中的位置,“predictedpep”就是模型预测的结果。点“Edit”按钮或者在“ArffViewer”模块中打开可以查看这个数据集的内容。

比如,我们对实例0的pep预测值为“YES”,对实例4的预测值为“NO”。使用命令行(推荐)虽然使用图形界面查看结果和设置参数很方便,但是最直接最灵活的建模及应用的办法仍是使用命令行。

打开“Simple CLI”模块,像上面那样使用“J48”算法的命令格式为:

java weka.classifiers.trees.J48 -C 0.25 -M 2 -t directory-path\bank.arff -d directory-path \bank.model 其中参数“-C 0.25”和“-M 2”是和图形界面中所设的一样的。“-t ”后面跟着的是训练数据集的完整路径(包括目录和文件名),“-d ”后面跟着的是保存模型的完整路径。注意!这里我们可以把模型保存下来。输入上述命令后,所得到树模型和误差分析会在“Simple CLI”上方显示,可以复制下来保存在文本文件里。误差是把模型应用到训练集上给出的。

把这个模型应用到“bank-new.arff”所用命令的格式为:java weka.classifiers.trees.J48 -p 9 -l directory-path\bank.model -T directory-path \bank-new.arff 其中“-p 9”说的是模型中的Class属性是第9个(也就是“pep”),“-l”后面是模型的完整路径,“-T”后面是待预测数据集的完整路径。

输入上述命令后,在“Simple CLI”上方会有这样一些结果:0 YES 0.75 ? 1 NO 0.7272727272727273 ? 2 YES 0.95 ? 3 YES 0.8813559322033898 ? 4 NO 0.8421052631578947 ? ...

这里的第一列就是我们提到过的“Instance_number”,第二列就是刚才的“predictedpep”,第四列则是“bank-new.arff”中原来的“pep”值(这里都是“?”缺失值)。第三列对预测结果的置信度(confidence )。比如说对于实例0,我们有75%的把握说它的“pep”的值会是“YES”,对实例4我们有84.2%的把握说它的“pep”值会是“NO”。

我们看到,使用命令行至少有两个好处。一个是可以把模型保存下来,这样有新的待预测数据出现时,不用每次重新建模,直接应用保存好的模型即可。另一个是对预测结果给出了置信度,我们可以有选择的采纳预测结果,例如,只考虑那些置信度在85%以上的结果。

可惜,命令行仍不能保存交叉验证等方式选择过的模型,也不能将它们应用到待预测数据上。要实现这一目的,须用到“KnowledgeFlow”模块的“PredictionAppender”。

Lab5.2用WEKA进行关联分析

单元目标:

掌握WEKA进行关联分析的步骤。

工作步骤:

目前,WEKA的关联规则分析功能仅能用来作示范,不适合用来挖掘大型数据集。我们打算对前面的“bank-data”数据作关联规则的分析。

用“Explorer”打开“bank-data-final.arff”后,切换到“Associate”选项卡。默认关联规则分析是用Apriori算法,我们就用这个算法,但是点“Choose”右边的文本框修改默认的参数,弹出的窗口中点“More”可以看到各参数的说明。背景知识首先我们来温习一下Apriori的有关知识。对于一条关联规则L->R,我们常用支持度(Support)和置信度(Confidence)来衡量它的重要性。规则的支

持度是用来估计在一个购物篮中同时观察到L和R的概率P(L,R),而规则的置信度是估计购物栏中出现了L时也出会现R的条件概率P(R|L)。关联规则的目标一般是产生支持度和置信度都较高的规则。

有几个类似的度量代替置信度来衡量规则的关联程度,它们分别是Lift(提升度?):P(L,R)/(P(L)P(R)) Lift=1时表示L和R独立。这个数越大,越表明L和R存在在一个购物篮中不是偶然现象。Leverage(不知道怎么翻译):P(L,R)-P(L)P(R) 它和Lift的含义差不多。Leverage=0时L和R独立,Leverage 越大L和R的关系越密切。Conviction(更不知道译了):P(L)P(!R)/P(L,!R) (!R 表示R没有发生)Conviction也是用来衡量L和R的独立性。从它和lift的关系(对R取反,代入Lift公式后求倒数)可以看出,我们也希望这个值越大越好。值得注意的是,用Lift和Leverage作标准时,L和R是对称的,Confidence和Conviction则不然。参数设置现在我们计划挖掘出支持度在10%到100%之间,并且lift值超过1.5且lift值排在前100位的那些关联规则。

我们把“lowerBoundMinSupport”和“upperBoundMinSupport”分别设为0.1和1,“metricType”设为lift,“minMetric”设为1.5,“numRules”设为100。其他选项保持默认即可。“OK”之后在“Explorer”中点击“Start”开始运行算法,在右边窗口显示数据集摘要和挖掘结果。

下面是挖掘出来的lift排前5的规则。

Best rules found:

1. age=52_max save_act=YES current_act=YES 113 ==> income=43759_max 61 conf:(0.54) < lift:(4.05)> lev:(0.0 [45] conv:(1.85)

2. income=43759_max 80 ==> age=52_max save_act=YES current_act=YES 61 conf:(0.76) < lift:(4.05)> lev:(0.0 [45] conv:(

