雾化模拟算例

雾化模拟算例
雾化模拟算例

静电雾化模拟算例

问题描述

本文利用FLUENT的DPM模型对带电液体的雾化情况进行研究。计算区域是一个直径100mm,高70mm的圆柱,简化为二维模型为100mm×70mm的平面。喷头支撑结构分为上下两段,毛细孔径为0.5mm,带电液体从毛细管喷出。

本题涉及到:

一、利用GAMBIT建立静电雾化喷雾器计算模型

(1)在GAMBIT中画出燃烧器的图形;

(2)对各条边定义网格节点的分布;

(3)在面内创建网格;

(4)定义边界类型;

(5)为FLUENT5/6输出网格文件。

二、利用FLUENT-2D求解器进行求解

(1)读入网格文件;

(2)确定长度单位:MM;

(3)确定流体材料及其物理属性;

(4)确定边界类型;

(5)计算初始化并设置监视器;

(6)启用DPM模型,先计算连续相,在利用UDF计算离散相;

(7)利用图形显示方法观察流场、压力场与温度场。

一利用Gambit建立雾化模型

第一步:启动gambit并选定求解器(FLUENT/UNS)

第二步:创建雾化模型

操作:Operation→Tools→Coordinate System

在弹出的Display Grid 对话框中,输入X,Y的值,分别是100,70,点击Apply。

图1 雾化区域计算图

第三步:建立喷嘴

喷嘴支撑结构分为上下两部分,上段尺寸为5mm×5mm,下段为3mm×3mm,喷头直径为0.5mm,长10mm。按照点、线、面的顺序逐步生成,如图2所示。

图2 喷嘴及支撑结构

第三步:划分网格

网格划分采用TGrid类型,喷头附近网格划分密集Intervai size为0.3,四周稀疏Intervai size为1,这样可以减少计算量。划分后的网格如图3所示。

图3 网格划分图

第四步:设置边界类型

操作:ZONES →SPECIFY BOUNDARY TYPES

打开边界类型设置对话框如图4所示.

图4边界条件对话框 图5 边界条件设置

第五步:输出2D 网格

操作:File→Export→Mesh ......输出3D 网格,完成Gambit 前处理.

边界名称 边界类型 液体进口inlet2 VELOCITY-INLET

支撑结构及喷头Wall

Wall 接收板Wall Wall

空气入口inlet1 VELOCITY-INLET 空气出口outlet

PRESSURE-OUT

二利用FLUENT-2D求解器进行模拟计算

第一步:与网格相关的操作

1.读入网格文件

操作:File→Read→Case...

在读网格文件后,将在FLUENT的console窗口中,报告网格和其他一些相关文件信息.2.检查网格

操作:Grid→Check

网格检查列出网格的最小和最大的x与y值,并报告其他许多关于被检查网格的特征或错误,比如,网格体积必须不为负。

3.网格比例设置

FLUENT的缺省单位是m.若网格是以cm单位建立的,在Scale Grid面板中应选用相应的比例关系。

操作:Grid→Scale...

(1)在Units Conversion中的下拉列表中选cm表示网格以厘米生成。

(2)点击Scale.

4.显示网格

操作:Display→Grid...

图6 雾化模型的网格显示图

第二步:设置求解模型

1.定义计算域为2D,且保持缺省的求解器

操作:Define→Models→Solver...打开“Solver”对话框如图7所示.

图7 求解器对话框

2.空气相选用层流模型

操作:Define→Models→Viscous...

打开“Viscous Mode”对话框如图8所示.

图8 计算模型对话框

第三步:流体材料设置

操作:Define→Materials...

选择理想气体参数,点击Close关闭此面板。

图9 材料对话框

第四步:边界条件设置

1.打开边界条件面板

操作:Define→Boundary Conditions...

打开“Boundary Conditions”对话框如图10所示.

图10 边界条件对话框

1.设定空气进口inlet1的边界条件

如图11所示,赋予如“Velocity Inlet”面板所示的进口边界条件.

图11空气速度进口边界条件

4.设定空气出口pressureoutlet边界条件,见图12所示.

图12 压力出口边界条件

5. 设定支撑结构和喷嘴外壁的边界条件。接收板Wall2的设定同上。

图13 壁面边界条件

第五步:初始化并求解

1.设定初场

操作:Sovle→Initialize→Initialize...见图14所示.

