前方交会和侧方交会

前方交会和侧方交会
前方交会和侧方交会

前方交会和侧方交会

由正弦定理得出:D AP/D AB=sinβ/sinγ=sinβ/sin(α+β)

则:(D AP/D AB)sinα=(sinβsinα)/sin(α+β)=1/(ctgα+ctgβ)

前方交会和侧方交会中P点坐标计算公式:

X P=(X A ctgβ+X B ctgα+(Y B-Y A)÷(ctgα+ctgβ)

Y P=(Y A ctgβ+Y B ctgα+(X A-X B)÷(ctgα+ctgβ)

上式常称为余切公式。注意使用上述公式时,A、B、P的编号应是反时针方向的。P点坐标算出后,可将A、P作为已知点,用计算B点坐标来校核:

校核计算公式:

X B=(X p ctgα+X A ctgγ+(Y A-Y P)÷(ctgα+ctgγ)

Y B=(Y p ctgα+Y A ctgγ+(X P-X A)÷(ctgα+ctgγ)

本公式只能检查计算本身是否有错,不能发现角度侧错以及已知数据是否用错、抄错等错误,也不能提高计算精度。

运用此公式的技术要求:

为保证计算结果和提高交会精度,规定如下:

1、前方交会和侧方交会应有三个大地点,困难时应有两个大地点。

2、交会角不应小于30°,并不应大于150°,困难时亦不应小于20°,并应不大于160°。

3、水平角应观测两个测回,根据测点数量可用全测回法或方向观测法。

4、三个大地点的前方交会,可通过两个三角形(ΔABP,ΔBCP)求出P点的两组坐标值P(X P1、

Y P1),(X P2、Y P2),两组算得的点位较差不大于两倍的比例尺精度,即:

ΔD=√δx2+δy2≤2×0.1M(mm)

式中δx,δy—δx= X P1- X P2,δy= Y P1 -Y P2

M—比例尺分母。

后方交会

B

如图所示,A、B、C是已知三角点,P点是导线点,将仪器安置在P点上,观测P至A、B、C各个方向之间的水平夹角α、β,然后根据已知三角点的坐标,可解算P点坐标。

1.引入辅助量a、b、c、d

a=(X B-X A)+(Y B-Y A)ctgα

b=(Y B-Y A)- (X B-X A) ctgα

c=(X B-X C)+(Y B-Y C)ctgβ

d=(Y B-Y C)- (X B-X C) ctgβ

K=(a-c)/(b-d)

2.P点坐标计算:

X P= X B+(Kb-a)/(K2+1)

YP= Y B-K((Kb-a)/ (K2+1))

3.危险圆判别

当P点正好落在通过A、B、C三点的圆周上时,后方交会点无法解算。

即:

a=c

b=d

K=( a-c)/( b-d)=0/0

此时为不定解。

角度前方交会计算表(Word)

表6-5 角度前方交会点坐标计算表 略图 αⅡⅠ 北 αβ1 2 2 β1 公式 α βαβctg ctg y y ctg x ctg x x A B B A P +-++=)( α βαβctg ctg x x ctg y ctg y y A B B A P +--+= ) ( 已知 数据 x A =4807.86m y A =6936.06 m x B =3552.77m y B =7417.68m x C =3729.17m y C =8684.70 m Ⅰ 组 α1=60°17′16″ ctg 0.570673 β1=53°34′38″ ctg 0.727877 Ⅱ 组 α2=49°29′32″ ctg 0.854315 β2=65°07′57″ ctg 0.463495 (1) βαctg ctg + Ⅰ组 1.308550 Ⅱ组 1.317810 (2) βctg x A Ⅰ组 3547.609 (3) βctg y A Ⅰ组 5117.959 Ⅱ组 1646.691 Ⅱ组 3438.058 (4) αctg x B Ⅰ组 2027.470 (5) αctg y B Ⅰ组 4233.070 Ⅱ组 3185.886 Ⅱ组 7419.469 (6) A B y y - Ⅰ组 481.62 (7) )(A B x x -- Ⅰ组 +1255.09 Ⅱ组 1267.02 Ⅱ组 -176.40 (8) (2)+(4)+(6) Ⅰ组 6056.699 (9) (3)+(5)+(7) Ⅰ组 10606.119 Ⅱ组 6099.597 Ⅱ组 10681.127 (10) ) 1()8(= P x Ⅰ组 4628.558 (11) ) 1()9(= P y Ⅰ组 8105.245 Ⅱ组 4628.586 Ⅱ组 8105.210 )(1.022 2mm M e e y x ??=≤+=容δδ 式中 x =x P ′- x P ″, y =y P ′- y P ″,M 为测图比例尺分母。 表6-5实例中:x =4628.558-4628.586=-0.028m y =8105.245-8105.210=+0.035m e =0.045m e 容=2×0.1×1000=200mm 观测结果计算得e ≦e 容,说明观测结果达到精度要求,最后取平均值作为P 点坐标,即 x P =4628.572m y P =8105.228m