3.25)

3. income=43759_max current_act=YES 63 ==> age=52_max save_act=YES 61 conf:(0.97) < lift:(3.85)> lev:(0.0 [45] conv:(15.72)

4. age=52_max save_act=YES 151 ==> income=43759_max current_act=YES 61 conf:(0.4) < lift:(3.85)> lev:(0.0 [45] conv:(1.49)

5. age=52_max save_act=YES 151 ==> income=43759_max 76 conf:(0.5) < lift:(3.77)> lev:(0.09) [55] conv:(1.72)

对于挖掘出的每条规则,WEKA列出了它们关联程度的四项指标。命令行方式我们也可以利用命令行来完成挖掘任务,在“Simlpe CLI”模块中输入如下格式的命令:

java weka.associations.Apriori options -t directory-path\bank-data-final.arff 即可完成Apriori算法。

注意,“-t”参数后的文件路径中不能含有空格。

在前面我们使用的option为-N 100 -T 1 -C 1.5 -D 0.05 -U 1.0 -M 0.1 -S -1.0 命令行中使用这些参数得到的结果和前面利用GUI得到的一样。

我们还可以加上“- I”参数,得到不同项数的频繁项集。我用的命令如下:java weka.associations.Apriori -N 100 -T 1 -C 1.5 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -I -t d:\weka\bank-data-final.arff 挖掘结果在上方显示。

Lab5.3用WEKA进行聚类分析

单元目标:

掌握WEKA进行聚类分析的步骤。

工作步骤:

聚类分析中的“类”(cluster)和前面分类的“类”(class)是不同的,对cluster 更加准确的翻译应该是“簇”。聚类的任务是把所有的实例分配到若干的簇,使得同一个簇的实例聚集在一个簇中心的周围,它们之间距离的比较近;而不同簇实例之间的距离比较远。对于由数值型属性刻画的实例来说,这个距离通常指欧氏距离。

现在我们对前面的“bank data”作聚类分析,使用最常见的K均值(K-means)算法。下面我们简单描述一下K均值聚类的步骤。K均值算法首先随机的指定K 个簇中心。然后:1)将每个实例分配到距它最近的簇中心,得到K个簇;2)计分别计算各簇中所有实例的均值,把它们作为各簇新的簇中心。重复1)和2),直到K个簇中心的位置都固定,簇的分配也固定。上述K均值算法只能处理数值型的属性,遇到分类型的属性时要把它变为若干个取值0和1的属性。WEKA将自动实施这个分类型到数值型的变换,而且WEKA会自动对数值型的数据作标准化。因此,对于原始数据“bank-data.csv”,我们所做的预处理只是删去属性“id”,保存为ARFF格式后,修改属性“children”为分类型。这样得到的数据文件为“bank.arff”,含600条实例。

用“Explorer”打开刚才得到的“bank.arff”,并切换到“Cluster”。点“Choose”按钮选择“SimpleKMeans”,这是WEKA中实现K均值的算法。

点击旁边的文本框,修改“numClusters”为6,说明我们希望把这600条实例聚成6类,即K=6。下面的“seed”参数是要设置一个随机种子,依此产生一个随机数,用来得到K均值算法中第一次给出的K个簇中心的位置。我们不妨暂时让它就为10。选中“Cluster Mode”的“Use training set”,点击“Start”按钮,观察右边“Clusterer output”给出的聚类结果。也可以在左下角“Result list”中这次产生的结果上点右键,“View in separate window”在新窗口中浏览结果。结果解释

首先我们注意到结果中有这么一行:Within cluster sum of squared errors: 1604.7416693522332 这是评价聚类好坏的标准,数值越小说明同一簇实例之间的距离越小。也许你得到的数值会不一样;实际上如果把“seed”参数改一下,得到的这个数值就可能会不一样。我们应该多尝试几个seed,并采纳这个数值最小的那个结果。例如我让“seed”取100,就得到Within cluster sum of squared errors: 1555.6241507629218 我该取后面这个。当然再尝试几个seed,这个数值可能会更小。

接下来“Cluster centroids:”之后列出了各个簇中心的位置。对于数值型的属性,簇中心就是它的均值(Mean);分类型的就是它的众数(Mode),也就是说这个属性上取值为众数值的实例最多。对于数值型的属性,还给出了它在各个簇里的标准差(Std Devs)。最后的“Clustered Instances”是各个簇中实例的数目及百分比。为了观察可视化的聚类结果,我们在左下方“Result list”列出的结果上右击,点“Visualize cluster assignments”。弹出的窗口给出了各实例的散点图。最上方的两个框是选择横坐标和纵坐标,第二行的“color”是散点图着色的依据,默认是根据不同的簇“Cluster”给实例标上不同的颜色。可以在这里点“Save”把聚类结果保存成ARFF文件。在这个新的ARFF文件中,“instance_number”属性表示某实例的编号,“Cluster”属性表示聚类算法给出的该实例所在的簇。

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.360docs.net/doc/cc11280872.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.360docs.net/doc/cc11280872.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据仓库的数据质量