图14求解初始化(1)在Computer From下拉列表中选择inlet1.

(2)点击Init设定变量初值,然后关闭面板.

2.设定松弛因子

操作:Solve→Controls→Solution...保持默认值。

图15求解控制对话框3.在计算期间打开残差的图形监视图

操作:Solve→Monitors→Residual...见图16所示.

图16残差监视对话框

4.保存case文件

操作:File→Write→Case...

(1)保持Write Binary Files键打开,以生成一个较小的未格式化的二进制文件;

(2)在Case File文本框中,键入文件名字;

(3) 点击OK.

5.进行迭代计算

操作:Solve→Iterate...见图17所示.

图17迭代对话框

6.保存case和date文件

操作:File→Write→Case&Date...

此时,连续相的计算以完成,接下来进行离散相,即带电液体的计算。第六步利用UDF加入源项

1. 编译程序

操作:Define→User defined→Functions→Interpreted……

点击Browse选择程序所在的文件,其他保持默认值,点击Interpret。

图18 编译窗口

程序如下:

#include "udf.h"

#include "dpm.h"

#include q1.5e-15

DEFINE_DPM_SOURCE(ele_dpm,c,t,source,strength,tp)

{

real E;

real source;

real q;

source=-q*E;

}

2.自定义标量

操作:Define→User defined→scalars…..

在Number of User-Defined Scalars中选择2,如图19所示。

图19 自定义标量窗口

七.启用DPM模型计算离散相

1. 启用DPM模型

操作:Define→models→Discrete Phase Model….设置如图20所示。

图20 DPM模型设置

点击Injections…,在弹出的Injections窗口中,选中Injection-0,点击Set,如图21。

图21 Injections窗口图22 设置窗口

在弹出的Set Injection Properties窗口中,在Release From Surfaces下拉菜单中选择inlet2,设置如图23。

图23 参数设置

2. 材料设置

操作:Define→Materials….

在材料对话框中选择water-liquid,其参数值保持默认值。

3.边界条件设置

操作:Define→Boundary Conditions...

(1) 设置喷口inlet2的边界条件

在打开的“Boundary Conditions”对话框中选择inlet2,点击“set”,在弹出的Velecity Inlet 窗口中,点击UDS,设置如图24,点击DPM,设置如图25。

图24 自定义标量设置图25 DPM设置

(2) 出口条件设置

在打开的“Boundary Conditions”对话框中选择outlet,点击“set”,在弹出的Pressure Outlet 窗口中,点击UDS,设置如图26,点击DPM,设置如图27.

图26 UDS设置图27 DPM设置

(3) 支撑结构及接收板的边界条件设置

在打开的“Boundary Conditions”对话框中选择Wall1,点击“set”,在弹出的Wall窗口中,点击DPM,设置如图28.

图28 Wall设置窗口

Wall2 的设置同上,只是在Boundary Cond Type下拉菜单中选择trap。

4.设置松弛因子

操作:Solve→Controls→Solution..保持默认值。

图29 求解控制对话框

注意:离散相不用再进行初始化了。

5.在计算期间打开残差的图形监视图操作:Solve→Monitors→Residual...6.保存case文件操作:File→Write→Case..

7.进行迭代计算操作:Solve→Iterate.

图30 迭代计算

8.保存case和date文件

操作:File→Write→Case&Date...

计算结果收敛后,查看速度的等高线来检查当前解的情况。

操作:Display→Contours...见图31所示。

图31 等高线对话框

(1)在Contours Of下拉列表中选择Velocity和Velocity Magnitude;

(2)按Display.

