压力容器焊接接头系数取值分析

压力容器焊接接头系数取值分析
压力容器焊接接头系数取值分析

焊接接头系数在压力容器设计中的选取

焊接接头系数在压力容器设计中的选取 摘要:文章针对压力容器设计计算过程中的焊接接头系数,分析了焊接接头系数的实质,探讨了各种常见结构焊接接头系数的选取。 关键词:压力容器;焊接接头系数;选取 焊接接头是焊接压力容器结构中最重要的连接部位,它是由焊缝区、熔合面、热影响区和基本母材四部分组成。一般情况下,压力容器的焊接接头采用要求焊接接头的最低抗拉强度应不小于母材的标准抗拉强度的等强度设计原则,但焊接接头在由液态到固态凝固过程中,总是存在着各种裂纹、气孔、夹渣、未焊透、未熔合等焊接缺陷,局部的不均匀冶金过程导致焊接接头内部组织不均匀,这些因素都会影响到焊接接头的强度。由此可见,焊接接头是压力容器结构中比较薄弱的环节,它的性能将直接影响压力容器的质量和安全。因此,在压力容器设计计算过程中,引入焊接接头系数φ的概念,定义为焊接接头的强度与母材强度之比,用以反映由于焊接原因使焊接接头强度被削弱的程度。在压力容器设计过程中,正确地选择焊接接头系数φ,不仅涉及到容器安全性和可靠性,还涉及到容器设计制造过程中的经济性。文章依据《固定式压力容器安全技术监察规程》、GB150和相关规范标准,以焊制压力容器为讨论对象,探讨压力容器设计过程中如何正确选取焊接接头系数φ。 1焊接接头的分类和焊接接头系数的选取分析 我国在国家标准GB150中对压力容器焊接接头的分类有明确的规定,根据接头的位置和形式,分为A、B、C、D四种类型(如图1所示)。其中A类主要指圆筒部分的纵向接头,凸形封头的拼焊接头等;B类主要指壳体部分的环向接头;C类包括平盖、管板、法兰与圆筒的非对接接头;D类包括接管、人孔、凸缘、补强圈与圆筒的连接接头。 从JB/T4730《承压设备无损检测》与之对应的无损检测方法来看,对A、B 类接头规定采用射线或超声检测,C、D类接头采用磁粉或渗透检测可知,A、B 类接头应为对接接头,C、D类接头应为角接接头。而根据规则设计的强度计算一般考虑受压元件承受一次的最大薄膜应力,即起控制作用的一次应力进行设计计算的。由此可见,用于压力容器受压元件设计计算的焊接接头系数φ选取,是指该容器元件上承受最大应力作用的对接接头,即所谓起控制作用的A、B类焊接接头。C、D类角接接头仅考虑结构尺寸,以满足焊接接头的强度要求,不使用焊接接头系数。 2焊接接头系数的规定 GB150规定根据压力容器受压元件的对接接头的焊缝型式及无损检测的长度比例确定焊接接头系数φ。

焊接接头系数的选取

4.5.2 焊接接头系数 4.5.2 焊接接头系数φ应根据对接接头地焊缝形式及无损检测地长度比例确定. 4.5.2 钢制压力容器地焊接接头系数规定如下: )双面焊对接接头和相当于双面焊地全焊透对接接头 )全部无损检测,取φ; )局部无损检测,取φ. )单面焊对接接头(沿焊缝根部全长有紧贴基本金属地垫板) )全部无损检测,取φ; )局部无损检测,取φ. 4.5.2 其他金属材料地焊接接头系数按相应引用标准地规定. 采用分析法计算开孔补强时,?也应该去. 10.3.1 全部()射线或超声检测 凡符合下列条件之一地容器及受压元件,需采用设计文件规定地方法,对其类和类焊接接头,进行全部射线或超声检测:资料个人收集整理,勿做商业用途 )设计压力大于或等于地第Ⅲ类容器; )采用气压或气液组合耐压试验地容器; )焊接接头系数取地容器; )使用后无法进行内部检验容器; )盛装毒性为极度或高度危害介质地容器; )设计温度低于-40℃地或者焊接接头厚度大于25mm 低温容器; )奥氏体型不锈钢、碳素钢、、及其配套锻件地焊接接头厚度大于30mm 者; )、、及其配套锻件地焊接接头厚度大于20mm者;资料个人收集整理,勿做商业用途)、、、奥氏体—铁素体型不锈钢及其配套锻件地焊接接头厚度大于16mm者;资料个人收集整理,勿做商业用途 )铁素体型不锈钢、其他低合金钢制容器; )标准抗拉强度下限值≥地低合金钢制容器; )图样规定须检测地容器. 注:上述容器中公称直径≥250mm地接管与接管对接接头、接管与高颈法兰对接接头地检测要求与类和类焊接接头相同.资料个人收集整理,勿做商业用途 固定式压力容器安全技术监察规程 4.5.3 全部射线检测或者超声检测 符合下列情况之一地压力容器、类对接接头(压力容器、类对接接头地划分按照地规定),依据本规程4.5.3第()项地方法进行全部无损检测:资料个人收集整理,勿做商业用途 设计压力大于或者等于地第Ⅲ类压力容器; 按照分析设计标准制造地压力容器; 采用气压试验或者气液组合压力试验地压力容器; 焊接接头系数取地压力容器或者使用后需要但是无法进行内部检验地压力容器; 标准抗拉强度下限值大于或者等于地低合金钢制压力容器,厚度大于20mm时,其对接接头还应当采用本规程4.5.3第()项所规定地与原无损检测方法不同地检测方法进行局部检测,该局部检测应当包括所有地焊缝交叉部位;资料个人收集整理,勿做商业用途 设计图样和本规程引用标准要求时. 4.5.3 无损检测方法地选择 ()压力容器地对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差法超声检测()、可记录地脉冲反射法超声检测和不可记录地脉冲反射法超声检测;当采用不可记录地脉冲反射法超声检测时,应当采用射线检测或者衍射时差法超声检测做为附加局部检测;资料个人收集整理,勿做商业用途 管壳式换热器