(一)数据质量的衡量标准、好处和问题 数据质量的好坏是决定一个数据仓库成功的关键,但是需要从那些方面衡量数据仓库中数据的质量呢?可以从下列方面衡量系统中的数据质量: 准确性:存储在系统中的关于一个数据元素的值是这个数据元素的正确值; 域完整性:一个属性的数值在合理且预定义的范围之内; 数据类型:一个数据属性的值通常是根据这个属性所定义的数据类型来存储的; 一致性:一个数据字段的形式和内容在多个源系统之间是相同的。 冗余性:相同的数据在一个系统中不能存储在超过一个地方; 完整性:系统中的属性不应该有缺失的值; 重复性:完全解决一个系统中记录的重复性的问题; 结构明确:在数据项的结构可以分成不同部分的任何地方,这个数据项都必须包含定义好的结构; 数据异常:一个字段必须根据预先定义的目的来使用; 清晰:一个数据元素必须有正确的定义,也就是需要一个正确的命名; 时效性:用户决定了数据的时效性; 有用性:数据仓库中的每一个数据元素必须满足用户的一些需求; 符合数据完整性的规则:源系统中的关系数据库中存储的数据必须符合实体完整性及参考完整性规则。 既然数据质量是成功的关键,那么,提高数据质量有那些好处: 对实时信息的分析:高质量的数据提供及时的信息,是为用户创造的一个重要益处;

更好的客户服务:完整而准确的信息能够大大提高客户服务的质量; 更多的机会:数据仓库中的高质量数据是一个巨大的市场机会,它给产品和部门之间的交叉销售打开了机会的大门; 减少成本和风险:如果数据质量不好,明显的风险就是战略决策可能会导致灾难性的后果。 提高生产率:用户可以从真个企业的角度来看待数据仓库的信息,而全面的信息促使流程和真个操作更顺畅, 从而提高生长率; 可靠的战略决策制定:如果数据仓库的数据是可靠而高质量的,那么基于这些信息进行的决策就是好的决策。 在数据处理过程中,会有那些数据质量问题: 字段中的虚假值 数据值缺失 对字段的非正规使用 晦涩的值 互相冲突的值 违反商业规则 主键重用 标志不唯一 不一致的值 不正确的值 一个字段多种用途

数据仓库与数据挖掘课后习题答案

数据仓库与数据挖掘 第一章课后习题 一:填空题 1)数据库中存储的都是数据,而数据仓库中的数据都是一些历史的、存档的、归纳的、计算的数据。 2)数据仓库中的数据分为四个级别:早起细节级、当前细节级、轻度综合级、高度综合级。3)数据源是数据仓库系统的基础,是整个系统的数据源泉,通常包括业务数据和历史数据。4)元数据是“关于数据的数据”。根据元数据用途的不同将数据仓库的元数据分为技术元数据和业务元数据两类。 5)数据处理通常分为两大类:联机事务处理和联机事务分析 6)Fayyad过程模型主要有数据准备,数据挖掘和结果分析三个主要部分组成。 7)如果从整体上看数据挖掘技术,可以将其分为统计分析类、知识发现类和其他类型的数据挖掘技术三大类。 8)那些与数据的一般行为或模型不一致的数据对象称做孤立点。 9)按照挖掘对象的不同,将Web数据挖掘分为三类:web内容挖掘、web结构挖掘和web 使用挖掘。 10)查询型工具、分析型工具盒挖掘型工具结合在一起构成了数据仓库系统的工具层,它们各自的侧重点不同,因此适用范围和针对的用户也不相同。 二:简答题 1)什么是数据仓库?数据仓库的特点主要有哪些? 数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支

持管理决策。 主要特点:面向主题组织的、集成的、稳定的、随时间不断变化的、数据的集合性、支持决策作用 2)简述数据挖掘的技术定义。 从技术角度看,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们不知道的、但又是潜在有用的信息和知识的过程。 3)什么是业务元数据? 业务元数据从业务角度描述了数据仓库中的数据,它提供了介于使用者和实际系统之间的语义层,使得不懂计算机技术的业务人员也能够读懂数据仓库中的数据 4)简述数据挖掘与传统分析方法的区别。 本质区别是:数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先前未知、有效和实用三个特征。 5)简述数据仓库4种体系结构的异同点及其适用性。 a.虚拟的数据仓库体系结构 b.单独的数据仓库体系结构 c.单独的数据集市体系结构 d.分布式数据仓库结构

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

数据仓库数据库设计的心得总结

数据仓库数据库设计的心得总结 数据仓库是企业商业智能分析环境的核心,它是建立决策支持系统的基础。一个良好的数据仓库设计应该是构建商业智能和数据挖掘系统不懈的追求。下面把数据仓库数据库设计的心得做一小结。 一透彻理解数据仓库设计过程 商业智能和数据挖掘归根到底是“从实践中来,到实践中去”。也就是说现实需求决定系统需求,业务数据决定系统构架,最终使用的时候又必须作用于现实需求,同时通过决策的行为影响业务。那么可以把数据仓库的设计看做是前一部分,即“从实践中来”,数据仓库的应用可以看做是“到实践中去”。把“从实践中来”这个过程进行抽象,数据仓库的设计就是“客观世界→主观世界→关系世界”的过程。 在前面几节完成了6个任务:选择被建模主题的商业过程、确定事实表的粒度、区分每一个事实表的维和层、区分事实表的度量、确定每一个维表的属性、在D BMS中创建和管理数据仓库。实际上这些任务都可以归结到从客观世界到关系世界的过程。那么把这个过程再进行归纳,可以得到如图3-61所示的综合了模型、方法和过程的示意图。 图3-61 数据仓库设计过程的模型和方法示意图 二把握设计的关键环节