全站仪后方交会法步骤和高程测量步骤

全站仪后方交会法步骤和 高程测量步骤 Revised final draft November 26, 2020

1、角度测量(angleobservation) (1)功能:可进行水平角、竖直角的测量。 (2)方法:与经纬仪相同,若要测出水平角∠AOB,则: 1)当精度要求不高时: 瞄准A点——置零(0SET)——瞄准B点,记下水平度盘HR的大小。 2)当精度要求高时:——可用测回法(methodofobservationset)。 操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”(HSET)。 2、距离测量(distancemeasurement) PSM、PPM的设置——测距、测坐标、放样前。 1)棱镜常数(PSM)的设置。 一般:PRISM=0(原配棱镜),-30mm(国产棱镜) 2)大气改正数(PPM)(乘常数)的设置。 输入测量时的气温(TEMP)、气压(PRESS),或经计算后,输入PPM的值。 (1)功能:可测量平距HD、高差VD和斜距SD(全站仪镜点至棱镜镜点间高差及斜距) (2)方法:照准棱镜点,按“测量”(MEAS)。 3、坐标测量(coordinatemeasurement) (1)功能:可测量目标点的三维坐标(X,Y,H)。 (2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已

知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。。。 若输入:方位角,测站坐标(,);测得:水平角和平距。则有: 方位角: 坐标: 若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有: 高程: (3)方法: 输入测站S(X,Y,H),仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标。 4、点位放样(Layout) (1)功能:根据设计的待放样点P的坐标,在实地标出P点的平面位置及填挖高度。 (2)放样原理 1)在大致位置立棱镜,测出当前位置的坐标。 2)将当前坐标与待放样点的坐标相比较,得距离差值dD和角度差dHR或纵向差值ΔX和横向差值ΔY。 3)根据显示的dD、dHR或ΔX、ΔY,逐渐找到放样点的位置。

单像空间后方交会和双像解析空间后方-前方交会的算法程序实现

单像空间后方交会和双像解析空间后方-前 方交会的算法程序实现 遥感科学与技术 摘要:如果已知每张像片的6个外方位元素,就能确定被摄物体与航摄像片的关系。因此,利用单像空间后方交会的方法,可以迅速的算出每张像片的6个外方位元素。而前方交会的计算,可以算出像片上点对应于地面点的三维坐标。基于这两点,利用计算机强大的运算能力,可以代替人脑快速的完成复杂的计算过程。 关键词:后方交会,前方交会,外方位元素,C++编程 0.引言: 单张像片空间后方交会是摄影测量基本问题之一,是由若干控制点及其相应像点坐标求解摄站参数(X S,Y S,ZS,ψ、ω、κ)。单像空间后方交会主要有三种方法:基于共线条件方程的平差解法、角锥法、基于直接线性变换的解法。而本文将介绍第一种方法,基于共线条件方程反求象片的外方位元素。 而空间前方交会先以单张像片为单位进行空间后方交会,分别求出两张像片的外方位元素,再根据待定点的一对像点坐标,用空间前方交会的方法求解待定点的地面坐标。可以说,这种求解地面点的坐标的方法是以单张像片空间后方交会为基础的,因此,单张像片空间后方交会成为解决这两个问题以及算法程序实现的关键。

1.单像空间后方交会的算法程序实现: (1)空间后方交会的基本原理:对于遥感影像,如何获取像片的外方位元素,一直是摄影测量工作者探讨的问题,其方法有:利用雷达(Radar)、全球定位系统(GPS)、惯性导航系统(I N S)以及星像摄影机来获取像片的外方位元素;也可以利用一定数量的地面控制点,根据共线方程,反求像片的外方位元素,这种方法称为单像空间后方交会(如图1所示)。 图中,地面坐标X i、Yi、Zi和对应的像点坐标x i、yi是已知的,外方位元素XS、Y S、ZS(摄站点坐标),ψ、ω、κ(像片姿态角)是待求的。 (2)空间后方交会数学模型:空间后方交会的数学模型是共线方程, 即中心投影的构像方程: 式中X、Y、Z是地面某点在地面摄影测量坐标系中的坐标,x,y是该地面点在像片上的构像点的像片坐标,对 于空间后方交会而言它们是已知的,还有主距f是已知的。而9个方向余弦a 1,a 2,a3;b1,b 2,b 3;c 1,c2,c 3是未知的,具体表达式可以取

摄影测量程序汇总(后方交会+前方交会+单模型光束法平差)

程序运行环境为Visual Studio2010.运行前请先将坐标数据放在debug 下。 1.单像空间后方交会 C语言程序: #include #include #include double *readdata(); void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa); void transpose(double *m1,double *m2,int m,int n); void inverse(double *a,int n); void multi(double *mat1,double * mat2,double * result,int a,int b,int c); void inverse(double *a,int n)/*正定矩阵求逆*/ { int i,j,k; for(k=0;k

全站仪后方交会操作过程

全站仪放样,作为施工过程中一项重要环节,对技术员已上升为必须擅长的仪器操作内容。全站仪建站一般有两种方法,即极坐标法建站和后方交会法建站。现以尼康全站仪为例,讲述全站仪后方交会法建站、放样全过程。(其他品牌全站仪可参考进行) 一、建站 1.将仪器架于两已知点均可通视,且可完全看到放样目标点位置的高处。尽量保证视线夹角在60度左右,仪器架设高度适中,三脚架腿踩实,不可出现放样过程中架腿松动现象。(注意:整个放样过程中仪器附近不应有人来回走动,且放样人员应尽量站在一点不动,减少因人员走动导致仪器震动偏移。) 2.固定仪器,上下松动架腿大致调整圆水准器气泡基本居中,按下电源键开机,上下左右转动一下,按下“0”键,进入精平模式。 将水准管放于平行于两螺旋连线方向,关注屏幕上数值,“”过大,便同时向内或向外转动平行方向两螺旋至数值符合要求(一般数值处于5"以内即可);“”过大,便左转或右转垂直方向螺旋至数值符合要求。旋转60度,检查,若仍有些许偏差,再按上述调整。再旋转60度继续检查至完成。 3.按下“确定”键记录,按“建站”键进入建站模式,选择“后方交会法”按“确定”。①若全站仪内已有建站点坐标,可在“PT”栏输入点名(“MODE”键可切换数字与字母),按“确定”键自动跳出坐标,再输入棱镜高(本项目为1.35m和1.2m两种);②若全站仪内无建站点坐标,于“PT”处按“确定”键进入坐标输入界面,XYZ