波峰焊十大缺陷原因分析及解决方法

波峰焊十大缺陷原因分析及解决方法 波峰焊是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊”,其主要材料是焊锡条。下面小编为大家分析下线路板波峰焊接后常见缺陷及解决办法:一、元件脚间焊接点桥接连锡原因:桥接连锡是波峰焊中个比较常见的缺陷,元件引脚间距过近或者波不稳都有可能导致桥接连锡,可能原因如下,焊接温度设置过低,焊接时间过短,焊接完成后下降时间过快,助焊剂喷涂量过少。般这种情况下要检查波和确认焊接坐标是否正确,可以通过提高焊接温度或预热温度,提高焊接时间,增加下降时间,提高助焊剂喷涂量的方法来改善。 二、线路板焊锡面的上锡高度达不到原因:对于二以上产品来说这也是个比较常见的缺陷,般来讲些金属材质的大元件如电源模块等,由于他们大多与接地脚相接散热较快上锡困难,当然般上锡高度标准会有相应的放松。除此外焊接温度低,助焊剂喷涂量少,波高度低都会导致上锡高度不够。提高预热和焊接温度,多喷涂些助焊剂等可以解决问题。 三、线路板过波峰焊时正面元件浮高原因:元件过轻或波抬高会导致波将元件冲击浮高上去,或者在插装元件的时候元件没有插到位,轨道速度过快或不稳导致元件歪斜抬高。可以制作夹具将原件压住,由于夹具的吸热可能需要提高预热或焊接温度。推荐阅读:再次焊锡产生的不良原因 四、波峰焊接后线路板有焊点空洞原因:元件引脚太短尚不能伸出通孔或元件引脚横截面被氧化不上锡,可以加喷助焊剂。 五、波峰焊接后焊点拉原因:这是个和桥接样发生频率较高的缺陷种类,预热和焊接温度过低,焊接时间太短会导致拉的发生。 六、波峰焊接后线路板上有锡珠原因:有锡珠时要检查助焊剂的质量或者板子表面是否沾上锡膏,助焊剂中含水在焊接时会炸裂导致锡珠。

焊接接头系数

一、GB150-1998《钢制压力容器》;JB/T4731-2005《钢制卧式容器》;JB/T4734-2002《铝制焊接容器》;JB/T4710-2005《钢制塔式容器》:(1) 双面焊对接接头和相当于双面焊的全焊透对接接头 100%无损检测:Φ=1.0 局部无损检测Φ=0.85 (2) 单面焊对接接头(沿焊缝根部全长有紧贴基本金属的垫板) 100%无损检测:Φ=0.9 局部无损检测Φ=0.8 二、GB12337-1990《钢制球形储罐》 双面焊全熔透对接焊缝的焊缝系数: 100%无损探伤Φ=1.0 局部无损探伤Φ=0.85 三、JB/T4745-2002《钛制焊接容器》 (1)双面焊对接接头和相当于双面焊的全焊透对接接头: 100%无损检测Φ=0.95 局部无损检测Φ=0.85 (2)单面焊对接接头: 100%无损检测Φ=0.9 局部无损检测Φ=0.8 无法无损检测Φ=0.65 (3)单面焊环向对接 无法无损检测Φ=0.60 四、JB/T4735-1997《钢制焊接常压容器》 (1)双面焊或相当于双面焊的全熔透对接接头 100%无损检测Φ=1.0 局部无损检测Φ=0.85 不作无损检测Φ=0.7 (2)单面焊的对接接头,且沿其根部全长具有紧贴基本金属的垫板: 100%无损检测Φ=0.90 局部无损检测Φ=0.80 不作无损检测Φ=0.65 (3)单面焊无垫板对接接头 局部无损检测Φ=0.70 不作无损检测Φ=0.60 五、GB50341-2003《立式圆筒形钢制焊接油罐设计规范》 Φ取0.9(当标准规定的最低屈服强度大于390MPa时,底圈罐壁板取 Φ=0.85)

波峰焊焊接桥连现象的分析和解决

波峰焊焊接桥连现象的分析和解决 同行经常问我并列举波峰焊接焊接缺陷,是不是波峰焊焊接会存在这些问题呢? 回答:波峰焊是器件焊接主要的设备,因为自动化程度高,相应对操作员的操作技术有更高的要求,一台经过调整后的波峰焊,焊接缺陷就很少,但如果PCB设计与助焊剂,锡条材质所影响的问题就要进行分析,所以整理了相关的文章给广大网友作参考。定义: 桥连即相邻的两个焊点连接在一起,具体来说就是焊锡在毗邻的不同导线或元件之间形成非正常连接现象,随着元件引脚间距的变小及PCB 线路密度的提高,这种缺陷出现的几率逐渐增加。在波峰焊中,桥连经常产生于SMD 元件朝向不正确的方向、不正确的焊盘设计,元件之间的距离不足够远也会产生桥连。(注:桥接不一定短路,而短路一定桥接) 成因: (1) PCB 板焊接面没有考虑钎料流的排放,线路分布太密,引脚太近或不规律;(2) PCB焊盘太大或元件引脚过长(一般为008~3mm),焊接时造成沾锡过多;(3) PCB 板浸入钎料太深,焊接时造成板面沾锡太多; (4) PCB 板面或元件引脚上有残留物;

(5) PCB 板面插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经接触; (6)焊材可焊性不良或预热温度不够或是助焊剂活性不够; (7)焊接温度过低或传送带速度过快,焊点热量吸收不足。在SnCu 钎料中,由于流动性较差,对温度更为敏感,这种现象非常明显; (8)钎料被污染,比如Fe(铁)污染形成的污染物或钎料的氧化物会造成桥连现象。注:一定搭配的焊盘与引脚焊点在一定条件下能承载的钎料(锡膏)量是一定的,如果处理不当,多余的部分都可能造成桥连现象。 防止措施: (1) QFP 和PLCC 与波峰成45°,钎料流排放必须放置特殊设计在引脚角上;(2) SOIC 元件与波峰之间应该成90°,最后离开波峰的两个焊盘应该稍微加宽以承载多余钎料; (3)引脚间距小于008mm 的IC 建议不要采用波峰焊(最小为0065mm); (4)适当提高预热温度,同时考虑在一定范围内提高焊接温度(250oC→260~270oC)以提高钎料流动性,但注意高温对电路板造成损伤及对焊接设备造成的腐蚀; (5) SnCu 中可以添加微量Ni(镍)以提高钎料流动性; (6)采用活性更高的助焊剂; (7)减短引脚长度(推荐为105mm,并成外分开15°),减小焊盘面积。 返修: 桥连可用一种特殊的电烙铁来返修处理。先增加一点助焊剂到桥连的地方,加热钎料合金并且沿着引脚移走电烙铁,一直到焊角顶端提起,带走多余的钎料。通过移走焊