图32 速度等高线

《计算方法》模拟试题4

模拟试题 四 一、选择题 ( 每小题3分,共15分) 1. x = 1.234, 有3位有效数字,则相对误差限 ε r ≤( ). (A).0.5×10 -1; (B). 0.5×10 -2; (C). 0.5×10 -3; (D). 0.1×10 -2 . 2. 用紧凑格式对矩阵4222 222 3 12A -?? ?? =-????--?? 进行的三角分解,则22r =( ) 3. 过点(x 0,y 0), (x 1,y 1),…,(x 5,y 5)的插值多项式P(x)是( )次的多项式。 (A). 6 (B).5 (C).4 (D).3. 4. 设求方程f (x )=0的根的弦截法收敛,则它具有( )次收敛。 A .线性 B .平方 C .超线性 D .三次 5. 当a ( )时,线性方程组??? ??2 9=+4-238=3+7+-27=3--10321 321321...ax x x x x x x x x 的迭代解一定收敛. (A) >=6 (B) =6 (C) <6 (D) >6. 二、填空题(每小题3分,共15分) 1. 二阶均差f (x 0, x 1, x 2) = _________________________________. 2. 在区间[],a b 上内插求积公式的系数01,,A A ┅,n A 满足01A A ++┅+n A = . 3. 已知n=3时,科茨系数8 3= 8 3= 8 1= 32 31 30 ) () () (,,C C C ,那么) (33C =_________. 4. 标准四阶龙格-库塔法的绝对稳定域的实区间为 . 5. 高斯消去法能进行到底的充分必要条件为__________________________。 三、计算题(每小题12分,共60分) 1. 写出梯形公式、辛卜生公式,并分别用来计算积分12 11dx x +? . 2. ⑴. 若用二分法求f (x) = 0在 [1,2]之间近似根,精确到0.01,求二分的次数n+1. ⑵. 设f (x) = x 3+x 2-11, 若用牛顿法求解,请指出初值应取1还是2,为什么? 3. 已知方程组123832204 111336 3 1236x x x -?????? ? ?????-=?????????????????? (1) 证明雅可比法收敛 (2) 写出雅可比迭代公式 (3) 取初值() ()00,0,0T X =,求出() 1X 4. 已知微分方程

三种常用分子模拟软件介绍

三种常用分子模拟软件介绍 一、NAMD NAMD(NAnoscale Molecular Dynamics)是用于在大规模并行计算机上快速模拟大分子体系的并行分子动力学代码。NAMD用经验力场,如Amber,CHARMM和Dreiding,通过数值求解运动方程计算原子轨迹。 1. 软件所能模拟的体系的尺度,如微观,介观或跨尺度等 微观。 是众多md 软件中并行处理最好的,可以支持几千个cpu 运算。在单机上速度也很快。 模拟体系常为为10,000-1,000,000 个原子。 2. 软件所属的类型,如MD,DPD,DFT,MC,量化,或交叉等 全原子md,有文献上也用它做过cgmd。 3. 软件能研究的相关领域,使用者的背景最好是? 使用的力场有charmm,x-plor,amber 等,适合模拟蛋白质,核酸,细胞膜等体系。 也可进行团簇和CNT 系统的模拟 软件原理经典,操作简单。但需要对体系的性质足够了解。 4. 软件中主要涉及的理论方法范畴 经典的md,以及用多种方法计算自由能和SMD模拟。 数据分析时候一般很少涉及复杂的热力学和统计热力学的原理,但知道一些最好。

5.软件主要包含的处理工具 namd 是计算部分,本身不能建模和数据分析(unix 的哲学kiss)。但vmd 同namd 系出同门,已同namd 实现无逢链接。 vmd 的tcl 脚本一定要搞懂,别的就不多介绍了。[2] 6.与此软件密切相关的软件 vmd,及其他数据统计分析软件(excel,OOo-calc 等足够了)NAMD在window环境下的编译安装 1.下载NAMD_ 2.7b2_Win32 2.解压到任意目录下(建议最好直接是C:或D:下) 3.添加windows的环境变量:右键单击我的电脑----属性-----高级-----环境变量(在右下角)-----在系统的Path变量里添加你NAMD所在文件夹,比如我 的%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\Syste m32\Wbem;C:\ProgramFiles\CommonFiles\ThunderNetwork\KanKan \Codecs; C:\NAMD_2.7b2_Win32 注意:添加的变量名称要和文件夹得名称一致(如果文件夹得名称你改为namd,那么变量名称为C:NAMD) 4.namd2.7需要后面跟conf 文件才可以正确运行,并且要在conf 文件所在目录执行命令。如:我的命令窗口显示C:\Documents and Settings\HP> 因此我的conf文件要放在C:\Documents and Settings\HP 这个文件夹下,然后执行命令C:\Documents and Settings\HP> C:\NAMD_2.7b2_Win32\namd2 da.conf 即可。 二、GROMACS

