基于MATLAB的图像压缩处理技术的研究与实现毕业设计(论文)

基于MATLAB的图像压缩处理技术的研究与实现毕业设计(论文)
基于MATLAB的图像压缩处理技术的研究与实现毕业设计(论文)

长沙学院

CHANGSHA UNIVERSITY

毕业设计(论文)资料

术的研究与实现

目录

第一部分毕业论文一、毕业论文

第二部分外文资料翻译

一、外文资料原文

二、外文资料翻译

第三部分过程管理资料

一、毕业设计(论文)课题任务书

二、本科毕业设计(论文)开题报告

三、本科毕业设计(论文)中期报告

四、毕业设计(论文)指导教师评阅表

五、毕业设计(论文)评阅教师评阅表

六、毕业设计(论文)答辩评审表

2009 届

本科生毕业设计(论文)资料

第一部分毕业论文

-

(2009 届)

本科生毕业论文

基于MATLAB的图像压缩处理技术的研

究与实现

2009 年6 月

长沙学院本科生毕业论文

基于MATLAB的图像压缩处理技术的研究与实

系部:电子与通信工程系

专业:通信工程

学号:2005043204

学生姓名:马娟

指导教师:刘光灿教授

王路露助教

2009 年6月

摘要

图像是一种重要的二维信号,由于其数据量很大,在存储和传输的时候要对其进行压缩处理。离散余弦变换是一种新兴的数学工具,基于离散余弦变换的图像压缩技术正受到广泛的关注和研究。图像经过离散余弦变换以后,在时域和频域都具有良好的局部化特性,重建图像中可以克服采用离散余弦变换编码所固有的方块效应,而且与人类视觉特性相一致。

论文主要研究了基于MATLAB的图像压缩算法,完成了以下一些工作:介绍了图像压缩的原理和方法,列举了常用的图像压缩的评价标准和技术标准,在理论分析的基础上深刻理解了图像压缩算法。重点研究了离散余弦算法的基本原理和实现步骤,对基于DCT变换的图像压缩技术的算法进行了研究,并用MATLAB进行了算法仿真,同时,利用MATLAB程序形象设计出图形用户界面,形象直观的看到了图像压缩前后的鲜明对比,取得了较为理想的效果。

关键词:图像压缩,DCT变换,MATLAB仿真

ABSTRACT

Image is important two-dimension signal.Because of the huge data it contains,image must be compressed when it is stored or transported.The discrete cosine transform (DCT) is rising mathematical tool. The technology of image compression based on discrete cosine transform has drawn much attention and has been researched broadly. When a image is transformed by the discrete cosine transform,it has favorable localize characteristic in both time-domain and frequence-region.And in the rebuild image the connatural diamonds affection of the discrete cosine transform can be overcame. Furthermore,the WT is identical to Human Visual System .

This paper is mainly about the image compression algorithm based on MATLAB, and complete these work:Introduced the theory and technique of image compression,Enumerated the prevalent image compressional evaluation criteria and technical standards, based on the theoretical analysis I understanding the image compression algorithm profoundly.The paper discusses the basic principles and implementation steps of image DCT transform technique. carries research on the algorithm of image compression based on DCT.At the same time, Then the algorithm is simulated by MATLAB,using MATLAB program designed the graphical user interface vividly. Intuitive image to see the image in sharp contrast to before and after compression,and achieved better results.

Keywords: Image compression ,DCT transform ,Simulation by MATLAB

目录

摘要.................................................................................................................... I ABSTRACT ......................................................................................................... II 第1章绪论 (1)

1.1 论文研究背景及意义 (1)

1.2 图像压缩技术的历史与现状 (1)

1.3 离散余弦变换及其在图象压缩中的应用 (2)

1.4 论文研究的主要内容 (2)

第2章图像压缩的基本原理 (4)

2.1 图象压缩评价标准 (4)

2.1.1 客观标准 (4)

2.1.2 主观标准 (5)

2.2 图像压缩技术标准 (5)

2.3 图像压缩的分类 (8)

2.4 图像压缩处理技术基本理论 (9)

2.4.1 图像压缩的基本原理 (9)

2.4.2 图像压缩的基本模型 (10)

第3章离散余弦变换的MATLAB实现 (12)

3.1 MATLAB图像处理工具箱 (12)

3.2 离散余弦变换的定义 (12)

3.3 离散余弦变换的基本原理与算法 (13)

3.3.1 离散余弦变换的基本原理 (13)

3.3.2 离散余弦变换算法 (15)

3.4 离散余弦算法的实现 (15)

第4章离散余弦变换的界面实现 (17)

4.1 图形用户界面简介 (17)

4.2 界面设计的MATLAB实现 (17)

4.2.1 界面设计总体概述 (17)

4.2.2 界面设计具体实现 (18)

第5章运行结果显示及分析 (20)

5.1 离散余弦变换的算法实现 (20)

5.1 离散余弦变换的界面实现 (20)

5.5 设计过程中的疑难及改进 (22)

结论 (23)

参考文献 (24)

附录 (25)

致谢 (27)

第1章绪论

1.1论文研究背景及意义

人们在自然界中感受到的最重要的信息就是图像信息,随着多媒体技术和通讯技术的日益发展,图像也成为了信息技术所处理的重要对象。近些年来,图像技术发展十分迅速,这也推动了多媒体娱乐、多媒体通信、数码相机、数码摄像头和高清晰度电视等各类与图片和视频相关的产品的发展。

图像信息的数据量非常的大,随着各种成像设备的分辨率的不断提高,单幅图像所包含的数据量也越来越大,大数据量的图像信息会给存储器的存储容量、通信信道的带宽以及计算机的处理速度增加极大的压力。为了解决这个问题,必须对图像进行压缩处理。数字图像压缩编码的目的就是要以尽可能少的比特数来表征图像,同时保持恢复图像的质量,对图像编码和解码算法的研究,己经受到人们越来越多的关注,成为近些年信息技术中的热点。

1.2图像压缩技术的历史与现状

图像压缩编码技术始于二十世纪四十年代末的电视信号数字化,至今己有将近六十年的历史。在这几十年的时间内,出现了大量的图像压缩方法和理论M.Kunt将图像压缩的编码理论及方法分为两代:传统的压缩编码方法和新型图像编码方法。传统编码技术包括脉码调制、量化法、熵编码、预测编码、变换编码、矢量编码等十余种编码方法。然而随着人们对这些传统编码方法的深入应用,也逐渐发现了这些方法的许多缺点:比如在传统的编码方法中由于正交变换时频局域性很差,变换后的系数失去了对原图像精细结构的描述,从变换图像得不到原图像边缘轮廓等局部信息,因此,在量化编码时无法采用特殊方法;高压缩比时它还导致图像的边缘轮廓模糊显现和出现严重的方块效应;而且人类视觉系统(Humna Visual Sysetm,即HVS)的特性也不易被引入到压缩算法中。这些缺点使得它们不适应于需要较高压缩比的应用场合。