埋弧焊常见焊接缺陷的成因分析及对策

1. 影响焊接缺陷的因素 (1)材料因素: 所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂、以及保护气体等。所有这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中母材本身的材质对热影双区好性能起音决定性的影响。显然所采用的焊接材料对焊缝金属的成份和性能也是关键的因素。好果焊接材料与母材匹配不当,则不仅可以引起焊接区内的至纹、气孔等各种缺陷,而且也可能可起脆化、软化或耐腐蚀等性能变化。所以,为保证获得良好的焊接接头,必须对材料因素予以充分的重视。 (2)工艺因素: 大量的实践证明,同一种母材在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。焊接方法对焊接质量的影响主要可能在两方面:首先是焊接热源的特点,也就是功率密度、加热最高温度、功率大小等,它们可直接改变焊接热循环的各项参数,如线能量大小、高温停留时间、相变温度区间的冷却速度等。这些当然会影响接头的组织和性能;其次是对熔池和附近区域的保护方式,如熔渣保护、气体保护、气-渣联合保护或是在真空中焊接等,这些都会影响焊接冶金过程。显然,焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。 2.常见焊接缺陷的原因分析 (1)结晶裂纹 从金属结晶理论知道,先结晶的金属纯度比较高,后结晶的金属杂质较多,

并富集在晶粒周界,而且这些杂质具有较低的熔点,例如,一般碳钢和低合金钢的焊缝含硫量较高时,能形成FeS,而FeS与Fe发生作用形成熔点只有988℃的低熔点共晶。在焊缝金属凝固过程中,低熔点共晶被排挤在晶界上,形成“液态薄膜”由于液态薄膜的存在减弱了晶间之间的结合力,晶粒间界的液态薄膜便成了薄弱地带。又因为焊缝金属在结晶的同时,体积在减小,周围金属的约束引起它的收缩而引起焊缝金属受到拉伸应力的作用下,于是相应地产生了拉伸变形。若此时产生的变形量超过了晶粒边界具有的变形塑性时,即可沿这个薄弱地带开裂而形成结晶裂纹。 可见,产生结晶裂纹的原因就在于焊缝中存在液态薄膜和在焊缝凝固过程中受到拉伸应力共同作用的结果。因此,液态薄膜是产生结晶裂纹的根源,而拉伸应力是产生结晶裂纹的必要条件。 至于近缝区的结晶裂纹,原则上与焊缝上的结晶裂纹时一致的。在焊接条件下,近缝区金属被加热到很高的温度,在熔合区附近达到半熔化状态。当母材金属含有易熔杂质时,那么在近缝区金属的晶界上,同样也会有低熔共晶存在。这时在焊接热的作用下,将会发生熔化,相当于晶粒间的液态薄膜,与此同时,在拉伸应力的作用下就会开裂。 焊缝上的结晶裂纹和近缝区的结晶有着相互依赖和相互影响的关系。近缝区的结晶裂纹可能是焊缝结晶裂纹的起源。 结晶裂纹的影响因素:通过以上分析可知,结晶裂纹的产生取决于焊缝金属在脆性温度区间的塑性和应变,前者取决于冶金因素,后者取决于力的因素。力的主作用是产生结晶裂纹的的必要条件,只有在力的作用下产生的应变超过材料的最大变形能力时,才会开裂。首先需要分析冶金因素。

冷库压力管道焊接工作记录表

焊接工作记录表 编号:DS236 工程名称*****一期冷库制冷系统安装承包工 程 分项工程名称管道及配件安装 日期2012.08.23 管线号L0301-80 焊接方法氩弧焊打底,手工电弧焊盖面设备名称 环境温度25℃相对湿度55% 所用焊接工艺文件焊接作业指导书 焊口编号 焊材焊接电源焊接 电流 (A) 电弧电 压 (V) 焊接速度 (cm/min) 施焊焊工牌号规格编号种类极性 L0301-01 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 L0301-02 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 L0301-03 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 L0301-04 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 L0301-05 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 L0301-06 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 L0301-07 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 L0301-08 THT-50 Φ2.5S1201-05 交流90 12 8 王增忠THJ422 Φ3.2T1201-04 交流80 20 12 王安达 备注: 注:焊缝返修亦用此表。 监理单位(章):工程负责人:项目焊接责任人:质检员:

焊接缺陷原因分析

常见焊接缺陷及防止措施 (一) 未焊透 【1】产生原因: (1)由于坡口角度小,钝边过大,装配间隙小或错口;所选用的焊条直径过大,使熔敷金属送不到根部。 (2)焊接电源小,远条角度不当或焊接电弧偏向坡口一侧;气焊时,火焰能率过小或焊速过快。 (3)由于操作不当,使熔敷金属未能送到预定位置,号者未能击穿形成尺寸一定的熔孔。(4)用碱性低氢型焊条作打底焊时,在平焊接头部位也容易产生未焊透。主要是由于接头时熔池溢度低,或采用一点法以及操作不当引起的。 【2】防止措施: (1)选择合适的坡口角度,装配间隙及钝边尺寸并防止错口。 (2)选择合适的焊接电源,焊条直径,运条角度应适当;气焊时选择合适的火焰能率。如果焊条药皮厚度不均产生偏弧时,应及时更换。 (3)掌握正确的焊接操作方法,对手工电弧焊的运条和气焊,氩弧焊丝的送进应稳,准确,熟练地击穿尺寸适宜的熔孔,应把熔敷金属送至坡口根部。 (4)用碱性低氢型焊条焊接16MN尺寸钢试板,在平焊接关时,应距离焊缝收尾弧?10~15MM的焊缝金属上引弧;便于使接头处得到预热。当焊到接头部位时,将焊条轻轻向下一压,听到击穿的声音之后再灭弧,这样可消除接头处的未焊透。如果将接头处铲成缓坡状,效果更好。 (二) 未熔合 【1】产生原因: (1)手工电弧焊时,由于运条角度不当或产生偏弧,电弧不能良好地加热坡口两侧金属,导致坡口面金属未能充分熔化。 (2)在焊接时由于上侧坡口金属熔化后产生下坠,影响下侧坡口面金属的加热熔化,造成“冷接”。 (3)横接操作时,在上、下坡口面击穿顺序不对,未能先击穿下坡口后击穿上坡口,或者在上、下坡口面上击穿熔孔位置未能错开一定的距离,使上坡口熔化金属下坠产生粘接,造成未熔合。 (4)气悍时火焰能率小,氩弧焊时电弧两侧坡口的加热不均,或者坡口面存在污物等。【2】防止措施: (1)选择适宜的运条角度,焊接电弧偏弧时应及时更换焊条。 (2)操作时注意观察坡口两侧金属熔化情况,使之熔合良好。 (3)横焊操作时,掌握好上、下坡口面的击穿顺序和保持适宜的熔孔位置和尺寸大小,气焊和氩弧悍时,焊丝的送进应熟练地从熔孔上坡口拉到下坡口。 (三) 焊瘤 【1】产生原因: (1)由于钝边薄,间隙大,击穿熔孔尺寸大。 (2)由于焊接电流过大击穿焊接时电弧燃烧,加热时间过长,造成熔池温度增高,溶池体积增大,液态金属因自身重力作用下坠而形成烛瘤,焊瘤大多存在于平焊、立焊速度过慢等。【2】防止措施: (1)选择适宜的钝边尺寸和装配间隙,控制熔孔大小并均匀一致,一般熔孔直径为0.8~1.25

波峰焊常见焊接缺陷原因分析及预防对策

波峰焊常见焊接缺陷原因分析及预防对策 A、焊料不足:焊点干瘪/不完整/有空洞,插装孔及导通孔焊料不饱满,焊料未爬到元件面的焊盘上原因:a) P CB 预热和焊接温度过高,使焊料的黏度过低; b) 插装孔的孔径过大,焊料从孔中流岀; c) 插装元件细引线大焊盘,焊料被拉到焊盘上,使焊点干瘪; d) 金属化孔质量差或阻焊剂流入孔中; e) PCB 爬坡角度偏小,不利于焊剂排气。 对策:a) 预热温度90-130 C,元件较多时取上限,锡波温度250+/-5 C,焊接时间3?5S。 b) 插装孔的孔径比引脚直径大0.15?0.4mm,细引线取下限,粗引线取上线。 c) 焊盘尺寸与引脚直径应匹配,要有利于形成弯月面; d) 反映给PCB加工厂,提高加工质量; e) PCB的爬坡角度为3?7 Co B、焊料过多:元件焊端和引脚有过多的焊料包围,润湿角大于90 原因:a) 焊接温度过低或传送带速度过快,使熔融焊料的黏度过大; b) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; c) 助焊剂的活性差或比重过小; d) 焊盘、插装孔或引脚可焊性差,不能充分浸润,产生的气泡裹在焊点中; e) 焊料中锡的比例减少,或焊料中杂质CU的成份高,使焊料黏度增加、流动性变差。 f) 焊料残渣太多。 对策:a) 锡波温度250+/-5 C,焊接时间3?5S。 b) 根据PCB 尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB 底面温度在90-130。 c) 更换焊剂或调整适当的比例; d) 提高PCB 板的加工质量,元器件先到先用,不要存放在潮湿的环境中; e) 锡的比例<61.4%时,可适量添加一些纯锡,杂质过高时应更换焊料; f) 每天结束工作时应清理残渣。 C焊点桥接或短路 原因:a) PCB设计不合理,焊盘间距过窄; b) 插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经碰上; c) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; d) 焊接温度过低或传送带速度过快,使熔融焊料的黏度降低; e) 阻焊剂活性差。 对策:a) 按照PCB设计规范进行设计。两个端头ChiP元件的长轴应尽量与焊接时PCB运行方向垂直,SOT、SOP的长轴应与PCB运行方向平行。将SOP最后一个引脚的焊盘加宽(设计一个窃锡焊盘)。 b) 插装元件引脚应根据PCB 的孔距及装配要求成型,如采用短插一次焊工艺,焊接面元件引 脚露岀PCB表面0.8?3mm ,插装时要求元件体端正。 C)根据PCB尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB底面温度在90-130。 d)锡波温度250+/-5 C,焊接时间3?5S。温度略低时,传送带速度应调慢些。 D、润湿不良、漏焊、虚焊 原因:a) 元件焊端、引脚、印制板基板的焊盘氧化或污染,或PCB 受潮。 b) Chip 元件端头金属电极附着力差或采用单层电极,在焊接温度下产生脱帽现象。 C) PCB 设计不合理,波峰焊时阴影效应造成漏焊。

