多元统计分析 实验报告,计算协方差矩阵,相关矩阵,SAS

多元统计分析 实验报告,计算协方差矩阵,相关矩阵,SAS
多元统计分析 实验报告,计算协方差矩阵,相关矩阵,SAS

(一)

院系:数学与统计学学院

专业:__ _统计学

年级: 2009级

课程名称:统计分析

学号:

姓名:

指导教师:

2012年 4月 28 日

(一)实验名称

1.编程计算样本协方差矩阵和相关系数矩阵;

2.多元方差分析MANOV A。

(二)实验目的

1.学习编制sas程序计算样本协方差矩阵和相关系数矩阵;

2.对数据进行多元方差分析。

(三)实验数据

第一题:

第二题:

(四)实验内容

1.打开SAS软件并导入数据;

2.编制程序计算样本协方差矩阵和相关系数矩阵;

3.编制sas程序对数据进行多元方差分析;

4.根据实验结果解决问题,并撰写实验报告;(五)实验体会(结论、评价与建议等)

第一题:

程序如下:

proc corr data=sasuser.shan cov;

proc corr data=sasuser.shan nosimple cov;

with x3 x4;

partial x1 x2;

run;

结果如下:

(1)协方差矩阵

(2)相关系数矩阵

第二题:

程序如下:

proc anova data=sasuser.huang;

class kind;

model x1-x4=kind;

manova h=kind;

run;

结果如下:

(1)分组水平信息

(2)x1、x2、x3、x4的方差分析

(3)多元方差分析

根据多元分析结果,p指小于0.05,表明在0.05的显著水平下,四个变量有显著差异。

协方差矩阵和相关矩阵

一、协方差矩阵 变量说明: 设为一组随机变量,这些随机变量构成随机向量 ,每个随机变量有m 个样本,则有样本矩阵 11 12121 212...... ..... ......m m n n nm x x x x x M x x x ????????=? ??????? 其中对应着每个随机向量X 的样本向量,对应着第i 个随机单变量的所有样本值构成的向量。 单随机变量间的协方差: 随机变量 之间的协方差可以表示为 根据已知的样本值可以得到协方差的估计值如下: 可以进一步地简化为: 协方差矩阵:

(5) 其中,从而得到了协方差矩阵表达式。 如果所有样本的均值为一个零向量,则式(5)可以表达成:

二、相关矩阵(相关系数矩阵) 相关系数: 著名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。 相关系数用r表示,它的基本公式(formula)为: 相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下: ?当r>0时,表示两变量正相关,r<0时,两变量为负相关。 ?当|r|=1时,表示两变量为完全线性相关,即为函数关系。 ?当r=0时,表示两变量间无线性相关关系。 ?当0<|r|<1时,表示两变量存在一定程度的线性相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱。 ?一般可按三级划分:|r|<0.4为低度线性相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关。 相关矩阵也叫相关系数矩阵,是由矩阵各列间的相关系数构成的。也就是说,相关矩阵第i行第j列的元素是原矩阵第i列和第j列的相关系数。 3、协方差矩阵和相关矩阵的关系 由二者的定义公式可知,经标准化的样本数据的协方差矩阵就是原始样本数据的相关矩阵。这里所说的标准化指正态化,即将原始数据处理成均值为0,方差为1的标准数据。 即: X'=(X-EX)/DX