PL对模拟量数据的计算方法(114)

PLC对模拟量数据的计算方法 可编程控制器(简称PLC) 是专为在工业环境中应用而设计的一种工业控制用计算机, 具有抗干扰能力强、可靠性高、体积小等优点, 是实现机电一体化的理想装置, 在各种工业设备上得到了广泛的应用, 在机床的电气控制中应用也比较普遍, 这些应用中常见的是将PLC 用于开关量的输入和输出控制。 随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。本文将谈论利用PLC处理模拟量的方法, 以对机床液压系统工作压力的检测处理为例, 详细介绍PLC处理模拟量的各重要环节, 特别是相关软件的设计。为利用PLC全面地实现对机床系统工作参数的检测打下技术基础; 为机床故障的判断、故障的预防提供重要的数据来源。 1 PLC采集、处理模拟量的一般过程 在PLC组成的自动控制系统中, 对物理量(如温度、压力、速度、振动等) 的采集是利用传感器(或变送器) 将过程控制中的物理信号转换成模拟信号后, 通过PLC提供的专用模块, 将模拟信号再转换成PLC可以接受的数字信号, 然后输入到PLC中。由于PLC保存数据时多采用BCD码的形式, 所以经过A /D专用模块的转换后, 输入到PLC的数据存储单元的数据应该是一个BCD 码。整个数据传送过程如图1所示。 图1 PLC采集数据的过程图 PLC对模拟量数据的采集, 基本上都采用专用的A /D模块和专用的功能指令相配合, 可以让设计者很方便地实现外部模拟量数据的实时采集, 并把采集的数据自动存放到指定的数据单元中。经过采集转换后存入到数据单元中的BCD码数字, 与物理量的大小之间有一定的函数关系, 但这个数字并不与物理量的大小相等, 所以, 采集到PLC中的数据首先就需 要进行整定处理, 确定二者的函数关系, 获得物理量的实际大小。通过整定后的数据, 才是实时采集的物理量的实际大小, 然后才可以进行后序的相关处理, 并可根据需要显示输出数据, 整个程序设计的流程图如图2所示。

各大仿真软件介绍

各大仿真软件介绍(包括算法,原理) 随着无线和有线设计向更高频率的发展和电路复杂性的增加,对于高频电磁场的仿真,由于忽略了高阶传播模式而引起仿真的误差。另外,传统模式等效电路分析方法的限制,与频率相关电容、电感元件等效模型而引起的误差。例如,在分析微带线时,许多易于出错的无源模式是由于微带线或带状线的交叉、阶梯、弯曲、开路、缝隙等等,在这种情况下是多模传输。为此,通常采用全波电磁仿真技术去分析电路结构,通过电路仿真得到准确的非连续模式S参数。这些EDA仿真软件与电磁场的数值解法密切相关的,不同的仿真软件是根据不同的数值分析方法来进行仿真的。通常,数值解法分为显示和隐示算法,隐示算法(包括所有的频域方法)随着问题的增加,表现出强烈的非线性。显示算法(例如FDTD、FIT方法在处理问题时表现出合理的存储容量和时间。本文根据电磁仿真工具所采用的数值解法进行分类,对常用的微波EDA仿真软件进行论述。2.基于矩量法仿真的微波EDA仿真软件基于矩量法仿真的EDA 软件主要包括A D S(Advanced Design System)、Sonnet电磁仿真软件、IE3D和Microwave office。 2.1ADS仿真软件Agilent ADS(Advanced Design System)软件是在HP EESOF系列EDA软件基础上发展完善起来的大型综合设计软件,是美国安捷伦公司开发的大型综合设计软件,是为系统和电路工程师提供的可开发各种形式的射频设计,对于通信和航天/防御的应用,从最简单到最复杂,从离散射频/微波模块到集成MMIC。从电路元件的仿真,模式识别的提取,新的仿真技术提供了高性能的仿真特性。该软件可以在微机上运行,其前身是工作站运行的版本MDS(Microwave Design System)。该软件还提供了一种新的滤波器的设计引导,可以使用智能化的设计规范的用户界面来分析和综合射频/微波回路集总元滤波器,并可提供对平面电路进行场分析和优化功能。它允许工程师定义频率范围,材料特性,参数的数量和根据用户的需要自动产生关键的无源器件模式。该软件范围涵盖了小至元器件,大到系统级的设计和分析。尤其是其强大的仿真设计手段可在时域或频域内实现对数字或模拟、线性或非线性电路的综合仿真分析与优化,并可对设计结果进行成品率分析与优化,从而大大提高了复杂电路的设计效率,使之成为设计人员的有效工具[6-7]。2.2Sonnet仿真软件Sonnet是一种基于矩量法的电磁仿真软件,提供面