焊接接头系数

焊接接头系数是指对接焊接接头强度与母材强度之比值。用以反映由于焊接材料、焊接缺陷和焊接残余应力等因素使焊接接头强度被削弱的程度,是焊接接头力学性能的综合反映。(实际上焊接接头系数并不真正反映焊缝处材料强度被削弱的程度,而是一个经验数据,表示焊缝质量的可靠程度。) 目录 1焊接接头系数的大小 2焊接接头系数选取方式 1焊接接头系数的大小 标准:国标、美标、日标与焊缝型式、焊接工艺及焊缝无损检测的严格程度有关。与美国的ASME Ⅷ-1,日本JISB8241一样,GB150规定,焊接接头系数应根据容器受压元件的焊接接头的焊接工艺特点(焊缝型式——单面焊或双面焊;有或无垫板),以及无损检测抽查率确定,而且只对对接焊缝作了规定。 见表1: 焊接接头系数只为压力容器强度计算所用并应根据焊缝型式和无损探伤检测要求选取,焊缝熔敷金属的强度不应低于强度较低一侧母材的强度下限。规定的系数值是以焊接接头设计及制造要求符合GB150第十章的规定为前提。例如: ⑴焊缝坡口表面不得有裂纹、分层、夹渣等缺陷; ⑵焊前坡口表面及邻近区域应除去油污等; ⑶. 控制焊缝对口错边量; ⑷不等厚度钢板对接,板厚差超限,单、双面消薄; ⑸任何A类焊接接头之间的距离应大于三倍名义厚度,且不小于100mm; ⑹焊接接头余高的要求;不得高于焊条直径地一倍; ⑺抗拉强度>540MPa及Cr-Mo和奥氏体不锈钢制容器及焊缝系数为1的容器,其焊接接头表面不得有咬边;其它容器焊接接头表面咬边深度不得大于0.5mm,其连续长度不得大于100mm,且两侧咬边总长不得超过该焊缝长度的10%; ⑻限制焊接接头返修次数不得超过规定,并保证原有的抗腐蚀性能; ⑼. 厚度超限应按规定进行热处理; ⑽. 低温容器A类焊接接头如果采用垫板,焊后须去除,B类焊接接头如受结构的限制,垫板可以不拆除; ⑾. 低温容器应按焊接工艺严格控制焊接线能量。

压力管道焊接检查记录

客户苏州派克气体有限公司制造时间2015-3-10~2015-3-25 焊口形式固定焊口工程名称派克供气管道单位工程编号PK0225-3混合气制造标准NB/T 47014~47015-2011拍片比例/ 焊材炉批号入库编号焊缝 编号 焊工 代号 焊接 日期 材质规格焊接方法焊接材料管线号 无损检测 报告编号G1 20# 32×3 GTAW ER50-6 G2 20# 32×3 GTAW ER50-6 G3 20#32×3GTAW ER50-6 G4 20#32×3GTAW ER50-6 G5 20#32×3GTAW ER50-6 注:1、固定焊缝在焊缝编号后加“G”、凸台焊缝加“D”、开孔支管焊缝加“T”、承插焊缝加“S”; 2、焊工编号晏海华HG01 ,王元HG02,周伟 HG03,余小军HG04, 配管:带班: 年月日记录确认: 年月日 压力管道焊接记录

客户苏州派克气体有限公司制造时间2015-3-10~2015- 3-25 焊口形式固定焊口 工程名称派克供气管道PK02 25-1 乙炔 制造标 准 NB/T 47014~47015-2011 拍片比例100%RT 焊材炉批号入库编号焊缝 编号 焊工 代号 材质规格焊接方法 焊接材 料 管线号 无损检测 报告编号S1 20# 57×3.5 GTAW ER50-G G1 20# 57×3.5 GTAW ER50-G G2 20#57×3.5GTAW ER50-G G3 20#57×3.5GTAW ER50-G G4 20#57×3.5GTAW ER50-G G5 20#57×3.5GTAW ER50-G G6 20#57×3.5GTAW ER50-G G7 20# 57×3.5GTAW ER50-G G8 20# 57×3.5GTAW ER50-G G9 20# 57×3.5GTAW ER50-G G10 20# 57×3.5GTAW ER50-G G11 20# 57×3.5GTAW ER50-G G12 20# 57×3.5GTAW ER50-G G13 20# 57×3.5GTAW ER50-G G14 20# 18×3.5GTAW ER50-G 注:1、固定焊缝在焊缝编号后加“G”、凸台焊缝加“D”、开孔支管焊缝加“T”、承插焊缝加“S”; 2、焊工编号晏海华HG01 ,王元HG02,周伟 HG03,余小军HG04, 配管:带班: 年月日记录确认: 年月日

ASME焊接接头分类

A S M E压力容器建造规范研讨会设计部分问题解答──第二部分焊接接头分类和焊接接头系数本文就2009年在上海举行的ASME压力容器建造规范研讨会中学员所提的与设计有关的问题进行汇总答复。 CACI于今年4月所组织的ASME规范Ⅷ(与设计有关)研讨会期间,与会者在会前和研讨中提出了不少问题,CACI要求归纳整理后公布。初步考虑,拟对研讨会中以书面或口头提及的低温操作和防脆断措施,焊接接头分类和焊接接头系数,压力试验及其限制条件,开孔及其补强,元件的形状和尺寸允差,换热器设计,全部改写ASMEⅧ-2的背景和主要修改内容等几个方面陆续整理,在整理中不拟以和讨论者一问一答的方式简单处理,而是根据规范的具体规定,从原理并规范的条文上系统说明。本文是其中的第二篇。 1焊接接头类别和焊接接头(焊缝)类型 焊接接头和焊缝二者既有区别,又有联系,见图1。 图1焊接接头和焊缝 ASMEⅧ-1[1][2]根据接头在容器上所处的位置,在UW-3节中划分为A、B、C、D四类;根据接头的结构型式,例如对接接头,搭接接头和角接接头,在表UW-12中分为(1)~(8)共计八个类型。对每种接头类别和相应的结构型式,规范在UW-2中规定了相应的使用限制。对于对接接头,在UW-11中规定了接头的射线及超声波检测要求,并相应在表UW-12中列出了焊接接头系数;对于角接接头,分别在UW-13、UW-15、UW-16规定了焊缝各处的尺寸要求和强度校核要求,并在UW-11的注中附带说明了无损检测要求。 2焊接接头分类 2.1分类的出发点 ASMEⅧ-1在UW-3中指出,分类是指焊接接头在容器上的位置而不是接头的型式。对“在容器上的位置”这一说法可以解读为分类的根据是接头所受应力的大小。由这点出发,对ASMEⅧ-1的焊接接头分类立刻就得以理解。 焊接接头在容器上所受应力的大小可以由接头在容器上的位置来分析,而接头在容器上的位置则和所连接两元件的结构有关。例如壳体本身或平板本身上的拼接接头,其所在处的应力一般都可以由板壳理论解得;而壳体或平板上连有接管处的接头,其所在处的应力并不能由板壳理论解得。所以规范将其所在处应力可以由板壳理论解得的接头划为A、B类,其中承受最大主应力的接头划为A类,承受第二主应力的接头划为B类,这种壳体本身或平板本身上的拼接接头除个别者外(下面分析)都是对接或搭接接头,不可能是角接接头。规范将其所在处应力并不能由板壳理论解得的接头划为C、D类,由于在同样载荷和尺寸时,平板应力高于壳体,所以将连接件之一为平板者划为C类,将两连接件都为壳体者划为D类,但涉及矩形截面容器侧板时,因在设计中计及了因压力