80年代中后期,人们结合模式识别、计算机图形学、计算机视觉、神经网络、小波分析和分形几何等理论,开始探索图像信号压缩编码的新途径。同时考虑到人类的视觉心理特性,新型图像压缩编码方法相继提出:M.Kuni于1985年提出基于人眼视觉特性的第二代图像编码技术,1988年M.Barnsley提出基于迭代函数系统的分形图像编码技术,以及90年代初发展起来的基于模型的图像编码方法。

其中离散余弦变换不仅是现在研究的热点,而且这方面的编码也取得了一些引人注目的成功。如离散余弦变换技术己经作为联合图像专家组新的图像压缩标准JPEG2000的核心技术[1]。

1.3离散余弦变换及其在图象压缩中的应用

离散余弦变换(DCT for Discrete Cosine Transform)是与傅里叶变换相关的一种变换,它类似于离散傅里叶变换(DFT for Discrete Fourier Transform),但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位。

有两个相关的变换,一个是离散正弦变换(DST for Discrete Sine Transform),它相当于一个长度大概是它两倍的实奇函数的离散傅里叶变换;另一个是改进的离散余弦变换(MDCT for Modified Discrete Cosine Transform),它相当于对交叠的数据进行离散余弦变换。

离散余弦变换,尤其是它的第二种类型,经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。这是由于离散余弦变换具有很强的“能量集中”特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近马尔科夫过程(Markov processes)的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève变换——它具有最优的去相关性)的性能。

例如,在静止图像编码标准JPEG中,在运动图像编码标准JPEG和MPEG的各个标准中都使用了离散余弦变换。在这些标准制中都使用了二维的第二种类型离散余弦变换,并将结果进行量化之后进行熵编码。这时对应第二种类型离散余弦变换中的n通常是8,并用该公式对每个8×8块的每行进行变换,然后每列进行变换,得到的是一个8×8的变换系数矩阵。其中(0,0)位置的元素就是直流分量,矩阵中的其他元素根据其位置表示不同频率的交流分类[2]。

1.4论文研究的主要内容

本文主要研究如何利用MATLAB软件开发一个基于离散余弦算法的图像压缩处理界面,为初学者提供一个图像压缩处理技术的DCT算法演示及模拟开发的Graphical User Interface(图形用户界面)平台,供大家学习并研究图像压缩处理的技术方法。

本文的主要内容如下:

第一章是绪论部分,介绍了论文的研究背景和意义,并简要介绍了图象压缩技术的

历史与现状以及离散余弦变换在图像压缩中的应用,概述了本论文的主要研究工作;第二章介绍了图象压缩技术的基本理论知识,包括图象压缩的评价标准、技术标准及分类,论述了图像压缩的基本原理和基本模型;第三章介绍了离散余弦变换的MATLAB实现,简单介绍了MATLAB的图像处理工具箱,然后介绍了离散余弦变换的基本原理和算法,最后实现了离散余弦变换的图像压缩实现;第四章介绍了离散余弦变换的界面实现,简单介绍了图形用户界面的功能,论述了本设计采用MATLAB程序进行图像压缩界面操作的实现过程;第五章显示了利用离散余弦变换的算法实现和界面实现的运行结果,并概述了在设计过程中的疑难及改进;最后是对全文的总结,提出了需要进一步解决的问题及改进方向。

第2章 图像压缩的基本原理

数字图像从表面上看可以表达丰富多彩的内容,但实质上可以看作在视觉空间灵敏度范围内对图像进行空间采样的一个个像素组成,每个象素点都可以用一组一维或多维的数字来表示,如nbit 的灰度图像的每个象素由0~2n ~l 之间的某个数值来表示,而真彩色图像的象素值则由红(R),绿(G),蓝(B)三种颜色的值来联合表示。

由于图像采集设备的迅速发展,图像的尺寸和分辨率不断提高,导致了图像数据量变得非常大,例如,一幅单色数字卫星遥感图像由10,000×10,000个像素(pixel)组成,如果每个像素的灰度用12bit 表示,那么这幅图像就要用1.2GB 表示。直接存储和传输如此庞大的数据,不仅要消耗巨大的磁盘空间和网络带宽而且还会极大地增加处理器的负担,因此对图像进行大幅度的数据压缩就显得尤为重要[3]。

2.1图象压缩评价标准

对图像进行压缩,不可避免的要引入失真。我们要做的就是在图像信号的最终用户觉察不出或能够忍受这些失真的前提下,进一步提高压缩比,以换取更高的编码效率。这就需要引入一些失真的测度来评估重建图像的质量。重建图像的质量评价标准可分为客观标准和主观标准两种。通过这些标准可以比较各种方法的优劣[1]。

2.1.1客观标准

假设原始图像表示A=f(i,j),其中i=l,2,…M ;j=1,2,…N ,经压缩解压后的图像为A ’=f ’(i,j),i=1,2,…M ;j=1,2,…N ,可以用下列指标进行评价:

(1)均方误差MSN

(2.1) (2)规范化均方误差NMSN (2.2)

其中

(3)对数信噪比SNR

(2.3) (4)峰值信噪比PSNR ()2211,M N f i j MN f i j δ===????∑∑[]211

1(,)'(,)M N i n MSN f i j f i j MN ===-∑∑2f MSN NMSN δ=2

10lg 10lg f SNR NMSN MSN

δ==-

(2.4)

评价图像压缩效果的另外一个重要指标是压缩比C ,它指的是表示原始图像每象素的比特数同压缩后平均每象素的比特数的比值,也常用每象素比特值(bpp)来表示压缩效果。

2.1.2主观标准

图像的主观质量就是以人作为图像的观察者,对图像的优劣做出主观评价。主观标准采用平均判分MOS(mean opinion score)或多维计分等方法进行测试,即组织一群足够多的实验人员(一般10人以上),通过观察来评定图像的质量,观察者给判定图像打上一定的质量等级比较损伤程度给予图像进行比较等方法,根据不同的质量打上5级、6级或7级的评分制,最后用平均的办法得到图像的分数,这样的评分虽然很花时间,但比较符合实际。