材料结构与性能模拟计算理论与方法简介

材料结构与性能模拟计算理论与方法简介 [使用电脑对材料模拟计算的优缺点] 优点:(一)不受实验条件的限制、(二)简化研究的原因 缺点:必须使用足够精确的物理定律 因此,目前电脑模拟的材料设计走向两个趋势: (一)采取微观尺度(因为物质由原子组成)、 (二)使用量子力学(才能正确描述电子行为以及由其所决定的机械、传输、光学、磁学等性质) 也就是说,原子之间的作用力以及材料所表现的物性,我们都希望能(不借助实验结果)透过第一原理方法来达到。 [密度泛函理论简介] 自从20世纪60年代密度泛函理论(DFT,Density Functional Theory)建立并在局域密度近似(LDA)下导出著名的Kohn-Sham(KS)方程以来,DFT一直是凝聚态物理领域计算电子结构及其特性最有力的工具。近几年来DFT同分子动力学方法相结合,在材料设计、合成、模拟计算和评价诸多方面有明显的进展,成为计算材料科学的重要基础和核心技术。特别在量子化学计算领域,根据INSPEC数据库的记录显示,1987年以前主要用Hartree-Fock(HF)方法,1990~1994年选择DFT方法的论文数已同HF方法并驾齐驱,而1995年以来,用DFT的工作继续以指数律增加,现在已经大大超过用HF方法研究的工作。W. Kohn因提出DFT获得1998年诺贝尔化学奖,表明DFT在计算量子化学领域的核心作用和应用的广泛性。 DFT适应于大量不同类型的应用,因为电子基态能量与原子核位置之间的关系可以用来确定分子或晶体的结构,而当原子不处在它的平衡位置时,DFT可以给出作用在原子核位置上的力。因此,DFT可以解决原子分子物理中的许多问题,如电离势的计算,振动谱研究,化学反应问题,生物分子的结构,催化活性位置的特性等等。在凝聚态物理中,如材料电子结构和几何结构,固体和液态金属中的相变等。现在,这些方法都可以发展成为用量子力学方法计算力的精确的分子动力学方法。DFT的另一个优点是,它提供了第一性原理或从头算的计算框架。在这个框架下可以发展各式各样的能带计算方法,如LDA,GGA,meta-GGA,hybrid等方法。

数值模拟软件大全

数值模拟软件大全 GEO-SLOPE Offical WebSite: www. geo-slope. com SLOPE/W: 专业的边坡稳定性分析软件, 全球岩土工程界首 选的稳定性分析软件 SEEP/W: 专业的地下渗流分析软件, 第一款全面处理非饱和土体渗流问题的商业化软件 SIGMA/W: 专业的岩土工程应力应变分析软件, 完全基于土(岩)体本构关系建立的专业有限元软件 QUAKE/W: 专业的地震应力应变分析软件, 线性、非线性土体的水平向与竖向耦合动态响应分析软件 TEMP/W: 专业的温度场改变分析软件, 首款最具权威、涵盖范围广泛的地热分析软件 CTRAN/W: 专业的污染物扩散过程分析软件, 超值实用、最具性价比的地下水环境土工软件 AIR/W:专业的空气流动分析软件, 首款处理地下水-空气-热相互作用的专业岩土软件 VADOSE/W: 专业的模拟环境变化、蒸发、地表水、渗流及地下水对某个区或对象的影响分析软件, 设计理论相当完善和全面的环境土工设计软件 Seep3D(三维渗流分析软件)是GeoStudio2007专门针对工程结构中的真实三维渗流问题, 而开发的一个专业软件, Seep3D软件将强大的交互式三维设计引入饱和、非饱和地下水的建模中, 使用户可以迅速分析各种各样的地下水渗流问题. 特点:GeoStudio其实就是从鼎鼎大名的GEO-SLOPE发展起来的, 以边坡分析出名, 扩展到整个岩土工程范围, 基于. NET平台开发的新一代岩土工程仿真分析软件, 尤其是VADOSE/W模块是极具前瞻性的, 环境岩土工程分析的利器. 遗憾的是其模块几乎都只提供平面分析功能. Rocscience Offical WebSite: www. rocscience. com Rocscience 软件的二维和三维分析主要应用在岩土工程和 采矿领域, 该软件使岩土工程师可以对岩质和土质的地表 和地下结构进行快速、准确地分析, 提高了工程的安全性并 减少设计成本. Rocscience 软件对于岩土工程分 析和设计都很方便, 可以帮助工程师们得到快速、正确的解答. Rocscience 软件对于用户最新的项目都有高效的解算结果, 软件操作界面是基于WINDOWS 系统的交互式界面. Rocscience 软件自带了基于CAD 的绘图操作界面, 可以随意输入多种格式的数据进行建模, 用户可以快速定义模型的材料属性、边界条件等, 进行计算得到自己期望的结果. Rocscience 软件包括以下十三种专业分析模块: Slide 二维边坡稳定分析模块