常见的焊接缺陷及产生原因

常见的焊接缺陷及产生原因,非常重要的经验!金属加工 焊接是大型安装工程建设中的一项关键工作,其质量的好坏、效率的高低直接影响工程的安全运行和制造工期。由于技术工人的水准不同,焊接工艺良莠不齐,容易存在很多的缺陷。现整理缺陷的种类及成因,以减少或防止焊接缺陷的产生, 提高工程完成的质量。 一、焊缝尺寸不合要求 焊波粗、外形高低不平、焊缝加强高度过低或过高、焊波宽度不一及 角焊缝单边或下陷量过大等均为焊缝尺寸不合要求,其原因是: 1. 焊件坡口角度不当或装配间隙不均匀。 2. 焊接电流过大或过小,焊接规范选用不当。 3. 运条速度不均匀,焊条(或焊把)角度不当。 二、裂纹 裂纹端部形状尖锐,应力集中严重,对承受交变和冲击载荷、静拉力影响较大,是焊缝中最危险的缺陷。按产生的原因可分为冷裂纹、热裂纹和再热裂纹等。(冷裂纹)指在200℃以下产生的裂纹,它与氢有密切的关系,其产生的主要原因是: 1. 对大厚工件选用预热温度和焊后缓冷措施不合适。 2. 焊材选用不合适。 3. 焊接接头刚性大,工艺不合理。 4. 焊缝及其附近产生脆硬组织。 5. 焊接规范选择不当。 (热裂纹)指在300℃以上产生的裂纹(主要是凝固裂纹),其产生的主要原因是: 1. 成分的影响。焊接纯奥氏体钢、某些高镍合金钢和有色金属时易出现。 2. 焊缝中含有较多的硫等有害杂质元素。 3. 焊接条件及接头形式选择不当。 (再热裂纹)即消除应力退火裂纹。指在高强度的焊接区,由于焊后热处理或高温下使用,在热影响区产生的晶间裂纹,其产生的主要原因是: 1. 消除应力退火的热处理条件不当。 2. 合金成分的影响。如铬钼钒硼等元素具有增大再热裂纹的倾向。

压力管道焊接工艺规程

压力管道焊接工艺规程 1 适用范围 本规程适用于工业管道或公用管道中材质为碳素钢、低合金钢、耐热钢、不锈钢和异种钢等压力管道的焊条电弧焊、钨极氩弧焊以及二氧化碳气体保护焊的焊接施工。 2 主要编制依据 2.1 GB50236-98《现场设备、工业管道焊接工程施工及验收规范》; 2.2 GB/T20801-2006《压力管道规范-工业管道》; 2.3 SH3501-2001《石油化工剧毒、可燃介质管道工程施工及验收规范》; 2.4 GB50235-97《工业金属管道工程施工及验收规范》; 2.5 CJJ28-89 《城市供热管网工程施工及验收规范》; 2.6 CJJ33-89 《城镇燃气输配工程施工及验收规范》; 2.7 GB/T5117-1995 《碳钢焊条》; 2.8 GB/T5118-1995 《低合金钢焊条》; 2.9 GB/T983-1995 《不锈钢焊条》; 2.10 YB/T4242-1984 《焊接用不锈钢丝》; 2.11 GB1300-77 《焊接用钢丝》; 2.12 其他现行有关标准、规范、技术文件。 3 施工准备 3.1 技术准备 3.1.1 压力管道焊接施工前,应依据设计文件及其引用的标准、规范,并依 据我公司焊接工艺评定报告编制出焊接工艺技术文件(焊接工艺卡或作业指

导书)。如果属本公司首次焊接的钢种,则首先要制定焊接工艺评定指导书,然后对该种材料进行工艺评定试验,合格后做出焊接工艺评定报告。 3.1.2 编制的焊接工艺技术文件(焊接工艺卡或作业指导书)必须针对工程 实际,详细写明管道的设计材质、选用的焊接方法、焊接材料、接头型式、具体的焊接施工工艺、焊缝的质量要求、检验要求及焊后热处理工艺(有要求时)等。 3.1.3 压力管道施焊前,根据焊接作业指导书应对焊工及相关人员进行技 术交底,并做好技术交底记录。 3.1.4 对于高温、高压、剧毒、易燃、易爆的压力管道,在焊接施工前应 画出焊口位置示意图,以便在焊接施工中进行质量监控。 3.2 对材料的要求 3.2.1 被焊管子(件)必须具有质量证明书,且其质量符合国家现行标准 (或部颁标准)的要求;进口材料应符合该国家标准或合同规定的技术条件。 3.2.2 焊接材料(焊条、焊丝、钨棒、氩气、二氧化碳气、氧气、乙炔气 等)的质量必须符合国家标准(或行业标准),且具有质量证明书。其中钨棒宜采用铈钨棒;氩气纯度不应低于99.95%;二氧化碳气纯度不低于99.5%; 含水量不超过0.005% 。 3.2.3 压力管道予制和安装现场应设置符合要求的焊材仓库和焊条烘干 室,并由专人进行焊条的烘干与焊材的发放,并做好烘干与发放记录。 3.3 焊接设备 3.3.1 焊接机具设备主要包括:交流焊机、直流焊机、氩弧焊机、高温烘 干箱、中温烘干箱、恒温箱、二氧化碳气体保护焊机、焊条保温筒、内磨机