表2.1列出了一个5级的主观评价的评分尺度。

表2.1图像质量主观评价尺度

主观评价和客观评价之间有一定联系,但不能完全等同,由于客观评价比较便,很有说服力,故在一般的图像压缩研究中被采用。主观评价很直观,符合人眼的视效果,比较实际,但是打分尺度很难把握,不可避免有人为因素。

2.2图像压缩技术标准

信息技术的突出特点是互操作性和全球联网。随着全球范围内的信息传输和交换越来越重要,统一的技术标准成为实现全球范围信息传输和交换的关键。

统一的国际标准是不同国家地区和厂商的产品能够相互兼容和协调的基础。近些年来,图像编码技术得到了迅速的发展和广泛的应用,并且日臻成熟,其标志就是几个关于图像编码的国际标准的制定,有关图像压缩编码已有的国际标准(或建议)有H.261、H.263、JPEG 、JPEG2000、MPEG-l 、MPEG-2、MPEG-4等,涉及到二值图像传真、静225510lg PSNR MSN

态图像传输、可视电话、会议电视、VCD、DVD、常规数字电视、高清晰度电视、多媒体可视通信、多媒体视频点播与传输等广泛应用领域。这些标准图像编码算法融合了各种性能优良的传统图像编码方法,是对传统编码技术的总结,代表了目前图像编码的发展水平。

各种图像编码的标准实际上都是博采各种方法之所长的优化组合的混合编码系统。有关图像编码的若干国际标准(建议)的名称、主要目标和内容以及应用范围如下[4]:

(1) H.261建议

H.261建议是CCITT于1990年7月通过的有关图像(视频)压缩编码的第一个国际标准化建议,其全称为“p×64kbit/s(p=1~30)视听业务的视频编解码器”。H.261的主要对象是m×64kbit/s和n×354kbit/s两类码率。其应用目标是可视电话和会议电视,其对图像质量的要求不很高。

(2) JPEG标准

JPEG是ISO和CCITT于1986年成立的联合图像专家组(Joint Photgoparhic Expert Group)的简称。1992年作为静止图像压缩算法的国际标准正式推出。它适用于不同类型不同分辨率要求的彩色和黑白静止图像,有多种编码模式和数据格式。主要应用于彩色产值、静止图像、可视通讯、印刷出版、新闻图片、医学和卫星图像的传输、检索和存储。

(3) JPEG2000标准

JPEG2000是21世纪的压缩标准,它把JPEG的四种模式(顺序模式、渐进模式、无损模式和分层模式)集成在一个标准中,在编码端以最大的压缩质量和最大的图像分辨率压缩图像,在解码端可以从码流中以任意的图像质量和分辨率解压图像。JPEG2000的主要特征如下:

ⅰ.高压缩率:由于采用离散小波变换,图像可以转换成一系列“小波”,压缩比可比JPEG提高10%~30%,而且压缩后的图像显得更加细腻平滑。

ⅱ.JPEG2000提供无损和有损两种压缩方式。

ⅲ.渐进传输:采用JPEG2000格式的图像支持渐进传输。所谓渐进传输就是先传输图像轮廓数据,然后再逐步传输其他数据来不断提高图像质量。

ⅳ.感兴趣区域压缩:可以指定图片上感兴趣的区域(Region of Interest),然后在压缩时对这些区域指定压缩质量,或在恢复时指定某些区域的解压缩要求。

ⅴ.码流的随机访问和处理:这一特征允许用户随机定义感兴趣区域,使得这一区域的图像质量高于其它区域。

ⅵ.容错性。

ⅶ.开放的框架结构。

ⅷ.基于内容的描述。

JPEG2000的应用领域包括互联网、彩色传真、打印、扫描、数字摄像、遥感、移动通信、医疗图像和电子商务等。

(4) MPEG-1标准

MPEG是活动图像专家组Moving Pictuer Experts Group的简称。MPEG-l的全称是ISO/IEC CDIl72,Coding of Moving Picture and Assoeiated Audio for digital storage media at up to 1.5Mbit/s,中文译为“用于数字存储媒体、码率约为1.5Mbit/s的活动图像及其伴音的编码”。它是MPEG专家组的第一阶段成果,1993年正式通过为国际标准。MPEG-1包括系统、视频、音频以及测试和软件实现等。

MPEG-1主要面向数字存储媒体,应用于多媒体计算机、教育与训练、演示与咨询服务、创作与娱乐、电子出版物、数字视听系统VCD以及VOD、交互式电视ITV等领域。

(5) MPEG-2标准

MPEG-2标准的全称是ISO/IEC DIS13818,Generie Coding of Moving Pictures and Assoeiated Audio Information,中文名为“活动图像及其伴音信息的通用编码(标准)”,1993年11月正式推出。MPEG-2包括系统、视频、音频和测试,与MPEG-1后向兼容。MPEG-2的视频编码部分码率为4~10Mbit/s,图形质量接近演播室质量。

MPEG-2在技术、功能、语法结构、选择项、可分级性和应用范围等方面比MPEG-1、H.261有重大改进和发展。因此成为一种从多媒体计算机到家用消费数字音像电子产品、从宽带数字通信到数字视频广播以及HDTV的“通用”共性关键技术。MPEG-2从技术上促进了计算机、广播电视、数字通信三大领域的交汇融合,并发挥出了巨大的作用。

(6) H.263建议

全称是ITU-T Recommendation H.263,Video Coding of Low Bitrate Communation。它是ITU-TH.324“Terminal for Low Bitrate Multimedia Communation”的主要组成部分。其面向低码率多媒体通信,原来的目标为在PSTN上运行低于64Kbit/s以下码率的新的视频压缩标准。

由于低码率下实现多媒体通信在技术上更为困难和复杂,因此H.263采用了多种先进技术以降低码率,提供各种业务,后来又推出了H.263+和H.263++。

(7) MPEG-4和MPEG-7

MPEG-4的目标是交互式的多媒体应用。其特点有:

ⅰ.基于内容的交互性:基于内容的多媒体数据访问、基于内容的码流操作和编辑。

ⅱ.高效的压缩算法。

ⅲ.自然的与合成的图像编码及其混合编码。

ⅳ.通用的可接入性:包括恶劣环境下强大的抗差错能力,基于内容的可分级。2.3图像压缩的分类

图像压缩的效果好与不好,关键要看三样指标:一是压缩比要大,二是压缩算法简单、速度快,三是恢复效果好。

数字图像数据量的压缩按照应用不同可分为两大类:无损压缩和有损压缩。

无损、冗余压缩:可逆,压缩比较高,信息保持型数据压缩。

有损、熵压缩:不可逆,压缩比较低,又分为保真度型数据压缩和特征保持型数据压缩。

图像编码也可以按照编码所在数据域主要分为空间域编码和变换域编码两大类,此外还有模型编码、矢量量化编码和神经网络编码等众多方法。下面简要介绍几种压缩编码方法[5]:

(1) 预测编码:根据离散信号之间存在着一定并联性的特点,利用前面的一个或多个信号对下一个信号进行预测,然后对实际值和预测值的差值(预测误差)进行编码。对预测的要求是必须较为准确。预测编码消除的是空间冗余和时间冗余。属于这类编码的主要有DPCM、ADPCM等。

(2) 变换编码:先对信号进行某种函数变换,从一种信号(空间)变换到另一种信号(空间),然后再对变换后的信号进行采样编码。变换编码可以消除空间冗余和时间冗余。属于变换编码的有K-L变换、DFT变换、DCT变换、WHT变换等。

(3) 统计编码:主要用于对相互独立、无相关性的消息序列构成的无记忆信源进行压缩。它根据消息出现概率的分布特性而进行的压缩编码,宗旨是在消息和码字之间找到明确的一一对应关系,以便在恢复时再现出来。统计编码消除的是信息熵冗余。属于这类编码的有Huffman编码、Shannon-Fano编码、算术编码等。

(4) 模型编码:利用模型的方法,对需传输的图像进行参数估测。它消除的是结构冗余和知识冗余。属于这类编码方法的如分形编码等。

(5) 其他编码:如行程编码,计算信源符号出现的行程长度,然后将行程长度转换成代码;Lempel-Zel和Welsh编码,查找冗余字符串和将此字符串用较短的符号标记替代的技术,从而达到数据压缩的目的,其压缩率很高。

图2.1给出了按数据域划分归类的主要压缩方法[6]。

图2.1 图像压缩方法的分类

2.4图像压缩处理技术基本理论

2.4.1图像压缩的基本原理

图像数据压缩的目的是在满足一定图像质量的条件下,用尽可能少的比特数来表示原始图像,以提高图像传输的效率和减少图像存储的容量,在信息论中称为信源编码。大类,前者在解码时可以精确地恢复原图像,没有任何损失;后者在解码时只能近似原图像压缩是通过删除图像数据中冗余的或者不必要的部分来减小图像数据量的技术,压缩过程就是编码过程,解压缩过程就是解码过程。压缩技术分为无损压缩和有损压缩两图像,不能无失真地恢复原图像。

假设有一个无记忆的信源,它产生的消息为{ai},1≤i≤N ,其出现的概率是已知的,记为P(ai)。则其信息量定义为:

(2.5)

2()log ()

i i I a P a =-

由此可见一个消息出现的可能性越小,其信息量就越多,其出现对信息的贡献量越大,反之亦然[7]。

信源的平均信息量称为“熵”(entropy ),可以表示为:

(2.6) 对上式取以2为底的对数时,单位为比特(bits ):

(2.7)

根据香农(Shannon )无噪声编码定理,对于熵为H 的信号源,对其进行无失真编码所可能达到的最低比特数为,这里为一任意小的正数,因此可能达到的最大压缩比为: (2.8) 其中B 是原始图像的平均比特率[7]。

在图像压缩中,压缩比是一个重要的衡量指标。可以定义压缩比为:

(2.9)

2.4.2图像压缩的基本模型

图像编码包括两个阶段,前一个阶段就是利用预测模型或正交模型对图像信号进行变换;后一个阶段是利用已变换信号的统计特性,对其分配适当的代码来进行编码传输。 编码器与解码器的结构分别如图2.2,图2.3所示。

图2.2 编码器结构

图2.3 解码器结构 在发送端,输入的原始图像首先经过DCT 变换后,其低频分量都集中在左上角,高频分量分布在右下角(DCT 变换实际上是空间域的低通滤波器)。由于该低频分量包含了图像的主要信息,而高频分量与之相比就不那么重要了,所以可以忽略高频分量,

()()()()11log N N

i i i i i i H P a I P a P a P a ====-????∑∑()21log ()N

i i i H P a P a ==-∑max B B C H H

ξ=≈+

从而达到压缩的目的。将高频分量去掉就要用到量化,这是产生信息损失的根源。“量化”的主要任务是用有限个离散电平来近似表达已抽取出的信息。在此采用均匀量化,通过改变程序中的量化因子Q的值以得到不同压缩比的图像。Huffman编码时,首先对经DCT变换及量化后的图像收据扫描一遍,计算出各种像素出现的概率;然后按概率的大小指定不同长度的唯一码字,由此得到一张Huffman表。编码后的图像记录的是每个像素的码字,而码字与量化后像素值的对应关系记录在码表中。生成的一维字符矩阵即为实际中要传输的序列,压缩后的图像数据在信道中进行传输。

在接收端,接收到的压缩图像数据首先经过Huffman译码,通过搜索已生成的Huffman表,根据码字与量化后像素值的对应关系,搜索出与码字对应的像素值,并转换为二维矩阵。反量化时将以上二维矩阵中的每一个像素值乘以量化因子Q。最后通过DCT反变换得到重建图像[8]。

matlab图像处理的几个实例

Matlab图像处理的几个实例(初学者用) 1.图像的基本信息及其加减乘除 clear,clc; P=imread('yjx.jpg'); whos P Q=imread('dt.jpg'); P=im2double(P); Q=im2double(Q); gg1=im2bw(P,0.3); gg2=im2bw(P,0.5); gg3=im2bw(P,0.8); K=imadd(gg1,gg2); L=imsubtract(gg2,gg3); cf=immultiply(P,Q); sf=imdivide(Q,P); subplot(421),imshow(P),title('郁金香原图'); subplot(422),imshow(gg1),title('0.3'); subplot(423),imshow(gg2),title('0.5'); subplot(424),imshow(gg3),title('0.8'); subplot(425),imshow(K),title('0.3+0.5'); subplot(426),imshow(L),title('0.5-0.3'); subplot(427),imshow(cf),title('P*Q'); subplot(428),imshow(sf),title('P/Q'); 2.图像缩放 clear,clc; I=imread('dt.jpg'); A=imresize(I,0.1,'nearest'); B=imresize(I,0.4,'bilinear'); C=imresize(I,0.7,'bicubic'); D=imresize(I,[100,200]); F=imresize(I,[400,100]); figure subplot(321),imshow(I),title('原图'); subplot(322),imshow(A),title('最邻近插值'); subplot(323),imshow(B),title('双线性插值'); subplot(324),imshow(C),title('二次立方插值'); subplot(325),imshow(D),title('水平缩放与垂直缩放比例为2:1'); subplot(326),imshow(F),title('水平缩放与垂直缩放比例为1:4');