输完后,按“确定”回到界面,再输入仪器高。 CD数值暂时不输,按“确定”跳过进而记录,进入瞄准后视点1界面,视线内横竖丝卡住棱镜头“横竖尖头”(一般要求:竖向从镜杆底部瞄起,再翻转上去;横向以卡住两边尖为准),瞄准后,点击“测量1”(一般仪器内部设置“测量1”为棱镜模式且双频,“测量2”为免棱镜模式且单频,具体设置可内部调节变动)测量,待响两声后,在不转动仪器前按“确定”键记录,重复“PT”输入点坐标和棱镜高进行后视点2的瞄准,按“测量1”测量(若发现测量时后视瞄准有移动,再瞄准再按“测量1”测量)。 4.确定无误后,按“确定”键记录,自动开始计算建站误差,一般要求建站误差在5mm以内。(考虑仪器自身状态和其他情况,计算出结果有几种不正常情况:①建站误差过大,处理办法为按一次“ESC 键”返回测量后视点2,再次瞄准,测量,再计算,若还是很大,重新建站;②出现“输入第三个点”,处理办法为检查输入点坐标是否输入有误,确定无误,再次测量,若不行,重新建站) 建站误差符合要求后,按“确定”键记录,重新输入点名,其他可按“确定”或“”键跳过,最后“确定”键完成建站。 二、放样 点击“放样”键,按“确定”或“”键跳过界面,至下一个坐标输入界面,输入坐标,瞄准,“测量1”测量,按指示告知架镜人员左右前后移动至定点位置,通知定点。 一次“ESC”键返回,再按“确定”或“”键跳过界面,进入下

后方交会

后方交会-解释是工程测量中一种比较常用的一种测量方法.主要是通过两个或多已知点测量一个未知点. 测角定位-正文利用测角仪器观测角度,以确定被测点位置的一种方法。一般观测两个角,则有两条位置线,两线交点即为被测点位置。在海洋测量中,测角定位通常使用的方法有:后方交会法,一般使用三标两角法,有时使用四标三角法,即在被测点上使用测角仪器观测3个或4个已知目标之间的夹角来确定点位;前方交会法,在两个或两个以上已知点上用测角仪器同时观测各已知点到某一被测点的夹角来确定点位;侧方交会法,综合使用后方交会法和前方交会法来实现定位的方法。另外,还有一距离一方位法,也是通过测角测定方位和距离实现定位的。因为测角仪器大部分是目视光学仪器,所以作用距离近,只适于近岸测量使用。 控制测量-正文在一定的区域内为地形测图或工程测量建立控制网(区域控制网)所进行的测量工作。分为平面控制测量和高程控制测量。平面控制网与高程控制网一般分别单独布设,也可以布设成三维控制网。 控制网具有控制全局,限制测量误差累积的作用,是各项测量工作的依据。对于地形测图,等级控制是扩展图根控制的基础,以保证所测地形图能互相拼接成为一个整体。对于工程测量,常需布设专用控制网,作为施工放样和变形观测的依据。 平面控制网常用三角测量、导线测量、三边测量和边角测量等方法建立。 三角测量是建立平面控制网的基本方法之一。但三角网(锁)要求每点与较多的邻点相互通视,在隐蔽地区常需建造较高的觇标。 导线测量布设简单,每点仅需与前后两点通视,选点方便,特别是在隐蔽地区和建筑物多而通视困难的城市,应用起来方便灵活。随着电磁波测距仪的发展,导线测量的应用日益广泛。 三边测量要求丈量网中所有的边长。应用电磁波测距仪测定边长后即可进行解算。此法检核条件少,推算方位角的精度较低。 边角测量法既观测控制网的角度,又测量边长。测角有利于控制方向误差,测边有利于控制长度误差。边角共测可充分发挥两者的优点,提高点位精度。在工程测量中,不一定观测网中所有的角度和边长,可以在测角网的基础上加测部分边长,或在测边网的基础上加测部分角度,以达到所需要的精度。 小三角测量是在小测区建立平面控制网的一种方法,它多用于小测区的首级平面控制或三、四等三角网以下的加密,作为扩展直接用于地形测图的图根控制网(点)的基础。此外,交会定点法也是加密平面控制点的一种方法。在2个以上已知点上对待定点观测水平角,而求出待定点平面位置的,称为前方交会法;在待定点对3个以上已知点观测水平角,而求出待定