焊接接头系数

焊接接头系数 焊接接头系数是指对接焊接接头强度与母材强度之比值。用以反映由于焊接材料、焊接缺陷和焊接残余应力等因素使焊接接头强度被削弱的程度,是焊接接头力学性能的综合反映。(实际上焊接接头系数并不真正反映焊缝处材料强度被削弱的程度,而且一个经验数据,表示焊缝质量的可靠程度。) 焊接接头系数的大小与焊缝型式,焊接工艺及焊缝无损检测的严格程度有关。与美国的ASME Ⅷ-1,日本JISB8241一样,GB150规定,焊接接头系数应根据容器受压元件的焊接接头的焊接工艺特点(焊缝型式——单面焊或双面焊;有或无垫板)以及无损检测抽查率确定,而且只对对接焊缝作了规定,见表1。 表1 焊接接头系数 焊接接头系数只为压力容器强度计算所用并应根据焊缝型式和无损探伤检测要求选取,焊缝熔敷金属的强度不应低于强度较低一侧母材的强度下限。规定的系数值是以焊接接头设计及制造要求符合GB150第十章的规定为前提。例如: ⑴焊缝坡口表面不得有裂纹、分层、夹渣等缺陷; ⑵焊前坡口表面及邻近区域应除去油污等;

⑶. 控制焊缝对口错边量; ⑷不等厚度钢板对接,板厚差超限,单、双面消薄; ⑸任何A类焊接接头之间的距离应大于三倍名义厚度,且不小于100mm; ⑹焊接接头余高的要求; ⑺抗拉强度>540MPa及Cr-Mo和奥氏体不锈钢制容器及焊缝系数为1的容器,其焊接接头表面不得有咬边;其它容器焊接接头表面咬边深度不得大于0.5mm,其连续长度不得大于100 mm,且两侧咬边总长不得超过该焊缝长度的10%; ⑻限制焊接接头返修次数不得超过规定,并保证原有的抗腐蚀性能; ⑼. 厚度超限应按规定进行热处理; ⑽. 低温容器A类焊接接头如果采用垫板,焊后须去除,B 类焊接接头如受结构的限制,垫板可以不折除; ⑾. 低温容器应按焊接工艺严格控制焊接线能量。 焊接接头系数φ是指对应焊接接头强度与母材强度之比值。用以反映由于焊接材料、焊接缺陷和焊接残余应力等因素使焊接接头强度被削弱的程度,是焊接接头力学性能的综合反映。GB150规定焊接接头系数应根据容器受压元件的焊接接头的焊接工艺特点(单面焊或双面焊;有无垫板)以及无损检测的长度比例确定。 我国容器标准规定,焊接接头系数应根据受压元件的焊接接头

焊接缺陷问题分析

焊接问题分析及防治措施 常见缺陷有圆形缺陷(气孔、夹渣、夹钨等)、条形缺陷(条孔,条渣)、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等 1、圆形缺陷 定义:长宽比小于等于3的非裂纹、未焊透和未熔合缺陷。 圆形缺陷包括气孔、块状夹渣、夹钨等缺陷。 a.气孔的成像:呈暗色斑点,中心黑度较大,边缘较浅平滑过渡,轮廓较清晰。 b.夹渣(非金属)的成像:呈暗色斑点,黑度分布无规律,轮廓不圆滑,小点状夹渣轮廓较不清晰。 c.夹钨(金属夹渣)成像:呈亮点,轮廓清晰。 气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。产生气孔的。 主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。雨天作业,未做好防风措施,焊条选择不合适。 预防产生气孔的办法是: 选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。严格按规定保管、清理和焙烘焊接材料 2、条形缺陷 定义:不属于裂纹、未焊透和未熔合的缺陷,当缺陷的长宽比大于3时,定义为条状缺陷,包括条渣和条孔。 夹渣就是残留在焊缝中的熔渣。夹渣也会降低焊缝的强度和致密性。 产生夹渣的原因主要是: 焊缝边缘有氧割或碳弧气刨残留的熔渣; 坡口角度或焊接电流太小,或焊接速度过快。

在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。 防止产生夹渣的措施是:选择合适种类的焊条、焊剂;多层焊时,认真清理前层的熔渣;正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。 3、未焊透 定义:未焊透是指母材金属之间没有熔化,焊缝金属没有进入接头的部位根部造成的缺陷。 影像特征:未焊透的典型影像是细直黑线,两侧轮廓都很整齐,为坡口钝边痕迹,宽度恰好是钝边的间隙宽度。 有时坡口钝边有部分融化,影像轮廓就变得不很整齐,线宽度和黑度局部发生变化,但只要能判断是出于焊缝根部的线性缺陷,仍判定为未焊透。未焊透有底片上处于焊缝根部的投影位置,一般在焊缝中部,因透照偏、焊偏等原因也可能偏向一侧。未焊透呈断续或连续分布,有时能贯穿整张底片。 4、未熔合 定义:未熔合是指焊缝金属与母材金属,或焊缝金属之间未熔化结合在一起的缺陷。可分为根部未熔合、坡口未熔合和层间未熔合。 影像特征:根部未熔合的典型影像是连续或断续的黑线,线的一侧轮廓整齐且黑度较大,为坡口或钝边的痕迹,另一侧轮廓可能较规则,也可能不规则。根部未熔合在底片上的位置就是焊缝根部的投影位置,一般在焊缝的中间,因坡口形状或投影角度等原因出可能偏向一边。坡口未熔合的典型影像是连续或断续的黑线,宽度不一,黑度不均匀,一侧轮廓较齐,黑度较大,另一侧轮廓不规则,黑度较小,在底片上的位置一般在中心至边缘的1/2处,沿焊缝纵向延伸。层间未熔合的典型影像是黑度不大的块状阴影,开关不规则,如伴有夹渣时,夹渣部位黑度较大。一般在射线照相检测中不易发现。 焊接时,接头根部未完全熔透的现象,称为未焊透;在焊件与焊缝金属或焊缝层间有局部未熔透现象,称为未熔合.未焊透或未熔合是一种比较严重的缺陷,由于未焊透或未熔合,焊缝会出现间断或突变,焊缝强度大大降低,甚至引起裂纹。因此,石化装置的重要结构部分均不允许存在未焊透、未熔合的情况。未焊透和未熔合的产生原因是焊件装配间隙或坡口角度太小、钝边太厚、焊条直径太大、电流