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n 默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1]A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,Val1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Emptyor not,Mode:lossy orlossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。

图像处理实例(含Matlab代码)

信号与系统实验报告——图像处理 学院:信息科学与工程学院 专业:2014级通信工程 组长:** 组员:** 2017.01.02

目录 目录 (2) 实验一图像一的细胞计数 (3) 一、实验内容及步骤 (3) 二、Matlab程序代码 (3) 三、数据及结果 (4) 实验二图像二的图形结构提取 (5) 一、实验内容及步骤 (5) 二、Matlab程序代码 (5) 三、数据及结果 (6) 实验三图像三的图形结构提取 (7) 一、实验内容及步骤 (7) 二、Matlab程序代码 (7) 三、数据及结果 (8) 实验四图像四的傅里叶变化及巴特沃斯低通滤波 (9) 一、实验内容及步骤 (9) 二、Matlab程序代码 (9) 三、数据及结果 (10) 实验五图像五的空间域滤波与频域滤波 (11) 一、实验内容及步骤 (11) 二、Matlab程序代码 (11) 三、数据及结果 (12)

实验一图像一的细胞计数 一、实验内容及步骤 将该图形进行一系列处理,计算得到途中清晰可见细胞的个数。 首先,由于原图为RGB三色图像处理起来较为麻烦,所以转为灰度图,再进行二值化化为黑白图像,得到二值化图像之后进行中值滤波得到细胞分布的初步图像,为了方便计数对图像取反,这时进行一次计数,发现得到的个数远远多于实际个数,这时在进行一次中值滤波,去掉一些不清晰的像素点,剩下的应该为较为清晰的细胞个数,再次计数得到大致结果。 二、Matlab程序代码 clear;close all; Image = imread('1.jpg'); figure,imshow(Image),title('原图'); Image=rgb2gray(Image); figure,imshow(Image),title('灰度图'); Theshold = graythresh(Image); Image_BW = im2bw(Image,Theshold); Reverse_Image_BW22=~Image_BW; figure,imshow(Image_BW),title('二值化图像'); Image_BW_medfilt= medfilt2(Image_BW,[3 3]); figure,imshow(Image_BW_medfilt),title('中值滤波后的二值化图像'); Reverse_Image_BW = ~Image_BW_medfilt; figure,imshow(Reverse_Image_BW),title('图象取反'); Image_BW_medfilt2= medfilt2(Reverse_Image_BW,[20 20]); figure,imshow(Image_BW_medfilt2),title('第二次中值滤波的二值化图像'); [Label, Number]=bwlabel(Image_BW_medfilt,8);Number [Label, Number]=bwlabel(Image_BW_medfilt2,8);Number

MATLAB在图像处理技术方面的应用论文

MATLAB在图像处理技术方面的应用 摘要:本文介绍了MATLAB语言的特点以及图像处理工具箱实现的经典图像处理 技术。应用该工具箱对一实拍的芯片图像进行前期预处理,通过实例验证了该语言具有强大的矩阵运算与图形处理能力,是一种简洁易学,可读性强、功能强大的应用软件,对它的应用可以快速实现模拟仿真,大大提高实验效率。 关键词:MATLAB语言;图像处理;灰度图像 Application of MATLAB to Image Processing Technique LI Liao-liao DENG Shan-xi (College of Instrumentation Science ,Hefei University of Technology,Hefei,Anhui,230009,China) Abstract: This paper introduces characteristics of MATLAB language and classical image processing technique realized by using image processing toolbox. The toolbox is applied to pre-processing operations for a CMOS chip photograph, by experiment it proved that MATLAB possesses powerful capability to matrix operation and image processing, it is an application software that is simple and easy to study and understand and possesses multiple functions. MATLAB can be used to simulation tests, that will improve efficiency of experiment greatly. Key words: MATLAB software; image processing; gray image. 1、引言 MATLAB 的名称源自Matrix Laboratory ,由美国MathWorks公司推出。它是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB 将高性能的数值计算和可视化集成在一起,构成了一个方便的、界面友好的用户环境,并提供了大量的内置函数。从而被广泛地应用于科学计算、控制系统、信息处理、神经网络、图像处理、小波分析等领域的分析、仿真和设计工作,而且利用MATLAB 产品的开放式结构,可以非常容易地对MATLAB 的功能进行扩充,从而在不断深化对问题认识的同时,不断完善MATLAB 产品以提高产品自身的竞争能力。MATLAB中的数字图像是以矩阵形式表示的,这意味着MATLAB强大的矩阵运 算能力用于图像处理非常有利,矩阵运算的语法对MATLAB中的数字图像同样适用。本文对MATLAB图 像处理工具箱进行探索及应用,实验证明该软件功能强大,语言简洁易学,人机界面友好,工具箱具有丰富的技术支持并集成了该领域专家的智慧,应用简单而效果良好。 2、MATLAB图像处理工具箱及数字图像处理基本过程简介 数字图像处理工具箱函数包括以下15类:、⑴、图像显示函数;⑵、图像文件输入、输出函数;⑶、图像几何操作函数;⑷、图像像素值及统计函数;⑸、图像分析函数;⑹、图像增强函数;⑺、线性滤波函数;⑻、二维线性滤波器设计函数;⑼、图像变换函数;⑽、图像邻域及块操作函数;⑾、二值图像操作函数;⑿、基于区域的图像处理函数;⒀、颜色图操作函数;⒁、颜色空间转换函数;⒂、图像类型和类型转换函数。 MATLAB图像处理工具箱支持四种图像类型,分别为真彩色图像、索引色图像、灰度图像、二值图像,由于有的函数对图像类型有限制,这四种类型可以用工具箱的类型转换函数相互转换。MATLAB可操作的图像文件包括BMP、HDF、JPEG、PCX、TIFF、XWD等格式。下面就图像处理的基本过程讨论工具箱