如果将时间、精力、金钱和人事优先花在前面的20%,那么这20%会创造出80% 的价值。这就是有名的2/8原则。下面将介绍在数据仓库设计中,哪些因素是属于这20%的范围。 1.需求 需求分析在任何如见项目中都是最为重要的因素之一。企业模型是从企业的各个视点对企业数据需求及数据间关系的抽象。通过将企业模型映射到数据库系统,可以很快地了解现有数据库系统完成了企业模型中的哪些部分,还缺少哪些部分。然后再将企业模型映射到数据仓库系统,发现企业需要的(或可以构造的)主题。通过这样的过程完成对企业数据需求和现有数据的了解,达到明了原有系统和需要建设的主题域间共性的目的。 2.关键性能指标(KPI) 一般而言,一个决策支持系统最重要的就是要呈现决策数据。而KPI就是决策过程中要显示的数据结果的部分,如销售数量、销售金额、毛利和运费等数值部分的数据。这些KPI是通过与相关的维表进行连接而映射出来的。在分析星形模式时,往往要首先确定KPI。 3.信息对象 信息对象是指在每个分析过程中那些会影响到决策的因素。以销售分析为例,时间、产品、员工与客户就是影响决策的大因子,而每个因子又可以分离出多个分层结构,如时间可分为年、季度、月、周和日等,员工可分为年龄层、年龄、年薪层、年薪和员工所在城市等,也就是影响决策的详细因子。这些都是信息对象。从这里我们可以看出,每个大因子如时间、产品、员工与客户等就可以构成如时间维表、产品维表、员工维表与客户维表等。而时间维表又可分为年、季度和日等字段。在分析和设计这些信息对象组成的维度时,需要注意维的唯一性和公用性,千万不要在不同的主题中定义多个表示同一内容的维,如果有可能,一个维表要尽量被多个主题共享。 4.数据粒度 在数据仓库的每个主题中,都必须考虑事实数据的粒度。粒度的具体划分将直接影响到数据仓库中的数据量及查询质量。在数据仓库开始进行分析时。就需要建立合适的数据粒度模型,指导数据仓库设计和其他问题的解决。如果数据粒度定义不当,将会影响数据仓库的使用效果,使数据仓库达不到设计数据仓库的目的。 5.数据之间的联系 在数据仓库中,不同主题的数据之间的物理约束或许不再存在,但无论这些数据如何变化,要知道必须有一些“键”在逻辑上保持着不同数据之间的联系,这样

大数据仓库与大数据挖掘技术复习资料

数据仓库与数据挖掘技术复习资料 一、单项选择题 1.数据挖掘技术包括三个主要的部分( C ) A.数据、模型、技术 B.算法、技术、领域知识 C.数据、建模能力、算法与技术 D.建模能力、算法与技术、领域知识 2.关于基本数据的元数据是指: ( D ) A.基本元数据与数据源,数据仓库,数据集市和应用程序等结构相关的信息; B.基本元数据包括与企业相关的管理方面的数据和信息; C.基本元数据包括日志文件和简历执行处理的时序调度信息; D.基本元数据包括关于装载和更新处理,分析处理以及管理方面的信息。 3.关于OLAP和OLTP的说法,下列不正确的是: ( A) A.OLAP事务量大,但事务内容比较简单且重复率高 B.OLAP的最终数据来源与OLTP不一样 C.OLTP面对的是决策人员和高层管理人员 D.OLTP以应用为核心,是应用驱动的 4.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C ) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘5.下面哪种不属于数据预处理的方法? ( D ) A.变量代换 B.离散化 C. 聚集 D. 估计遗漏值 6.在ID3 算法中信息增益是指( D ) A.信息的溢出程度 B.信息的增加效益 C.熵增加的程度最大 D.熵减少的程度最大 7.以下哪个算法是基于规则的分类器 ( A ) A. C4.5 B. KNN C. Bayes D. ANN 8.以下哪项关于决策树的说法是错误的( C ) A.冗余属性不会对决策树的准确率造成不利的影响 B.子树可能在决策树中重复多次 C.决策树算法对于噪声的干扰非常敏感 D.寻找最佳决策树是NP完全问题 9.假设收入属性的最小与最大分别是10000和90000,现在想把当前值30000映射到区间[0,1],若采用最大-最小数据规范方法,计算结果是( A )