全站仪后方交会法的具体操作步骤+++

全站仪后方交会法的具体操作步骤 开机后先按S.O 键,输入文件名(也可跳过),确定,再按S.O 键下翻,F2 键选择新点,再按F2 选择后方交会法,再选择一个文件,确定,自定义点名(可跳过),再F1 距离后方交会,输入仪高,确定,在No1#界面里面选择坐标,输入第一个已知点的坐标,在已知点上架好凌镜,测量,再用同样的方法进行第二个点的操作。然后再看残差大不大,不大可以进行计算,后面的就进行定位放线。 以南方全站仪为例: 放样---新点----后方交会法----输入点号---回车----输入仪高---回车---输入A 点已知坐标-----输入棱镜高---测量距离---自动保存-----输入B 点坐标---输入棱高----测量距离----自动保存----计算----记录---(完成) 说的挺多,其实挺简单的,你可以上网下一本说明书,说明书里说的很祥细.网上有很多的.希望对你有帮助. 全站仪后方交会的操作方法请告诉我全站仪后方交会法跟极坐标法的原理是一样的,都要有两个已知条件。极坐标法有两个已知坐标或者一个坐标一个方向就可以了,后方交汇要有两个坐标。步骤:在仪器里面找到后方交汇,有的叫交会测量,有的叫新点。每个仪器不同都不一样。有的一起要输入两个坐标后在测距,有的是输一个测一个。反正就是输入坐标,然后测距,然后按计算,定向就可以了,后交有条件限制的。交会角度不能小于15 度和大于165 度、

更不能再一条直线上。要不然仪器就不能计算出结果。无法交会。对交会距离也有一定限制,得慢慢摸索,总之比极坐标法好用但是精度差点,可以交会2 个坐标,也可以交会很多坐标。坐标都精度高。

全站仪后方交会法步骤和高程测量步骤

1、角度测量(angle observation) (1)功能:可进行水平角、竖直角的测量。 (2)方法:与经纬仪相同,若要测出水平角∠AOB ,则: 1)当精度要求不高时: 瞄准A 点——置零(0 SET )——瞄准B 点,记下水平度盘HR 的大小。 2)当精度要求高时:——可用测回法(method of observation set )。 操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”(H SET )。 2、距离测量(distance measurement ) PSM 、PPM 的设置——测距、测坐标、放样前。 1)棱镜常数(PSM )的设置。 一般:PRISM=0 (原配棱镜),-30mm (国产棱镜) 2)大气改正数(PPM )(乘常数)的设置。 输入测量时的气温(TEMP )、气压(PRESS ),或经计算后,输入PPM 的值。(1)功能:可测量平距HD 、高差VD 和斜距SD (全站仪镜点至棱镜镜点间高差及斜距) (2)方法:照准棱镜点,按“测量”(MEAS )。 3、坐标测量(coordinate measurement ) (1)功能:可测量目标点的三维坐标(X ,Y ,H )。 (2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。。。 若输入:方位角,测站坐标(,);测得:水平角和平距。则有: 方位角: 坐标: 若输入:测站S 高程,测得:仪器高i ,棱镜高v ,平距,竖直角,则有: 高程: (3)方法: 输入测站S (X ,Y ,H ),仪器高i ,棱镜高v ——瞄准后视点B ,将水平度盘读数设置为——瞄准目标棱镜点T ,按“测量”,即可显示点T 的三维坐标。 4、点位放样(Layout) (1)功能:根据设计的待放样点P 的坐标,在实地标出P 点的平面位置及填挖高度。(2)放样原理 1)在大致位置立棱镜,测出当前位置的坐标。 2)将当前坐标与待放样点的坐标相比较,得距离差值dD 和角度差dHR 或纵向差值Δ X 和横向差值Δ Y 。 3)根据显示的dD 、dHR 或ΔX 、ΔY ,逐渐找到放样点的位置。 5、程序测量(programs ) (1)数据采集(data collecting) (2)坐标放样(layout) (3)对边测量(MLM)、悬高测量(REM)、面积测量(AREA)、后方交会(RESECTION) 等。

摄影测量实验报告(空间后方交会—前方交会)

空间后方交会-空间前方交会程序编程实验一.实验目的要求 掌握运用空间后方交会-空间前方交会求解地面点的空间位置。学会运用空间后方交会的原理,根据所给控制点的地面摄影测量坐标系坐标以及相应的像平面坐标系中的坐标,利用计算机编程语言实现空间后方交会的过程,完成所给像对中两张像片各自的外方位元素的求解。然后根据空间后方交会所得的两张像片的内外方位元素,利用同名像点在左右像片上的坐标,求解其对应的地面点在摄影测量坐标系中的坐标,并完成精度评定过程,利用计算机编程语言实现此过程。 二.仪器用具 计算机、编程软件(MATLAB) 三.实验数据 实验数据包含四个地面控制点(GCP)的地面摄影测量坐标及在左右像片中的像平面坐标。此四对坐标运用最小二乘法求解左右像片的外方位元素,即完成了空间后方的过程。另外还给出了5对地面点在左右像片中的像平面坐标和左右像片的内方位元素。实验数据如下:

内方位元素:f=152.000mm,x0=0,y0=0 四.实验框图 此过程完成空间后方交会求解像片的外方位元素,其中改正数小于限差(0.00003,相当于0.1’的角度值)为止。在这个过程中采用迭代的方法,是外方位元素逐渐收敛于理论值,每次迭代所得的改正数都应加到上一次的初始值之中。

在空间后方交会中运用的数学模型为共线方程 确定Xs,Ys,Zs的初始值时,对于左片可取地面左边两个GCP的坐标的平均值作为左片Xs 和Ys的初始值,取右边两个GCP的坐标平均值作为右片Xs 和Ys的初始值。Zs可取地面所有GCP的Z坐标的平均值再加上航高。 空间前方交会的数学模型为:

五.实验源代码 function Main_KJQHFJH() global R g1 g2 m G a c b1 b2; m=10000;a=5;c=4; feval(@shuru); %调用shuru()shurujcp()函数完成像点及feval(@shurujcp); %CCP有关数据的输入 XYZ=feval(@MQZqianfangjh); %调用MQZqianfangjh()函数完成空间前方、%%%%%% 单位权中误差%%%% %后方交会计算解得外方位元素 global V1 V2; %由于以上三个函数定义在外部文件中故需VV=[]; %用feval()完成调用过程 for i=1:2*c VV(i)=V1(i);VV(2*i+1)=V2(i); end m0=sqrt(VV*(VV')/(2*c-6)); disp('单位权中误差m0为正负:');disp(m0); %计算单位权中误差并将其输出显示 输入GCP像点坐标及地面摄影测量坐标系坐标的函数和输入所求点像点坐标函数: function shurujcp() global c m; m=input('摄影比例尺:'); %输入GCP像点坐标数据函数并分别将其c=input('GCP的总数='); % 存入到不同的矩阵之中 disp('GCP左片像框标坐标:'); global g1;g1=zeros(c,2); i=1; while i<=c m=input('x='); n=input('y='); g1(i,1)=m;g1(i,2)=n; i=i+1; end disp('GCP右片像框标坐标:'); global g2;g2=zeros(c,2); i=1; while i<=c m=input('x='); n=input('y='); g2(i,1)=m;g2(i,2)=n; i=i+1; end

合肥工业大学 测绘工程 前方交会测量报告

控制测量实习(实验报告) 实习报告 前方交会测量实验 组别:测绘工程C4组 组员:胡强邹倩朱塞虎吴小凡彭东平余洋班级:测绘工程09级1班 实验时间:2012.5.10----2012.5.27

1实验目的和要求 1.复习测回法测量水平角与竖直角和前方交会的基本原理和观测方法,了解测回法观测水平角竖 直角与和前方交会的具体操作步骤,做出实地前方交会测量的具体实施方案。 2.通过测回法测量平面角与竖直角(至少两测回)对观测所得数据进行处理,掌握前方交会的内 业计算方法,经平差后得到各个观测点的平面位置和高程。 3.通过观测科技楼楼顶的竖针的三维坐标,并结合以往观测的数据进行比对,从而达到变形监测 的目的,并在测量过程中提高各个成员的外业作业水平和仪器操作方法。 2注意事项 1.在选点时,应该顾及到仪器架设和观测的方便性,全站仪引的已知点之间的通视性,车辆来往所造 成的影响,合理的选择已知点,要求交会角一般应大于30度并小于150度。 2.选的点尽量要远离科技楼,使观测的仰角不致太大,使操作员用全站仪观测起来不方便或观测不到目 标。 3.在测量过程中,数据记录人员要边记录边计算,发现问题后立即告知观测员,并一起找出原因,从新 观测。 3使用的仪器及工具 南方电子全站仪一台,脚架三个,棱镜两个,记录板一个,计算器一个,喷漆一瓶,锤子一个,钉子若干,自备铅笔和小刀。 4操作步骤 1.根据学校校内已知点,用全站仪引点到科技楼附近已选好的点上,测量出这些点的XYZ坐标(如 图,图上的A、B、C三点)并记录在记录板上。 2.依次在A、B、C点上架设仪器,并测量其他已知点的坐标检核一下,检核与它的原始坐标相差不 大时,用测回法测量水平角α1,α2,β1,β2,测量三测回,并记录在记录表格中,记录时求 出结果,检查是否超限。 3.在每个测站测量中,盘左盘右观测科技楼塔顶竖针的仰角,观测两测回并记录在记录表格中,求 出平均仰角。 4.当观测结束后,回到家中,整理数据资料,求出科技口塔顶竖针的三维坐标,并和别的组对比一 下结果。

前方交会

10.3.1 测量原理 图10-4所示为双曲线拱坝变形观测图。为精确测定等观测点的水平位移,首先在大坝的下游面合适位置处选定供变形观测用的两个工作基准点E和F;为对工作基准点的稳定性进行检核,应根据地形条件和实际情况,设置一定数量的检核基准点(如C、D、G等),并组成良好图形条件的网形,用于检核控制网中的工作基准点(如E、F等)。各基准点上应建立永久性的观测墩,并且利用强制对中设备和专用的照准觇牌。对E、F两个工作基点,除满足上面的这些要求外,还必须满足以下条件:用前方交会法观测各变形观测点时,交会角(见图10-4) 不得小于,且不得大于。 图10-4 拱坝变形观测图 变形观测点应预先埋设好合适的、稳定的照准标志,标志的图形和式样应考虑在前方交会中观测方便、照准误差小。此外,在前方交会观测中,最好能在各观测周期由同一观测人员以同样的观测方法,使用同一台仪器进行。

图10-5 角度前方交会法测量原理 利用前方交会法测量水平位移的原理如下:如图10-5所示,A、B两点为工作基准点,P 为变形观测点,假设测得两水平夹角为,则由A、B两点的坐标值和水平角观测值、可求得P点的坐标。 从图10-5可见: (10-3a) (10-3b)其中可由A、B两点的坐标值通过“坐标反算”求得,经过对(10-3)式的整理可得: (10-4a) (10-4b) 第一次观测时,假设测得两水平夹角为和,由(10-4)式求得P点坐标值为, 第二次观测时,假设测得的水平夹角为和,则P点坐标值变为,那么在此两期变形观测期间,P点的位移可按下式解算: ,, P点的位移方向为:。 10.3.2 前方交会法的种类 前方交会法有三种:测角前方交会法、测边前方交会法、边角前方交会法。其观测值和观测仪器见表10-5。 表10-5 前方交会法的种类 ,,,D1,D2