基于matlab的毕业论文题目参考

基于matlab的毕业论文题目参考 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。以下是基于matlab的毕业论文题目,供大家参考。 基于matlab的毕业论文题目一: 1、基于遗传算法的小麦收割机路径智能优化控制研究 2、零转弯半径割草机连续翻滚特性参数化预测模型 3、基于MATLAB的PCD铰刀加工硅铝合金切削力研究 4、基于状态反馈的四容水箱控制系统的MATLAB仿真研究 5、基于Matlab软件的先天性外耳道狭窄CT影像特点分析 6、Matlab仿真在船舶航向自动控制系统中的研究与仿真 7、基于MATLAB的暂态稳定措施可行性仿真与分析 8、基于MATLAB的某专用越野汽车动力性能分析 9、基于MATLAB的电力系统有源滤波器设计 10、基于MATLAB和ANSYS的弹簧助力封闭装置结构分析 11、基于Matlab的液力变矩器与发动机匹配计算与分析 12、运用MATLAB绘制接触网下锚安装曲线 13、基于MatlabGUI的实验平台快速搭建技术 14、基于MATLAB的激光-脉冲MIG复合焊过程稳定性评价

15、测绘数据处理中MATLAB的优越性及应用 16、基于MATLAB柴油机供油凸轮型线设计 17、基于MATLAB语言的TRC加固受火后钢筋混凝土板的承载力分析方法 18、MATLAB辅助OptiSystem实现光学反馈环路的模拟 19、基于MATLABGUI的电梯关门阻止力分析系统设计 20、基于LabVIEW与MATLAB混合编程的手势识别系统 21、基于MATLAB的MZ04型机器人运动特性分析 22、MATLAB在煤矿巷道支护参数的网络设计及仿真分析 23、基于MATLAB的自由落体运动仿真 24、基于MATLAB的电动汽车预充电路仿真 25、基于Matlab的消弧模型仿真研究 26、基于MATLAB/GUI的图像语义自动标注系统 27、基于Matlab软件GUI的机械波模拟 28、基于Matlab的S曲线加减速控制算法研究 29、基于Matlab和Adams的超速机柔性轴系仿真 30、基于Matlab与STM32的电机控制代码自动生成 31、基于Matlab的相机内参和畸变参数优化方法 32、基于ADAMS和MATLAB的翻转机构联合仿真研究 33、基于MATLAB的数字图像增强软件平台设计 34、基于Matlab的旋转曲面的Gif动画制作 35、浅谈Matlab编程与微分几何简单算法的实现

基于Matlab基本图像处理程序

图像读入 ●从图形文件中读入图像 imread Syntax: A = imread(filename, fmt) filename:指定的灰度或彩色图像文件的完整路径和文件名。 fmt:指定图形文件的格式所对应的标准扩展名。如果imread没有找到filename所制定的文件,会尝试查找一个名为filename.fmt的文件。 A:包含图像矩阵的矩阵。对于灰度图像,它是一个M行N列的矩阵。如果文件包含 RGB真彩图像,则是m*n*3的矩阵。 ●对于索引图像,格式[X, map] = imread(filename, fmt) X:图像数据矩阵。 MAP:颜色索引表 图像的显示 ●imshow函数:显示工作区或图像文件中的图像 ●Syntax: imshow(I) %I是要现实的灰度图像矩阵 imshow(I,[low high],param1, val1, param2, val2,...) %I是要现实的灰度图像矩阵,指定要显示的灰度范围,后面的参数指定显示图像的特定参数 imshow(RGB) imshow(BW) imshow(X,map) %map颜色索引表 imshow(filename) himage = imshow(...) ●操作:读取并显示图像 I=imread('C:\Users\fanjinfei\Desktop\baby.bmp');%读取图像数据 imshow(I);%显示原图像 图像增强 一.图像的全局描述 直方图(Histogram):是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量。 图像直方图(Image Histogram):是表示数字图像中亮度分布的直方图,用来描述图象灰度值,标绘了图像中每个亮度值的像素数。 灰度直方图:是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图 像中某种灰度出现的频率。描述了一幅图像的灰度级统计信息。是一个二维图,横坐标为图像中各个像素点的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或概率。 归一化直方图:直接反应不同灰度级出现的比率。纵坐标表示具有各个灰度级别的像

毕业设计用matlab仿真

毕业设计用matlab仿真 篇一:【毕业论文】基于matlab的人脸识别系统设计与仿真(含matlab源程序) 基于matlab的人脸识别系统设计与仿真 第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。

如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人 类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,在不同的环境下拍摄所得到的人脸图像不同,有时更会有很大的差别,给识别带来很大难度。因此在各种干扰条件下实现人脸图像的识别,也就更具有挑战性。 国外对于人脸图像识别的研究较早,现己有实用系统面世,只是对于成像条件要求较苛刻,应用范围也就较窄,国内也有许多科研机构从事这方而的研究,并己取得许多成果。 1.2 人脸图像识别的应用前景 人脸图像识别除了具有重大的理论价值以及极富挑战

MATLAB中图像函数大全 详解及例子

图像处理函数详解——strel 功能:用于膨胀腐蚀及开闭运算等操作的结构元素对象(本论坛随即对膨胀腐蚀等操作进行讲解)。 用法:SE=strel(shape,parameters) 创建由指定形状shape对应的结构元素。其中shape的种类有 arbitrary' 'pair' 'diamond' 'periodicline' 'disk' 'rectangle' 'line' 'square' 'octagon 参数parameters一般控制SE的大小。 例子: se1=strel('square',6) %创建6*6的正方形 se2=strel('line',10,45) %创建直线长度10,角度45 se3=strel('disk',15) %创建圆盘半径15 se4=strel('ball',15,5) %创建椭圆体,半径15,高度5

图像处理函数详解——roipoly 功能:用于选择图像中的多边形区域。 用法:BW=roipoly(I,c,r) BW=roipoly(I) BW=roipoly(x,y,I,xi,yi) [BW,xi,yi]=roipoly(...) [x,y,BW,xi,yi]=roipoly(...) BW=roipoly(I,c,r)表示用向量c、r指定多边形各点的X、Y坐标。BW选中的区域为1,其他部分的值为0. BW=roipoly(I)表示建立交互式的处理界面。 BW=roipoly(x,y,I,xi,yi)表示向量x和y建立非默认的坐标系,然后在指定的坐标系下选择由向量xi,yi指定的多边形区域。 例子:I=imread('eight.tif'); c=[222272300270221194]; r=[21217512112175]; BW=roipoly(I,c,r); imshow(I)

基于Matlab的数字图像处理系统毕业设计论文

论文(设计)题目: 基于MATLAB的数字图像处理系统设计 姓名宋立涛 学号201211867 学院信息学院 专业电子与通信工程 年级2012级 2013年6月16日