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

《数据仓库数据平台与数据中台对比》

数据仓库数据平台与数据中台对比 在大数据时代,凡是AI类项目的落地,都需要具备数据、算法、场景、计算力四个基本元素,缺一不可。处理大数据已经不能仅仅依靠计算力就能够解决问题,计算力只是核心的基础,还需要结合不同的业务场景与算法相互结合,沉淀出一个完整的智能化平台。数据中台就是以云计算为数据智能提供的基础计算力为前提,与大数据平台提供的数据资产能力与技术能力相互结合,形成数据处理的能力框架赋能业务,为企业做到数字化、智能化运营。 目前,外界与业内很多人对于数据中台的理解存在误区,一直只是在强调技术的作用,强调技术对于业务的推动作用,但在商业领域落地的层面上,更多时候技术的发展和演进都是需要跟着业务走,技术的发展和进步需要基于业务方的需求与数据场景应用化的探索来反向推动。这个也就是为什么最近知乎、脉脉都在疯传阿里在拆“大中台”?个人猜想,原因是没有真正理解中台的本质,其实阿里在最初建设数据中台的目的主要是为了提升效率和解决业务匹配度问题,最终达到降本增效,所以说“拆”是假的,在“拆”的同时一定在“合”,“拆”的一个方面是企业战略布局层面上的规划,架构升级,如果眼界不够高,格局不够大,看到的一定只是表面;另一方面不是由于组织架构庞大而做“拆”的动作,而是只有这样才能在效率和业务匹配度上,做到最大利益化的解耦。

数据中台出现的意义在于降本增效,是用来赋能企业沉淀业务能力,提升业务效率,最终完成数字化转型。前一篇数据中台建设的价值和意义,提到过企业需要根据自身的实际情况,打造属于自己企业独有的中台能力。 因为,数据中台本身绝对是不可复制的,从BCG矩阵的维度结合各家市场资源、市场环境、市场地位以及业务方向来看,几乎所有企业的战略目标都是不一样的。如果,有人说能把中台卖给你、对于中台的解读只讲技术,不讲业务,只讲产品,不讲业务,不以结合企业业务目标来解决效率和匹配度为目的的都有耍流氓嫌疑。数据中台的使命和愿景是让数据成为如水和电一般的资源,随需获取,敏捷自助,与业务更多连接,使用更低成本,通过更高效率的方式让数据极大发挥价值,推动业务创新与变革。 为了进一步统一大家的认知,更加清晰的认识数据中台出现的意义,本篇按顺序介绍如下: ? ? ? ? 数据中台演进的过程数据仓库、数据平台和数据中台的概念数据仓库、数据平台和数据中台的架构数据仓库、数据平台和数据中台的区别与联系

数据仓库与数据挖掘试题

武汉大学计算机学院 20XX级研究生“数据仓库和数据挖掘”课程期末考试试题 要求:所有的题目的解答均写在答题纸上,需写清楚题目的序号。每张答题纸都要写上姓名和学号。 一、单项选择题(每小题2分,共20分) 1. 下面列出的条目中,()不是数据仓库的基本特征。B A.数据仓库是面向主题的 B.数据仓库是面向事务的 C.数据仓库的数据是相对稳定的 D.数据仓库的数据是反映历史变化的 2. 数据仓库是随着时间变化的,下面的描述不正确的是()。 A.数据仓库随时间的变化不断增加新的数据内容 B.捕捉到的新数据会覆盖原来的快照 C.数据仓库随事件变化不断删去旧的数据内容C D.数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合 3. 以下关于数据仓库设计的说法中()是错误的。A A.数据仓库项目的需求很难把握,所以不可能从用户的需求出发来进行数据仓库的设计,只能从数据出发进行设计 B.在进行数据仓库主题数据模型设计时,应该按面向部门业务应用的方式来设计数据模型 C.在进行数据仓库主题数据模型设计时要强调数据的集成性 D.在进行数据仓库概念模型设计时,需要设计实体关系图,给出数据表的划分,并给出每个属性的定义域 4. 以下关于OLAP的描述中()是错误的。A A.一个多维数组可以表示为(维1,维2,…,维n) B.维的一个取值称为该维的一个维成员 C.OLAP是联机分析处理 D.OLAP是数据仓库进行分析决策的基础 5. 多维数据模型中,下列()模式不属于多维模式。D A.星型模式 B.雪花模式 C.星座模式 D.网型模式 6. 通常频繁项集、频繁闭项集和最大频繁项集之间的关系是()。C A.频繁项集?频繁闭项集?最大频繁项集 B.频繁项集?最大频繁项集?频繁闭项集 C.最大频繁项集?频繁闭项集?频繁项集 D.频繁闭项集?频繁项集?最大频繁项集

数据仓库与数据挖掘-教学大纲

《数据仓库与数据挖掘》教学大纲 一、课程概况 课程名称:数据仓库与数据挖掘 英文名称:Data warehousing and data mining 课程性质:选修 课程学时:32 课程学分:2 授课对象:信息类的大学本科高年级学生 开课时间:三年级下学期 讲课方式:课堂+实验 主讲老师: 二、教学目的 本课程把数据视为基础资源,根据软件工程的思想,总结了数据利用的历程,讲述了数据仓库的基础知识和工具,研究了数据挖掘的任务及其挑战,给出了经典的数据挖掘算法,介绍了数据挖掘的产品,剖析了税务数据挖掘的案例,探索了大数据的管理和应用问题。 三、教学任务 完成《数据仓库与数据挖掘》教材内容,及教学计划中的互动实践内容,另有学生自主选题的大作业、选作的论文报告。32学时:课堂24、实验2、课外2、研讨4学时。 四、教学内容的结构 课程由9个教学单元组成,对应于《数据仓库与数据挖掘》的内容。 第1章数据仓库和数据挖掘概述 1.1概述1 1.2数据中心4 1.2.1关系型数据中心 1.2.2非关系型数据中心