SAS简单的矩阵运算和变量的协方差矩阵

SAS/IML矩阵功能简介 SAS/IML是SAS提供的一个可以进行矩阵运算编程的工具,详细使用请参见有关资料或系统帮助(Help | Extended Help | SAS System Help: Main Menu | Help for SAS Products | SAS/IML)。下面给出SAS/IML常用命令: ●proc iml 调用SAS/IML矩阵运算编程的工具; ●用+、-、*符号表示矩阵的加减乘; ●用||表示矩阵左右连接,用//表示矩阵上下连接; ●用#表示用某个常数分别乘以矩阵中的每个元素3#x; ●用/表示用某个常数分别去除矩阵中的每个元素x/3; ●用##矩阵中的每个元素进行乘方运算x##2; ●用g=inv(x)表示g是x的逆; ●用e=eigval(x) 表示e是x特征值; ●用d=eigvec(x) 表示d是x特征向量; ●用h=det(x) 表示h是x行列式; ●用t=trace(x) 表示t是x的迹; ●用rank=round(trace(ginv(x)*x)) 表示rank是x的秩; G = GINV(A) 表示求A的广义逆矩阵,如果G = GINV(A),那么AGA = A,GAG = G,(AG)' = AG和(GA)' = GA; ●用下面的程序表示求矩阵x的某个子矩阵 proc iml; x={123, 456, 789}; m=x[2:3,1:3]; (矩阵m是x的第2行到第3行和第1列到第3列构成的子矩阵) print m; ●用下面的程序求由几个子矩阵构成一个矩阵?? ?? ?? ?? ?? A B C 。 proc iml; a={2 2, 4 4} ;

协方差矩阵和相关矩阵(20200930060627)

、协方差矩阵变量说明: 设为一组随机变量,这些随机变量构成随机向量每个随机变量有m个样本,则有样本矩阵乳鸟严?点]J[瓦禺…直] X11 X]2 ??X1m X21???X2m X n1 人2??x nm 其中色…冏对应着每个随机向量X的样本向量,報对应着第i个 随机单变量的所有样本值构成的向量。 单随机变量间的协方差: X Y 随机变量“之间的协方差可以表示为 句二矶兀-&(疋)]*厂凤七)]} 根据已知的样本值可以得到协方差的估计值如下: 1 ? 1 1 ? 创=一乞[血比- 一为甌』巫小-一2^)1 用 i W a_i 酬J-1 可以进一步地简化为: % 二一£ %叫 - -7才呱£ 喘E-i 初7 M -I 1 W M -—迸爲刀她远2L "N 朋用苗几1 协方差矩阵: ^11 C12 …^lM ~ 1 1 M M 1 [雋 —輕爲-一鮭■■■—聲兔工城 1 乩1 f 21 如■" 如 1 [罰睥-I| [M8 —硏-兔-一^2皿如迟血…—鳄爲-一^£码 工g ■■ B 4 1 ■ ■ ■m tn pi ”】m m ■I ■ #-1 °讥% ■■■ c JtJt ■■s i [ 科就I i m L幡 朋x z w 旳山L1 _ sy 丽1

W< .a^l =丄1瓦爲,…怎][瓦爲?…恳]F[鸟十直十…+瓦][鸟十為+…十風F m翊 1獨 = -2(A-A][^-A] 梯U (5) 1 ^M1 nfa 其中;■.-■ + ;+"---,从而得到了协方差矩阵表达式。 如果所有样本的均值为一个零向量,则式(5)可以表达成: 补充说明: 1协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同 样本之间的协方差,如元素C j就是反映的随机变量x,x j的协方差。 2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小, 则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长 度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵, 之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。 3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,贝U 所得的协方差矩阵越可靠。 4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分 量之间的相关性究竟有多大,还会引入相关系数矩阵。 5、协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两 个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。由此引入相关系数。 COV(x,y) Xy. D(xh.D(y) 二、相关矩阵(相关系数矩阵) 相关系数: 著名统计学家卡尔?皮尔逊设计了统计指标一一相关系数。相关系数是用以 反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的 单相关系数。

协方差矩阵和相关矩阵

一、协方差矩阵 变量说明: 设为一组随机变量,这些随机变量构成随机向量,每个随机变量有m个样本,则有样本矩阵 (1) 其中对应着每个随机向量X的样本向量,对应着第i个随机单变量的所有样本值构成的向量。 单随机变量间的协方差: 随机变量之间的协方差可以表示为 (2) 根据已知的样本值可以得到协方差的估计值如下: (3) 可以进一步地简化为: (4) 协方差矩阵:

(5)其中,从而得到了协方差矩阵表达式。 如果所有样本的均值为一个零向量,则式(5)可以表达成: (6) 补充说明: 1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素C ij就是反映的随机变量X i, X j的协方差。

2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。 3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。 4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。 二、相关矩阵 相关系数: 著名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。 相关系数用r表示,它的基本公式(formula)为: 相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下:

协方差的意义和计算公式

协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。 为什么需要协方差? 上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义: 来度量各个维度偏离其均值的程度,标准差可以这么来定义:

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。 从协方差的定义上我们也可以看出一些显而易见的性质,如: 协方差多了就是协方差矩阵 上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算n! / ((n-2)!*2) 个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义: 这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为 可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。 Matlab协方差实战 上面涉及的内容都比较容易,协方差矩阵似乎也很简单,但实战起来就很容易让人迷茫了。必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。这个我将结合下面的例子说明,以下的演示将使用Matlab,为了说明计算原理,不直接调用Matlab的cov函数(蓝色部分为Matlab代码)。 首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。mysample = fix(rand(10,3)*50)

协方差矩阵基础

一、统计学的基本概念 统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的 集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。 以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个 集合的差别是很大的,计算两者的标准差,前者是8.3后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。 二、为什么需要协方差 标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集,最简单的是大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子的欢迎程度是否存在一些联系。协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义: 来度量各个维度偏离其均值的程度,协方差可以这样来定义: 协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐越受女孩欢迎。如果结果为负值,就说明两者是负相

关,越猥琐女孩子越讨厌。如果为0,则两者之间没有关系,猥琐不猥琐和女孩子喜不喜欢之间没有关联,就是统计上说的“相互独立”。 从协方差的定义上我们也可以看出一些显而易见的性质,如: 三、协方差矩阵 前面提到的猥琐和受欢迎的问题是典型的二维问题,而协方差也只能处理二维问题,那维数多了 自然就需要计算多个协方差,比如n维的数据集就需要计算个协方差,那自然而然我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义: 这个定义还是很容易理解的,我们可以举一个三维的例子,假设数据集有三个维度,则协方差矩阵为: 可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差。 四、Matlab协方差实战 必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。以下的演示将使用Matlab,为了说明计算原理,不直接调用Matlab的cov函数: 首先,随机生成一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。

协方差cov计算公式

第一篇协方差cov计算公式:协方差与协方差矩阵 标签协方差协方差矩阵统计 引言 最近在看主成分分析(PCA),其中有一步是计算样本各维度的协方差矩阵。以前在看算法介绍时,也经常遇到,现找了些资料复习,总结如下。 协方差 通常,在提到协方差的时候,需要对其进一步区分。(1)随机变量的协方差。跟数学期望、方差一样,是分布的一个总体参数。(2)样本的协方差。是样本集的一个统计量,可作为联合分布总体参数的一个估计。在实际中计算的通常是样本的协方差。 随机变量的协方差 在概率论和统计中,协方差是对两个随机变量联合分布线性相关程度的一种度量。两个随机变量越线性相关,协方差越大,完全线性无关,协方差为零。定义如下。 cov(X,Y)=E[(XE[X])(YE[Y])] 当X,Y是同一个随机变量时,X与其自身的协方差就是X的方差,可以说方差是协方差的一个特例。cov(X,X)=E[(XE[X])(XE[X])] 或var(X)=cov(X,X)=E[(XE[X])2] 由于随机变量的取值范围不同,两个协方差不具备可比性。如X,Y,Z分别是三个随机变量,想要比较X与Y的线性相关程度强,还是X与Z的线性相关程度强,通过cov(X,Y)与cov(X,Z)无法直接比较。定义相关系数η为η=cov(X,Y)var(X)var(Y) 通过X的方差var(X)与Y的方差var(Y)对协方差cov(X,Y)归一化,得到相关系数η,η的取值范围是[1,1]。1表示完全线性相关,1表示完全线性负相关,0表示线性无关。线性无关并不代表完全无关,更不代表相互独立。 样本的协方差 在实际中,通常我们手头会有一些样本,样本有多个属性,每个样本可以看成一个多维随机变量的样本点,我们需要分析两个维度之间的线性关系。协方差及相关系数是度量随机变量间线性关系的参数,由于不知道具体的分布,只能通过样本来进行估计。 设样本对应的多维随机变量为X=[X1,X2,X3,...,Xn]T,样本集合为