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGACPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

matlab 图像处理报告

《 MATLAB 实践》 课程设计 学生姓名: 学号: 专业班级: 指导教师: 二○○九年三月十三日

1.设计目的…………………………………………………第 3页 2.题目分析…………………………………………………第3 页 3.总体设计…………………………………………………第4 页 4.具体设计…………………………………………………第 6页 5.结果分析…………………………………………………第 20页 6.心得体会…………………………………………………第 20页 7.参考书目…………………………………………………第 20页

1 课程设计的目的: 综合运用MATLAB工具箱实现图像处理的GUI程序设计。 2、题目分析 课程设计的基本要求 1)熟悉和掌握MATLAB 程序设计方法 2)掌握MATLAB GUI 程序设计 3)学习和熟悉MATLAB图像处理工具箱 4)学会运用MATLAB工具箱对图像进行处理和分析 课程设计的内容 学习MATLAB GUI程序设计,利用MATLAB图像处理工具箱,设计和实现自己的Photoshop 。要求:按照软件工程方法,根据需求进行程序的功能分析和界面设计,给出设计详细说明。然后按照自己拟定的功能要求进行程序设计和调试。 以下几点是程序必须实现的功能。 1)图像的读取和保存。 2)设计图形用户界面,让用户能够对图像进行任意的亮度和对比度变化调整,显示和对比变换前后的图像。 3)设计图形用户界面,让用户能够用鼠标选取图像感兴趣区域,显示和保存该选择区域。 4)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的操作,并保存,比较几种插值的效果。 5)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 6)能对图像加入各种噪声,并通过几种滤波算法实现去噪并显示结果。比较去噪效果。

基于matlab的数字图像处理论文

迭代与分形 姓名:吴涛班级:2007级电科一班学号:20074053053 摘要:几何学研究的对象是客观世界中物体的形状。传统欧氏几何学的研究对象,都是规则并且光滑的,比如:直线、曲线、曲面等。但客观世界中物体的形状,并不完全具有规则光滑等性质,因此只能近似当作欧氏几何的对象,比如:将凹凸不平的地球表面近似为椭球面。虽然多数情况下通过这样的近似处理后,能够得到符合实际情况的结果,但是对于极不规则的形态,比如:云朵、烟雾、树木等,传统的几何学就无能为力了。 如何描述这些复杂的自然形态?如何分析其内在的机理?这些就是分形几何学所面对和解决的问题。 关键字:迭代;分形;树形 一、问题分析 在我们的世界上,存在着许多极不规则的复杂现象,比如:弯弯曲曲的海岸线、变化的云朵、宇宙中星系的分布、金融市场上价格的起伏图等,为了获得解释这些极端复杂现象的数学模型,我们需要认识其中蕴涵的特性,构造出相应的数学规则。 曼德尔布罗特(Mandelbrot)在研究英国的海岸线形状等问题时,总结出自然界中很多现象从标度变换角度表现出对称性,他将这类集合称作自相似集,他发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。Mandelbrot将这类几何形体称为分形(fractal),意思就是不规则的、分数的、支离破碎的,并对它们进行了系统的研究,创立了分形几何这一新的数学分支。Mandelbrot认为海岸、山峦、云彩和其他很多自然现象都具有分形的特性,因此可以说:分形

是大自然的几何学。 分形几何体一般来说都具有无限精细的自相似的层次结构,即局部与整体的相似性,图形的每一个局部都可以被看作是整体图形的一个缩小的复本。早在19世纪就已经出现了一些具有自相似特性的分形图形,比如:瑞典数学家科赫(von Koch)设计的类似雪花和岛屿边缘的一类曲线,即Koch曲线;英国植物学家布朗通过观察悬浮在水中的花粉的运动轨迹,提出来的布朗运动轨迹。 分形几何把自然形态看作是具有无限嵌套的层次结构,并且在不同尺度下保持某种相似的属性,于是,简单的迭代过程,就是描述复杂的自然形态的有效方法。 (Koch曲线) (布朗运动轨迹) 二、背景知识介绍 1、分形几何的形成。 分形几何的概念是美籍法国数学家曼德尔布罗特(Mandelbrot)于1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托尔(Cantor,德国数学家)构造了有许多奇异性质的康托尔三分集。1890年,意大利数学家皮亚诺(Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学

(完整版)matlab毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 摘要 本文概述了信号仿真系统的需求、总体结构、基本功能。重点介绍了利用Matlab软件设计实现信号仿真系统的基本原理及功能,以及利用Matlab 软件提供的图形用户界面(Graphical User Interfaces ,GUI)设计具有人机交互、界面友好的用户界面。本文采用Matlab 的图形用户界面设计功能, 开发出了各个实验界面。在该实验软件中, 集成了信号处理中的多个实验, 应用效果良好。本系统是一种演示型软件,用可视化的仿真工具,以图形和动态仿真的方式演示部分基本信号的传输波形和变换,使学习人员直观、感性地了解和掌握信号与系统的基本知识。随着当代计算机技术的不断发展,计算机逐渐融入了社会生活的方方面面。计算机的使用已经成为当代大学生不可或缺的基本技能。信号与系统课程具有传统经典的基础内容,但也存在由于数字技术发展、计算技术渗入等的需求。在教学过程中缺乏实际应用背景的理论学习是枯燥而艰难的。为了解决理论与实际联系起来的难题国内外教育人士目光不约而同的投向一款优秀的计算机软件——MATLAB。通过它可用计算机仿真,阐述信号与系统理论与应用相联系的内容,以此激发学习兴趣,变被动接受为主动探知,从而提升学习效果,培养主动思维、学以致用的思维习惯。以MATLAB 为平台开发的信号与系统教学辅助软件可以充分利用其快速运算,文字、动态图形、声音及交互式人机界面等特点来进行信号的分析及仿真。运用MATLAB 的数值分析及计算结果可视化、信号处理工具箱的强大功能将信号与系统课程中较难掌握和理解的重点理论和方法通过概念浏览动态演示及典型例题分析等方式,形象生动的展现出来,从而使学生对所学

图像增强及MATLAB实现

《数字图像处理》课程设计 课设题目:图像增强与MATLAB实现学校学院:华东交通大学理学院 学生班级:13级信息计算(2)班学生:超 学生学号:20130810010216 指导老师:自柱

图像增强与MATLAB实现 摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键字:图像;图像增强;算法

目录 一、MATLAB的简介 (1) 1.1MATLAB主要功能 (1) 二、MATLAB的主要功能 (1) 2.1数字增强技术概述 (1) 2.2数字图像的表示 (2)