前方后方交会计算方法

2.2.1两点后方交会解算原理 图2.2.1.1 后方交会 在图2.2.1.1中,已知M1(X1,Y1,Z1),M2(X2,Y2,Z2)是两个控制点,P(Xp ,Yp ,Zp)是待求点。O1,O2是M1,M2通过P 点水平面的投影点。在测站P 点上,观测得两个竖直角1β、2β和一个水平角γ,先要用已知点坐标以及这三个观测数据求出待定点P 的三维坐标(Xp ,Yp ,Zp)。 设h1=Z1-Zp=M1O1,h2=Z2-Zp=M2O2,h0=Z1-Z2=h1-h2,I 为仪器高,则经过计算整理得P 点坐标为Xp =X1+S 1Cos 1α Yp=Y1+ S 1Sin 1α Zp=Z1- S 1tg 1β-I 式中,1α=12α + 1γ,12α是已知点间M 1M 2的方位角。 2.2.2 前方交会 在已知控制点A 、B 上观测水平角α,β,根据已知点坐标和观测角值,计算待定点P 的坐标,称为前方交会(如图2.2.2.1)。 在前方交会图形中,由未知点至相邻两已知点间的夹角称为交会角。当交会角过小(或过大) 时,待定点的精度较差,交会角一般应大于30度并且小于如图3所示,根据已知点A 、B 的坐标A (X A ,Y A )和B (X B ,Y B ),通过平面直角坐标系反算,可获得AB 边的坐标方位角AB α和边长S AB ,由坐标方位角 AB α和观测角α可推算出坐标方位角AP α,由正弦定理可AP 的边长S AP 。由此,根据平面直角坐标系正算公式,即可求得待定点P 的坐标,即 X P =X A +S AP*cos AP α,Y P =Y A +S AP*sin AP α 当A 、B 、P 按逆时针编号时,AP α = AB α-α,将其代入上式,得 X P = X A +S AP*cos(AB α-α) = X A +S AP (cos AB αcos α+sin AB αsin α) Y P = Y A +S AP*sin(AB α-α) = Y A +S AP (cos AB αcos α+sin AB αsin α)

前方、后方和侧方交会

前方交会和侧方交会 由正弦定理得出:D AP/D AB=sinβ/sinγ=sinβ/sin(α+β) 则:(D AP/D AB)sinα=(sinβsinα)/sin(α+β)=1/(ctgα+ctgβ) 前方交会和侧方交会中P点坐标计算公式: X P=(X A ctgβ+X B ctgα+(Y B-Y A)÷(ctgα+ctgβ) Y P=(Y A ctgβ+Y B ctgα+(X A-X B)÷(ctgα+ctgβ) 上式常称为余切公式。注意使用上述公式时,A、B、P的编号应是反时针方向的。P点坐标算出后,可将A、P作为已知点,用计算B点坐标来校核: 校核计算公式: X B=(X p ctgα+X A ctgγ+(Y A-Y P)÷(ctgα+ctgγ) Y B=(Y p ctgα+Y A ctgγ+(X P-X A)÷(ctgα+ctgγ) 本公式只能检查计算本身是否有错,不能发现角度侧错以及已知数据是否用错、抄错等错误,也不能提高计算精度。 运用此公式的技术要求: 为保证计算结果和提高交会精度,规定如下: 1、前方交会和侧方交会应有三个大地点,困难时应有两个大地点。 2、交会角不应小于30°,并不应大于150°,困难时亦不应小于20°,并应不大于160°。 3、水平角应观测两个测回,根据测点数量可用全测回法或方向观测法。 4、三个大地点的前方交会,可通过两个三角形(ΔABP,ΔBCP)求出P点的两组坐标值P(X P1、 Y P1),(X P2、Y P2),两组算得的点位较差不大于两倍的比例尺精度,即: ΔD=√δx2+δy2≤2×0.1M(mm) 式中δx,δy—δx= X P1- X P2,δy= Y P1 -Y P2 M—比例尺分母。

前方交会

前方交会

前方交会 在两个已知点以上分别对待定点相互进行水平角观测,并根据已知点的坐标及观测角值计算出待定点坐标的方法。 后方交会 在待定点上向至少三个已知点进行水平角观测,并根据三个已知点的坐标及两个水平角值计算待定点坐标的方法。 翠华山 2.1 奇石(崩积体与巨砾) 甘湫池和水湫池旁,崩积物的总量可达3亿立方。大块砾石以山体崩裂处向下,堆积成巨大的崩积体。有一块巨砾的长、翠华山山崩奇观宽、高分别达60米、40米、30米。当地有人将房子直接建在巨砾上,稳如磐石,这些山崩砾石沿沟谷堆积,形成大面积的砾石斜坡。一坡巨石前挤后拥,似有翻滚奔腾之势;从高处俯视,砾石奇形怪状,或立或卧,或直或斜,千姿百态,嶙峋峥嵘,甚为壮观。山崩时,巨大的砾石在崩落过程中,有时会沿节理断开。水湫池旁,就有一砾石被锯齿状节理分为两块,犬牙交错的破裂面甚为典型。风洞下面的玄关,是两块高30余米的巨砾之间的一道狭缝,缝宽仅数米。这也可能是巨砾断开所形成的狭窄通道。 2.2 奇洞--冰洞与风洞 山崩时,巨大的砾石相互碰撞、挤压、垒叠,在巨砾间留下许多幽深的缝隙。冰洞和风洞就是这类缝隙中最特殊的两种。冰