多元统计分析 实验报告 计算协方差矩阵 相关矩阵 SAS

(一) 院系:数学与统计学学院专业:__ _统计学年级:2009级课程名称:统计分析学号:姓名:指导教师: 2012年 4月 28 日 (一)实验名称 1.编程计算样本协方差矩阵和相关系数矩阵;

2.多元方差分析MANOVA。 (二)实验目的 1.学习编制sas程序计算样本协方差矩阵和相关系数矩阵; 2.对数据进行多元方差分析。 (三)实验数据 第一题:

44.60911.3762178182 4075.0745.31310.0762185185 4485.8454.2978.6545156168 4268.1559.5718.1740166172 3889.0249.8749.2255178180 4777.4544.81111.6358176176 4075.9845.68111.9570176180 4381.1949.09110.8564162170 4481.4239.44213.0863174176 3881.8760.0558.6348170186 4473.0350.54110.1345168168 4587.6637.38814.0356186192 4566.4544.75411.1251176176 4779.1547.27310.647162164 5483.1251.85510.3350166170 4981.4249.1568.9544180185 5169.6340.83610.9557168172 5177.9146.6721048162168 4891.6346.77410.2548162164 4973.3750.38810.0876168168 5773.3739.40712.6358174176 5479.3846.0811.1762156165 5276.3245.4419.6348164166 5070.8754.6258.9248146155 5167.2545.11811.0848172172 5491.6339.20312.8844168172 5173.7145.7910.4759186188 5759.0850.5459.9349148155 4976.3248.6739.456186188 4861.2447.9211.552170176 5282.7847.46710.553170172 第二题: kind x1x2x3x4

PCA(协方差矩阵和奇异值分解两种方法求特征值特征向量)

PCA(协方差矩阵和奇异值分解两种方法求特征值特征向量) 2015-12-30 10:43 1157人阅读评论(0) 收藏举报 分类: 模式识别(1) 1.问题描述 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。 2.过程 主成分分析法是一种数据转换的技术,当我们对一个物体进行衡量时,我们将其特征用向量 (a1,a2,a3,...an)进行表示,每一维都有其对应的variance(表示在其均值附近离散的程度);其所有维的variance之和,我们叫做总的variance;我们

对物体进行衡量时,往往其特征值之间是correlated 的,比如我们测量飞行员时,有两个指标一个是飞行技术(x1),另一个是对飞行的喜好程度(x2),这两者之间是有关联的,即correlated的。我们进行PCA (主成分分析时),我们并没有改变维数,但是我们却做了如下变换,设新的特征为(x1,x2,x3...,xn); 其中 1)x1的variance占总的variance比重最大; 2)除去x1,x2的variance占剩下的variance比重最大; .... 依次类推; 最后,我们转换之后得到的(x1,x2,...xn)之间都是incorrelated,我们做PCA时,仅取(x1,x2,....xk),来表示我们测量的物体,其中,k要小于n。主成分的贡献率就是某主成分的方差在全部方差中的比值。这个值越大,表明该主成分综合X1,X2,…,XP信息的能力越强。如果前k个主成分的贡献率达到85%,表明取前k个主成分基本包含了全部测量指标所具有的

方差协方差矩阵中文翻译

第二部分:投资组合模型 第十章:计算方差-协方差矩阵 10.1 本章概述 要计算有效投资组合,必须要计算收益数据的方差-协方差矩阵。本章中,我 们将在EXCEL中实现这个计算。其中最显而易见的是计算样本的方差协方差矩阵。这是直接由历史收益计算而得来的矩阵。我们介绍几种计算方差-协方差的方法,包括在电子表格中使用超额收益矩阵直接计算。 即使样本的方差-协方差矩阵看起来像一个明显的选择,但我们用大量的文字 说明它也许不是方差和协方差最好的估计。样本的方差协方差矩阵有两个明显的缺陷:一是它常使用不现实的参数,二是它难以用于预测。这些将在10.5和10.6中讨论。作为样本矩阵的替换,第10.9和第10.10节将讨论用于优化方差协方差阵估计得压缩方法。 10.2 计算样本的方差-协方差矩阵 假设我们有N个资产在M期上的收益数据。我们可以将资产i在时间t的收益 写为r it 。资产i的平均收益写为。那么资产i和资产j收益协 方差的计算就为 这些协方差的矩阵为样本的方差-协方差矩阵。我们的问题就是要有效地计算 这些协方差。定义超额收益矩阵为: A的每一列减去每项资产的平均收益,该矩阵的转置为 A T乘以A再除以M-1得到样本的方差-协方差矩阵 考虑到计算方面,我们使用股票数N=6,年数M=11的年收益数据,下面的电子表记录了价格数据(股利调整后)及计算出的收益。