三、直方图的均衡化 (2) 3.1图像的灰度 (2) 3.2灰度直方图 (2) 3.3直方图均衡化 (3) 四、图像二值化 (5) 4.1图像二值化 (5) 五、对比度增强 (7) 5.1对比度增强 (7) 5.2灰度调整 (8) 5.3对数变换 (9) 六、滤波 (10) 6.1平滑滤波 (10) 6.2线性平滑滤波程序: (11) 6.3非线性滤波 (12) 七、锐化 (18) 八、参考文献 (19) 九、自我评价 (20)

一、Matlab的简介 1.1 MATLAB主要功能 MATLAB是建立在向量、数组和矩阵基础上的一种分析和仿真工具软件包,包含各种能够进行常规运算的“工具箱”,如常用的矩阵代数运算、数组运算、方程求根、优化计算及函数求导积分符号运算等;同时还提供了编程计算的编程特性,通过编程可以解决一些复杂的工程问题;也可绘制二维、三维图形,输出结果可视化。目前,已成为工程领域中较常用的软件工具包之一。 二、MATLAB的主要功能 2.1数字增强技术概述 图像增强是按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些信息使得图像更加实用。图像增强技术主要包含直方图修改处理、图像平滑处理、图像尖锐化处理等。 图像增强技术主要包括:直方图修改处理,图像平滑处理,图像尖锐化处理,彩色图像处理。从纯技术上讲主要有两类:频域处理法和空域处理法。 频域处理法主要是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强处理技术;空域处理法:是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。

(完整版)基于matlab的数字图像处理毕业设计论文

优秀论文审核通过 未经允许切勿外传 摘要 数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。关键词:MATLAB,数字图像处理,图像增强,二值图像

Abstract Digital image processing is an emerging technology, with the development of computer in various areas on the processing speed requirement is relatively ),线性量化(liner quantization ),对数量化,MAX 量化,锥形量化(tapered quantization )等。 3. 采样、量化和图像细节的关系 上面的数字化过程,需要确定数值N 和灰度级的级数K 。在数字图像处理中,一般都取成2的整数幂,即: (2.1) (2.2) 一幅数字图像在计算机中所占的二进制存储位数b 为: *log(2)**()m N N b N N m bit == (2.3) 例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。随着N 和m 的增加,计算机所需要的存储量也随之迅速增加。 由于数字图像是连续图像的近似,从图像数字化的过程可以看到。这种近似的程度主要取决于采样样本的大小和数量(N 值)以及量化的级数K(或m 值)。N 和K 的值越大,图像越清晰。 2.2 数字图像处理概述 2.2.1 基本概念 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的

基于MATLAB的PID控制器设计毕业设计(论文)

毕业设计论文 基于MATLAB的PID控制器设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

图像处理matlab程序实例

程序实例 1旋转: x=imread('d:\MATLAB7\work\flower.jpg'); y=imrotate(x,200,'bilinear','crop'); subplot(1,2,1); imshow(x); subplot(1,2,2); imshow(y) 2.图像的rgb clear [x,map]=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shh1.jpg');y=x(90:95,90:95);imshow(y)R=x(90:95,90:95,1);G=x(90:95,90:95,2);B=x(90:95,90:95,3);R,G,B 3.加法运算clear I=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shh3.jpg');J=imnoise(I,'gaussian',0,0.02);%向图片加入高斯噪声subplot(1,2,1),imshow(I);%显示图片subplot(1,2,2),imshow(J);K=zeros(242,308);%产生全零的矩阵,大小与图片的大小一样for i=1:100%循环100加入噪声J=imnoise(I,'gaussian',0,0.02);J1=im2double(J);K=K+J1;end K=K/100; figure,imshow(K);save

4.减法 clear I=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shao.jpg'); J=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shao1.jpg'); K=imsubtract(I,J);%实现两幅图相减 K1=255-K;%将图片求反显示 figure;imshow(I); title('有噪声的图'); figure;imshow(J); title('原图'); figure;imshow(K1); title('提取的噪声'); save 5.图像的乘法 H=imread('D:\Program Files\MATLAB\R2012a\bin\shaohaihe\shao.jpg'); I=immultiply(H,1.2);将此图片乘以1.2 J=immultiply(H,2); subplot(1,3,1),imshow(H); title('原图'); subplot(1,3,2),imshow(I); title('·放大1.2'); subplot(1,3,3),imshow(J); title('放大2倍'); 6除法运算 moon=imread('moon.tif'); I=double(moon); J=I*0.43+90; K=I*0.1+90; L=I*0.01+90; moon2=uint8(J); moon3=uint8(K); moon4=uint8(L); J=imdivide(moon,moon2); K=imdivide(moon,moon3); L=imdivide(moon,moon4); subplot(2,2,1),imshow(moon); subplot(2,2,2),imshow(J,[]); subplot(2,2,3),imshow(K,[]); subplot(2,2,4),imshow(L,[]);

基于matlab数字图像处理与识别系统含程序

目录 第一章绪论 (2) 1.1 研究背景 (2) 1.2 人脸图像识别的应用前景 (3) 1.3 本文研究的问题 (4) 1.4 识别系统构成 (4) 1.5 论文的内容及组织 (5) 第二章图像处理的Matlab实现 (6) 2.1 Matlab简介 (6) 2.2 数字图像处理及过程 (6) 2.2.1图像处理的基本操作 (6) 2.2.2图像类型的转换 (7) 2.2.3图像增强 (7) 2.2.4边缘检测 (8) 2.3图像处理功能的Matlab实现实例 (8) 2.4 本章小结 (11) 第三章人脸图像识别计算机系统 (11) 3.1 引言 (11) 3.2系统基本机构 (12) 3.3 人脸检测定位算法 (13) 3.4 人脸图像的预处理 (18) 3.4.1 仿真系统中实现的人脸图像预处理方法 (19) 第四章基于直方图的人脸识别实现 (21) 4.1识别理论 (21) 4.2 人脸识别的matlab实现 (21) 4.3 本章小结 (22) 第五章总结 (22) 致谢 (23) 参考文献 (24) 附录 (25)

第一章绪论 本章提出了本文的研究背景及应用前景。首先阐述了人脸图像识别意义;然后介绍了人脸图像识别研究中存在的问题;接着介绍了自动人脸识别系统的一般框架构成;最后简要地介绍了本文的主要工作和章节结构。 1.1 研究背景 自70年代以来.随着人工智能技术的兴起.以及人类视觉研究的进展.人们逐渐对人脸图像的机器识别投入很大的热情,并形成了一个人脸图像识别研究领域,.这一领域除了它的重大理论价值外,也极具实用价值。 在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此从解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。 同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,

相关文档
最新文档