洞和风洞位于翠华峰崩积体的上部,海拔约1200米。冰洞较深,洞内地势低陷,形成形状不规则的外洞与内洞。由于缺少与洞外进行冷暖空气交换的条件,因而洞内外夏季温差可达到23℃以上,外洞阴冷,内洞结冰常年不化。风洞是由两块巨大砾石呈“人”字形相互支撑而形成的狭长缝隙。洞呈狭长的三角形,长30余米,高15米。洞内常年不见阳光,气流经过时,速度加快,风力变小。游人进入洞内,便觉凉风嗖嗖。 2.3 奇景-残风断崖 翠华峰与甘湫峰是山崩破坏最严重的两座小峰。翠华峰海拔1414米,周围耸立着一座座山崩后留下的残峰。这些残峰规模不大,尖角突出,直指苍穹,构成一幅奇特的花岗岩峰岭地貌景观。在翠华峰旁有一孤立残峰,四壁如削,傲然耸立,气势不凡。翠华峰侧的断崖峭壁高约200米,十分险峻,这里是山崩源地之一,大量崩塌积物就堆积在断崖下面。甘湫峰海拔2145米,这里也是山崩源之一。在这里,一条1500多米,宽260-900米,高400多米的山体,近南北方向就地崩塌,形成巨大的崩积体。翠华山的悬崖峭壁几乎随处可见。鹰崖瀑布正是在60余米高的断崖面上人工引水而形成的珠帘式瀑布。 2.4 奇湖-堰塞湖 天池堰塞湖、甘湫池堰塞湖和大坪堰塞湖。山崩地质形迹和地貌类型保存齐全,特别是山崩凌空面及冰风洞以北的崩塌石海区由于巨石相互叠置,高低错落,植被茂密,通达性极差,加之

测角前方交汇

第十二讲 经纬仪测角交会测量 在城镇和矿山,导线是布设图根控制的基本方法。但在通视良好的高山和丘陵地区,用经纬仪测角交会法和测距交会法加密控制点也是一种常用的方法。经纬仪测角交会法不需要测量边长,先根据几个已知的高级控制点与加密点构成交会图形,然后观测角度,最后计算加密点的坐标。而测距交会法是用测距仪测量三角形的边长,根据边长推求交会点的坐标。 测角交会图形布设灵活,外业工作量小,计算简便等优点,被广泛采用。在选择交会点点位时,必须注意交会角(待定点之相邻两已知点方向之间的夹角)不应小于30°或大于150°。经纬仪测角交会一般可布设成:单三角形、前方交会、侧方交会、后方交会等图形。这里主要介绍单三角形、前方交会法和测边交会。 一、单三角形 图5—16 所示为单三角形图形,是经纬仪测角 交会法中最简单的一种图形。A 、B 为已知的高级控 制点,P 为待求的交会点,外业观测角为α、β、γ 。 1、单三角形计算P 点坐标的步骤如下: 计算与分配三角形闭合差 由于观测角α、β、γ存在观测误差,致使单三角形内角和不等于180°,而产生闭合差 ?-++=180)(γβαW 消除闭合差的方法是将闭合差W 反号平均分配到三角形的三个内角中, 2、计算待定点的坐标 图5—16中,用改正后的α、β、γ角及已知坐标,依下式计算待定点坐标: β ααββ ααβcot cot cot cot cot cot cot cot +-++= ++-+=B A B A P B A B A P x x y y y y y x x x } ( 5-20) 式(5—20)称为余切公式,在测量计算中有着广泛的应用。它不仅用于计算单三角形,而且适用于前方交会、侧方交会、后方交会以及其它类似的解算。使用该公式时A 、B 、P

摄影测量实验报告(前方交汇后方交汇)

摄影测量学 实验报告 学院:地信院 班级:测绘0904班 老师:邹峥嵘 姓名:张文佳 学号:0405090921 2011年11 月11 日

空间后方交会——空间前方交会 程序编程实验 一.实验目的 1、要求掌握运用摄影测量中空间后方交会-空间前方交会求解地面点的空间位 置的方法和原理。 2、学会运用空间后方交会的原理,根据所给控制点的地面摄影测量坐标系坐标 以及相应的像平面坐标系中的坐标,利用计算机编程语言实现空间后方交会的计算,完成所给像对中两张像片各自的六个外方位元素的求解和精度评定。 3、根据空间后方交会所得的两张像片的内外方位元素,利用同名像点在左右像 片上的坐标,利用计算机编程语言前方交会编程,求解其对应的地面点在摄影测量坐标系中的坐标,从而达到通过摄影测量量测地面地理数据的目的。 二.实验仪器 1、计算机 2、MATLAB计算机编程软件 三、实验数据 实验数据实验数据包含四个地面控制点(GCP)的地面摄影测量坐标及在左右像片中的像平面坐标。此四对坐标运用最小二乘法求解左右像片的外方位元素,即完成了空间后方的过程。另外还给出了 5 对地面点在左右像片中的像平面坐标和左右像片的内方位元素。实验数据如下:

四、程序设计流程图 1、后方交会 此过程完成空间后方交会求解像片的外方位元素,其中改正数小于限差(长度改

正数小于0.01m,角度改正数小于0.0003,相当于1’的角度值)为止。在这个过程中采用迭代计算的方法,是外方位元素逐渐收敛于理论值,每次迭代所得的改正数都应加到上一次的初始值之中。 2、前方交会 七、实验原理公式 1、后方交会中运用的共线方程数学模型 Z Y f Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z X f Z Z c Y Y b X X a Z Z c Y Y b X X a f x x s s s s s s s s s s s s -=-+-+--+-+--=--=-+-+--+-+--=-)()()()()()()()()()()()(33322203331110 3、前方交会与后方交会中均用到旋转矩阵进行的坐标转换

立体像对的前方交会B11090509

课程设计报告 (2013/2014学年第一学期) 题目:立体像对的前方交会 专业测绘工程 学生姓名卞鸿磊 班级学号B11090509 指导教师杨立君 指导单位地理与生物信息学院 日期2013年12月29日

立体像对的前方交会 一、内容与要求 (1) 以读文本文件的形式读取立体像对的外方位元素值; (2) 以读取文本文件的形式读取同名像点坐标; (3) 计算投影系数,像空间辅助坐标系坐标及地面摄影测量坐标系坐标; (4) 首先自己设计好界面和算法,解算中间参数及成果应通过窗口或对话框进行显示; (5) 界面友好,可操作性强,输入信息符合专业规范; (6) 必须完成所要求的各基本功能; (7) 程序设计语言可根据个人情况进行选择,建议使用IDL交互式程序设计语言。 二、基本原理 立体像对与所摄影地面存在着一定几何关系,这种关系可以用数学表达式来描述,若在S1,S2两个摄站点对地面摄影,获取一个立体像对,任一地面点A 在该像对的左右相片上的构象为a1,a2。现已知这两张相片的内外方位元素,设想将该相片按内外方位元素值置于摄影时的位置,显然同名射线S1a1与S2a2必然交于地面点A。这种由立体像对中两张像片的内,外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。 空间前方交会基本关系式: 要确定像点与其对应的地面点的数学表达式,要设定D-XYZ地面摄影测量坐标系,S1-U1V1W1及S2-U2V2W2分别为左右相片的相空间辅助坐标系,且两个像空间辅助坐标系的三个轴系分别与D-XYZ三轴平行。 设地面点A在D-XYZ坐标系中的坐标为(X,Y,Z),地面点A在S1-U1V1W1及S2-U2V2W2中的坐标分别为(U1,V1,W1)及(U2,V2.W2),A点相应像点a1,a2的像空间坐标为(x1,y1,-f),(x2,y2,-f),像点的像空间辅助坐标为(u1,v1,w1),(u2,v2,w2),则有:

前方交会实验报告

实验一 1 实验任务 理解摄影测量中核心模型-共线方程作用,掌握航空影像中重要的点线面的透视关系以及物方与像方之间的解析关系,单幅影像上像点坐标与相应地面点坐标之间的关系。通过编程实现外方位元素的求解,提升编程能力。 2 理论模型与方法 单张像片的空间后方交会的基本思想:以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应的像坐标量测值处发,根据共线条件方程,解求该影像在航空摄影时刻的元素S X ,S Y ,S Z ,φ,ω,κ。 (1)共线方程 ) ()()()()()()()()() ()()(33322203331110S A S A S A S A S A S A S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x x -+-+--+-+--=--+-+--+-+--=- (2)旋转矩阵R 123123123cos cos sin sin sin cos sin sin sin cos sin cos cos sin cos cos sin sin cos cos sin sin sin sin cos sin cos cos cos a a a b b b c c c φκφωκφκφωκφωωκωκω φκφωκφκφωκφω =-=--=-===-=+=-+= (3)经过线性化,得到x ,y 的误差方程式 y x a a a Z a Y a X a x x a a a Z a Y a X a s s s y s s s x -+?+?+?+?+?+?=-+?+?+?+?+?+?=)(v )(v 262524232221161514131211κφφκφφ 矩阵形式如下: L AX V -= 系数方程 ?? ? ???=2625 24 23 22 211615141312 11a a a a a a a a a a a a A

空间后方交会与前方交会题目

Camera Type: Zeiss RMK A 15/23 Focal Length (焦距)= 153.124 mm Principal Point x (像主点坐标)(mm) = -0.002 Principal Point y (像主点坐标)(mm) = 0.002 立体像对:col90 和col91 外方位元素初始值分别为: col90 666700, 115900, 8800, 0, 0, 90 col91 666700, 119400, 8800, 0, 0, 90 col90内定向参数为: Affine coefficients from file (pixels) to film (millimeters) A0 A1 A2 B0 B1 B2 -114.4100 0.100039 -0.001109 116.5242 -0.001092 -0.100015 Col91内定向参数为: Affine coefficients from file (pixels) to film (millimeters) A0 A1 A2 B0 B1 B2 -114.1334 0.100023 -0.001034 116.2613 -0.000998 -0.100024 地面控制点信息为: Control Points 1002 Image file: x y col90p1 952.625 819.625 col91p1 165.875 846.625 1003 Image file: x y col90p1 1857.875 639.125 col91p1 1064.875 646.375 1005 Image file: x y col90p1 1769.450 1508.430 col91p1 1007.250 1518.170 1006 Image file: x y col90p1 1787.875 2079.625 col91p1 1023.625 2091.390 第一题:运用单片空间后方交会方法,分别求解上述两张像片的外方位元素。 (参考答案:The exterior orientation parameters image ID Xs Ys Zs OMEGA PHI KAPPA

相关文档
最新文档