1.2.3混合型数据中心(大数据平台)1.3混合型数据中心参考架构 第2章数据 2.1数据的概念 2.2数据的内容 2.2.1实时数据与历史数据 2.2.2时态数据与事务数据 2.2.3图形数据与图像数据 2.2.4主题数据与全部数据 2.2.5空间数据 2.2.6序列数据和数据流 2.2.7元数据与数据字典 2.3数据属性及数据集 2.4数据特征的统计描述22 2.4.1集中趋势22 2.4.2离散程度23 2.4.3数据的分布形状25 2.5数据的可视化26 2.6数据相似与相异性的度量29 2.7数据质量32 2.8数据预处理32 2.8.1被污染的数据33 2.8.2数据清理35 2.8.3数据集成36 2.8.4数据变换37 2.8.5数据规约38 第3章数据仓库与数据ETL基础39 3.1从数据库到数据仓库39 3.2数据仓库的结构39 3.2.1两层体系结构41 3.2.2三层体系结构41 3.2.3组成元素42 3.3数据仓库的数据模型43 3.3.1概念模型43 3.3.2逻辑模型43 3.3.3物理模型46 3.4 ETL46 3.4.1数据抽取47 3.4.2数据转换48 3.4.3数据加载49 3.5 OLAP49 3.5.1维49 3.5.2 OLAP与OLTP49 3.5.3 OLAP的基本操作50

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

浅谈数据仓库中的元数据管理技术

浅谈数据仓库中的元数据管理技术 孙力君仇道霞方峻峰宋楠 山东省烟草公司信息中心 摘要:数据仓库是数据库的发展方向之一,对企业管理和决策支持起着重要的辅助作用。简要介绍了数据仓库和元数据的基本概念,重点阐述了元数据的概念、作用、CWM标准、来源,并就元数据具体应用进行了初步的研究和探讨。 关键词:数据仓库;元数据; 1. 引言 随着市场竞争的越来越激烈,烟草行业的信息化建设不断的深入发展,全行业形成了“以信息化带动烟草行业现代化建设”的基本共识,明确了“统一标准、统一平台、统一数据库、统一网络”,逐步实现系统集成、资源整合、信息共享的信息化建设总体要求,走过了“由基础性向应用性、由局部性向全局性、由分散性向集中性建设”的三个转变历程,初步形成了“数字烟草”的行业信息化建设格局,既对行业数据中心的建设提出了迫切的要求,也为行业数据中心建设奠定了坚实的基础。 随着数据库技术尤其是数据仓库技术的发展,人类能更容易获得自己需要的数据和信息,由于元数据是数据仓库中非常重要的组成部分,因此讨论和研究元数据在数据仓库中的作用和应用,具有非常重要的意义。 元数据管理是山东烟草数据中心建设的重要组成部分,元数据管理平台为用户提供高质量、准确、易于管理的数据,它贯穿数据中心构建、运行和维护的整

个生命周期。同时,在数据中心构建的整个过程中,数据源分析、ETL过程、数据库结构、数据模型、业务应用主题的组织和前端展示等环节,均需要通过相应的元数据的进行支撑。元数据管理的生命周期包括元数据获取和建立、元数据的存储、元数据浏览、元数据分析、元数据维护等部分。 通过元数据管理,形成整个系统信息数据资的准确视图,通过元数据的统一视图,缩短数据清理周期、提高数据质量以便能系统性地管理数据中心项目中来自各业务系统的海量数据,梳理业务元数据之间的关系,建立信息数据标准完善对这些数据的解释、定义,形成企业范围内一致、统一的数据定义,并可以对这些数据来源、运作情况、变迁等进行跟踪分析。完善数据中心的基础设施,通过精确把握经营数据来精确把握瞬息万变的市场竞争形式,使山东烟草在市场竞争中保持优势。 总的来说,元数据管理平台集成相关的元数据,形成企业的全局数据视图,提供企业级共享元数据的平台,是烟草业务系统的基础设施,对业务系统的发展、应用和数据质量的提升有着深远影响。 2.数据仓库概述 目前有关数据仓库的概念有多种,其中最经典的,引用最为广泛的定义是W.H.Inmon在《Building the Data Warehouse》一书中给出的,他指出:“数据仓库是面向主题的、集成的、随时间变化的、非易失的数据集合,用于支持管理层的决策过程”。[1] 之所以要引入数据仓库,是因为随着信息时代的到来,如何从大量已存在的数据中提取出自己所感兴趣的信息并进行分析和预测越来越成为企业管理者和决策者所关心的问题。为了更好的进行管理和决策,许多企业都选择了数据仓库,利用数据仓库可以对各种源数据进行抽取、清理、加工