我们用数字例子来说明计算方差-协方差矩阵的矩阵方法。我们通过减去资产各自的平均收益,得到超额收益矩阵(下面的表格中42到52行)在第55-61行中我们计算样本方差-协方差矩阵。

10.2.1一个稍微更有效率的替代方法 正如你所期望的那样,的确存在其他计算方差-协方差矩阵的可选方法。这里讲的方法跳过了超额收益的计算,并且直接使用单元格B71:B76中的公式进行计算。他通过使用数组函数 =MMULT(TRANSPOSE(B23:G33-B35:G35),B23:G33-B35:G35)/10.通过写B23:G33-B35,我们直接将每项收益减去平均收益得到超额收益向量。

矩阵协方差计算

浅谈协方差矩阵 今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵。 统计学的基本概念 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。 为什么需要协方差? 上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义: 来度量各个维度偏离其均值的程度,标准差可以这么来定义: 协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出

协方差的意义和计算公式

协方差的意义和计算公式 统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些都比较简单,大家自己看看吧 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。 为什么需要协方差? 上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义: 来度量各个维度偏离其均值的程度,标准差可以这么来定义:

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。 从协方差的定义上我们也可以看出一些显而易见的性质,如: 协方差多了就是协方差矩阵 上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算 个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给 出协方差矩阵的定义: 这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有 三个维度,则协方差矩阵为 可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。Matlab协方差实战 上面涉及的内容都比较容易,协方差矩阵似乎也很简单,但实战起来就很容易让人迷茫了。必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。这个我将结合下面的例子说明,以下的演示将使用Matlab,为了说明计算原理,不直接调用Matlab的cov函数(蓝色部分为Matlab代码)。 首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。 1 M ySample = fix(rand(10,3)*50)

协方差矩阵和相关矩阵

协方差矩阵和相关矩阵Last revision on 21 December 2020

一、协方差矩阵 变量说明: 设为一组随机变量,这些随机变量构成随机向量,每个随机变量有m个样本,则有样本矩阵 其中对应着每个随机向量X的样本向量,对应着第i个随机单变量的所有样本值构成的向量。 单随机变量间的协方差: 随机变量之间的协方差可以表示为 根据已知的样本值可以得到协方差的估计值如下: 可以进一步地简化为: 协方差矩阵: (5) 其中,从而得到了协方差矩阵表达式。 如果所有样本的均值为一个零向量,则式(5)可以表达成: 补充说明: 1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素C ij就是反映的随机变量X i, X j的协方差。 2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分

量了(对角线上的元素反映的是方差,也就是交流能量)。3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。 4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。 5、协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。由此引入相关系数。 二、相关矩阵(相关系数矩阵) 相关系数: 着名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。 相关系数用r表示,它的基本公式(formula)为: 相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下: ?当r>0时,表示两变量正相关,r<0时,两变量为负相关。 ?当|r|=1时,表示两变量为完全线性相关,即为函数关系。 ?当r=0时,表示两变量间无线性相关关系。 ?当0<|r|<1时,表示两变量存在一定程度的线性相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越 弱。 ?一般可按三级划分:|r|<为低度线性相关;≤|r|<为显着性相关;≤|r|<1为高度线性相关。 相关矩阵也叫相关系数矩阵,是由矩阵各列间的相关系数构成的。也就是说,相关矩阵第i行第j列的元素是原矩阵第i列和第j列的相关系数。 3、协方差矩阵和相关矩阵的关系

相关文档
最新文档