焊接接头系数的选取

GB150—报批稿 4.5.2 焊接接头系数 4.5.2.1 焊接接头系数φ应根据对接接头的焊缝形式及无损检测的长度比例确定。 4.5.2.2 钢制压力容器的焊接接头系数规定如下: a)双面焊对接接头和相当于双面焊的全焊透对接接头 1)全部无损检测,取φ=; 2)局部无损检测,取φ=。 b)单面焊对接接头(沿焊缝根部全长有紧贴基本金属的垫板) 1)全部无损检测,取φ=; 2)局部无损检测,取φ=。 4.5.2.3 其他金属材料的焊接接头系数按相应引用标准的规定。 采用分析法计算开孔补强时,也应该去。 10.3.1 全部(100%)射线或超声检测 凡符合下列条件之一的容器及受压元件,需采用设计文件规定的方法,对其A类和B 类焊接接头,进行全部射线或超声检测: a)设计压力大于或等于的第Ⅲ类容器; b)采用气压或气液组合耐压试验的容器; c)焊接接头系数取的容器; d)使用后无法进行内部检验容器; e)盛装毒性为极度或高度危害介质的容器; f)设计温度低于-40℃的或者焊接接头厚度大于25mm 低温容器; g)奥氏体型不锈钢、碳素钢、Q345R、Q370R及其配套锻件的焊接接头厚度大于30mm 者; h) 18MnMoNbR、13MnNiMoR、12MnNiVR及其配套锻件的焊接接头厚度大于20mm者; i) 15CrMoR、14Cr1MoR、08Ni3DR、奥氏体—铁素体型不锈钢及其配套锻件的焊接接头厚度大于16mm者; j)铁素体型不锈钢、其他Cr-Mo低合金钢制容器; k)标准抗拉强度下限值R m≥540MPa的低合金钢制容器; l)图样规定须100%检测的容器。 注:上述容器中公称直径DN≥250mm的接管与接管对接接头、接管与高颈法兰对接接头的检测要求与A类和B类焊接接头相同。 TSG R0004-2009 固定式压力容器安全技术监察规程 4.5.3. 全部射线检测或者超声检测 符合下列情况之一的压力容器A、B类对接接头(压力容器A、B类对接接头的划分按照GB150的规定),依据本规程4.5.3.1第(1)项的方法进行全部无损检测: (1)设计压力大于或者等于的第Ⅲ类压力容器; (2)按照分析设计标准制造的压力容器; (3)采用气压试验或者气液组合压力试验的压力容器;

无铅波峰焊接工艺

无铅波峰焊接工艺 介绍无铅波峰焊工艺的特点,并从波峰焊接工艺流程分别介绍了无铅波峰焊设备的各个子系统。从无铅焊料的润湿性、易氧化性、金属间化合物的形成特点等方面分析了无铅焊接相对于锡铅焊接的工艺特点,提出了无铅焊接过程中应注意的问题及解决的方法。 从无铅焊接工艺特点分析,整个波峰焊接过程是一个统一的系统,任何一个参数的改变都可能影响焊接接头(焊点)的性能。通过分析需要对波峰焊接过程中的参数进行优化组合,得到优良的焊接接头。 综观整个波峰焊工艺过程,包括助焊剂涂敷系统、预热系统、波峰焊接系统、冷却系统和轨道传输系统。每个系统对整个焊接工艺来说都是非常重要的,直接影响到PCB焊接的质量。 在得到一个良好的波峰焊焊接质量来说,还需要有最重要的三点:被焊件的可焊性、焊盘的设计、焊点的排列。这三个条件是最基本的焊接条件。 下面我们就波峰焊的各个系统进行逐个的分析: 一:助焊剂涂敷系统 无铅波峰焊助焊剂采用的涂敷方法主要有两种:发泡和喷雾。在此我们主要介绍一下喷雾,喷雾法是焊接工艺中一种比较受欢迎的涂敷方法,它可以精确地控制助焊剂沉积量。助焊剂喷雾系统是利用喷雾装置,将助焊剂雾化后喷到PCB 上,预热后进行波峰焊。影响助焊剂喷量的参数有四个:基板传送速度、空气压力、喷嘴的摆速和助焊剂浓度。通过这些参数的控制可使喷射的层厚控制在1-10微米之间。 对于无铅波峰焊来说,由于无铅焊料的润湿性比有铅焊料要差,为了保证良好的焊接质量,对助焊剂的选择和涂敷的要求更高。在选择助焊剂时还应考虑无铅PCB的预涂层和无铅焊料的润湿性。波峰焊设备在助焊剂喷雾上要求均匀涂敷,而且涂敷的助焊剂的量要求适中。当助焊剂的涂敷量过大时,就会使PCB 焊后残留物过多,影响外观。另外过多的助焊剂在预热过程中有可能滴落在发热管上引起着火,影响发热管的使用寿命,当助焊剂的涂敷量不足或涂敷不均匀时,就可能造成漏焊、虚焊或连焊。 二:预热系统 在基板涂敷助焊剂之后,首先是蒸发助焊剂中多余的溶剂,增加粘性。这就要在焊接前进行预热基板。如果粘性太低,助焊剂会被熔融的锡过早的排挤出,造成表面润湿不良。干燥助焊剂也可加强其表面活性,加快焊接过程。在预热阶段,基板和元器件被加热到100-105℃,使基板和熔融接触时降低了热冲击,减少基板翘曲的可能。 在通过波峰焊接之前预热,有以下几个理由: 1.提升了焊接表面的温度,因此从波峰上要求较少的温带能量,这样有助于助 焊剂表面的反应和更快速的焊接。 2.预热也减少波峰对元器件的热冲击,当元器件暴露在突然的温度梯度下时可 能被削弱或变成不能运行。

相关文档
最新文档