数据仓库与数据挖掘习题

数据仓库与数据挖掘习题 1.1什么是数据挖掘?在你的回答中,强调以下问题: (a) 它是又一个骗局吗? (b) 它是一种从数据库,统计学和机器学习发展的技术的简单转换吗? (c) 解释数据库技术发展如何导致数据挖掘 (d) 当把数据挖掘看作知识发现过程时,描述数据挖掘所涉及的步骤。 1.2 给出一个例子,其中数据挖掘对于一种商务的成功至关重要的。这种商务需要什么数据挖掘功能?他们能够由数据查询处理或简单的统计分析来实现吗? 1.3 假定你是Big-University的软件工程师,任务是设计一个数据挖掘系统,分析学校课程数据库。该数据库包括如下信息:每个学生的姓名,地址和状态(例如,本科生或研究生),所修课程,以及他们累积的GPA(学分平均)。描述你要选取的结构。该结构的每个成分的作用是什么? 1.4 数据仓库和数据库有何不同?它们有那些相似之处? 1.5简述以下高级数据库系统和应用:面向对象数据库,空间数据库,文本数据库,多媒体数据库和WWW。 1.6 定义以下数据挖掘功能:特征化,区分,关联,分类,预测,聚类和演变分析。使用你熟悉的现实生活中的数据库,给出每种数据挖掘的例子。 1.7 区分和分类的差别是什么?特征化和聚类的差别是什么?分类和预测呢?对于每一对任务,它们有何相似之处? 1.8 根据你的观察,描述一种可能的知识类型,它需要由数据挖掘方法发现,但未在本章中列出。它需要一种不同于本章列举的数据挖掘技术吗? 1. 9 描述关于数据挖掘方法和用户交互问题的三个数据挖掘的挑战。 1. 10 描述关于性能问题的两个数据挖掘的挑战。 2.1 试述对于多个异种信息源的集成,为什么许多公司宁愿使用更新驱动的方法(构造使用数据仓库),而不愿使用查询驱动的方法(使用包装程序和集成程序)。描述一些情况,其中查询驱动方法比更新驱动方法更受欢迎。 2.2 简略比较以下概念,可以用例子解释你的观点 (a)雪花模式、事实星座、星型网查询模型 (b)数据清理、数据变换、刷新 (c)发现驱动数据立方体、多特征方、虚拟仓库 2.3 假定数据仓库包含三个维time,doctor和patient,两个度量count 和charge,其中charge 是医生对一位病人的一次诊治的收费。 (a)列举三种流行的数据仓库建模模式。 (b)使用(a)列举的模式之一,画出上面数据仓库的模式图。 (c)由基本方体[day,doctor,patient]开始,为列出2000年每位医生的收费总数,应当执行哪些OLAP操作? (d)为得到同样的结果,写一个SQL查询。假定数据存放在关系数据库中,其模式如下:fee(day,month,year,doctor,hospital,patient,count,charge) 2.4 假定Big_University的数据仓库包含如下4个维student, course, semester和instructor,2个度量count和avg_grade。在最低的概念层(例如对于给定的学生、课程、学期和教师的组合),度量avg_grade存放学生的实际成绩。在较高的概念层,avg_grade存放给定组合的

数据仓库与数据挖掘学习心得

数据仓库与数据挖掘学习心得 通过数据仓库与数据挖掘的这门课的学习,掌握了数据仓库与数据挖掘的一些基础知识和基本概念,了解了数据仓库与数据库的区别。下面谈谈我对数据仓库与数据挖掘学习心得以及阅读相关方面的论文的学习体会。 《浅谈数据仓库与数据挖掘》这篇论文主要是介绍数据仓库与数据挖掘的的一些基本概念。数据仓库是支持管理决策过程的、面向主题的、集成的、稳定的、不同时间的数据集合。主题是数据数据归类的标准,每个主题对应一个客观分析的领域,他可为辅助决策集成多个部门不同系统的大量数据。数据仓库包含了大量的历史数据,经集成后进入数据仓库的数据极少更新的。数据仓库内的数据时间一般为5年至10年,主要用于进行时间趋势分析。数据仓库的数据量很大。 数据仓库的特点如下: 1、数据仓库是面向主题的; 2、数据仓库是集成的,数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出来,进行加工与集成,统一与综合之后才能进入数据仓库; 3、数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的操作主要是数据的查询; 4、数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好的满足商业商务处理的需求,它在商业领域取得了巨大的成功。

作为一个系统,数据仓库至少包括3个基本的功能部分:数据获取:数据存储和管理;信息访问。 数据挖掘的定义:数据挖掘从技术上来说是从大量的、不完全的、有噪音的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。 数据开采技术的目标是从大量数据中,发现隐藏于其后的规律或数据间的的关系,从而服务于决策。数据挖掘的主要任务有广义知识;分类和预测;关联分析;聚类。 《数据仓库与数据挖掘技术在金融信息化中的应用》论文主要通过介绍数据额仓库与数据挖掘的起源、定义以及特征的等方面的介绍引出其在金融信息化中的应用。在金融信息化的应用方面,金融机构利用信息技术从过去积累的、海量的、以不同形式存储的数据资料里提取隐藏着的许多重要信息,并对它们进行高层次的分析,发现和挖掘出这些数据间的整体特征描述及发展趋势预测,找出对决策有价值的信息,以防范银行的经营风险、实现银行科技管理及银行科学决策。 现在银行信息化正在以业务为中心向客户为中心转变6银行信息化不仅是数据的集中整合,而且要在数据集中和整合的基础上向以客为中心的方向转变。银行信息化要适应竞争环境客户需求的变化,创造性地用信息技术对传统过程进行集成和优化,实现信息共享、资源整合综合利用,把银行的各项作用统一起来,优势互补统一调配各种资源,为银行的客户开发、服务、综理财、管理、风险防范创立坚实的基础,从而适应日益发展的数据技术需要,全面提高银行竞争力,为金融创新和提高市场反映能力

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

《××项目数据仓库数据质量报告》

版本号: 数据仓库数据质量报告 项目名称:

变更记录 变更审阅

一、引言 1.编写目的 这部分说明文档编写目的,描述本系统特点及使用数据仓库技术实现的业务目标。 2.背景 这部分是项目背景描述。 3.参考资料 这部分列出本文档引用资料的名称,并说明文档上下级关系。 4.术语定义及说明 这部分列出本文档中使用的术语定义、缩写及其全名。 二、数据质量评估工作范围 1.本次数据质量评估的目标 这部分明确本次数据质量评估的目标,这些目标可能包括: ●识别数据质量的关键问题,以使这些问题可以通过源数据系统数据弥补、数据补充系统或者是ETL流程进行清洗等手段解决 ●建立管理和控制机制,并使之能在短期和长期均发挥监控数据环境的作用 ●建立在信贷信息数据仓库中管理及维护数据的长期计划 2.本次项目确定的数据质量标准 这部分将《软件需求说明书》中制定本项目数据质量标准复制到这里,作为本次数据质量评估交付时的标准。 3.参与本次评估的人员组成 这部分详细说明参与本次数据质量评估的人员组成和职责分工。 4.数据质量评估方法 这部分说明本次项目使用的数据质量评估方法,包括记录评估结果的表格样式、数据质量评估工作的流程、数据质量评估结果的认证流程、评估结果的交付流程等。

三、数据质量评估结果 1.数据源数据质量评估结果 这部分将《初级数据质量分析报告》作为附件添加到文档后。 2.数据仓库数据清洗转换规则 这部分根据《初级数据质量分析报告》的结果记录数据仓库数据清洗转换的规则,只针对重点数据域设计作出说明。 四、数据质量监控维护方案 1.数据质量监控团队组织 这部分将尽可能地定义数据质量监控团队人员的组成、角色和分工。 2.数据仓库数据质量问题管理 这部分记录明确执行数据仓库数据质量监控和修改流程的触发条件,包括质量问题的类型及质量分类的标准等。 3.数据仓库数据质量监控管理计划 这部分是针对可以预见的数据质量问题提出监控管理的计划,包括沟通途径、会议计划、管理流程等。 4.数据仓库数据质量修正方案 这部分将可能使用的数据质量修正方案列在其中,必要时需要提供详细的数据修改流程和计算公式。通用的修正方案包括在数据源中修改、在ETL程序中修改、在数据仓库里修改和使用数据补录程序修改。

数据仓库与数据挖掘课后习题答案

数据仓库与数据挖掘课后习 题答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数据仓库与数据挖掘 第一章课后习题 一:填空题 1)数据库中存储的都是数据,而数据仓库中的数据都是一些历史的、存档的、归纳的、计算的数据。 2)数据仓库中的数据分为四个级别:早起细节级、当前细节级、轻度综合级、高度综合级。 3)数据源是数据仓库系统的基础,是整个系统的数据源泉,通常包括业务数据和历史数据。 4)元数据是“关于数据的数据”。根据元数据用途的不同将数据仓库的元数据分为技术元数据和业务元数据两类。 5)数据处理通常分为两大类:联机事务处理和联机事务分析 6)Fayyad过程模型主要有数据准备,数据挖掘和结果分析三个主要部分组成。 7)如果从整体上看数据挖掘技术,可以将其分为统计分析类、知识发现类和其他类型的数据挖掘技术三大类。 8)那些与数据的一般行为或模型不一致的数据对象称做孤立点。 9)按照挖掘对象的不同,将Web数据挖掘分为三类:web内容挖掘、web结构挖掘和web使用挖掘。 10)查询型工具、分析型工具盒挖掘型工具结合在一起构成了数据仓库系统的工具层,它们各自的侧重点不同,因此适用范围和针对的用户也不相同。 二:简答题 1)什么是数据仓库数据仓库的特点主要有哪些 2) 数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。 主要特点:面向主题组织的、集成的、稳定的、随时间不断变化的、数据的集合性、支持决策作用 3)简述数据挖掘的技术定义。 从技术角度看,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们不知道的、但又是潜在有用的信息和知识的过程。 4)什么是业务元数据? 业务元数据从业务角度描述了数据仓库中的数据,它提供了介于使用者和实际系统之间的语义层,使得不懂计算机技术的业务人员也能够读懂数据仓库中的数据 5)简述数据挖掘与传统分析方法的区别。 本质区别是:数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先前未知、有效和实用三个特征。 6)简述数据仓库4种体系结构的异同点及其适用性。 a.虚拟的数据仓库体系结构 b.单独的数据仓库体系结构

相关文档
最新文档