《计算方法》模拟试题3

模拟试卷三 一、 单项选择题(每小题3分,共15分) 1. 以下误差公式不正确的是( ) A .()1212x x x x ?-≈?-? B .()1212x x x x ?+≈?+? 2. 已知等距节点的插值型求积公式 ()()3 5 2 k k k f x dx A f x =≈∑?,那么3 k k A ==∑( ) A .1 B. 2 C. 3 D. 4 3. 辛卜生公式的余项为( ) A .()()3 2880 b a f η-''- B .()()3 12 b a f η-''- C .()()()5 4 2880 b a f η-- D .()( ) ()4 52880 b a f η-- 4.对矩阵4222222312A -?? ??=-????--?? 进行的三角分解,则u 22 =( ) 5. 用一般迭代法求方程()0f x =的根,将方程表示为同解方程()x x ?=的,则()0f x = 的根是( ) A . y x =与()y x ?=的交点 B . y x =与与x 轴的交点的横坐标的交点的横坐标 C . y x =与()y x ?=的交点的横坐标 D . ()y x ?=与x 轴的交点的横坐标 二、 填空题(每小题3分,共15分) 1. 2. 3. 龙贝格积分法是将区间[],a b 并进行适当组合而得出的积分近似值的求法。

4.乘幂法可求出实方阵A 的 特征值及其相应的特征向量. 5. 欧拉法的绝对稳定实区间为 。 三、 计算题(每小题12分,共60分) 1. 已知函数2 1 1y x = +的一组数据: 求分段线性插值函数,并计算()1.5f 的近似值. 2. 求矩阵101010202A -????=????-?? 的谱半径. 3. 已知方程组 123210113110121x x x ????????????=-?????????????????? (1) 证明高斯-塞德尔法收敛; (2) 写出高斯-塞德尔法迭代公式; (3) 取初始值() ()00,0,0T X =,求出()1X 。 4. 4n =时,用复化梯形与复化辛卜生公式分别计算积分 1 20 4 x dx x +? . 5. 用改进平方根法求解方程组1233351035916591730x x x ????????????=?????????????????? 四.证明题(每小题5分,共10分) 证明向量X 的范数满足不等式 (1)2 X X ∞ ∞≤≤ (2)111 X X X n ∞ ≤≤

计算器模拟系统设计-毕业设计

计算器模拟系统设计 学生:XXX 指导教师:XXX 内容摘要:本设计是基于51系列的单片机进行的简易计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED 上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件选择AT89C51单片机和 74lS164,输入用4×4矩阵键盘。显示用5位7段共阴极LED静态显示。软件从分析计算器功能、流程图设计,再到程序的编写进行系统设计。选用编译效率最高的Keil 软件用汇编语言进行编程,并用proteus仿真。 关键词:LED 计算器 AT89C51芯片 74LS164

Calculator simulation system desig n Abstract:The design is a simple calculator based on 51 series microcontroller system design, to complete the calculator keyboard input, add, subtract, multiply, and in addition to three unsigned numeric simple four operations, and the corresponding result will be displayed on the LED. The design process of hardware and software aspects of the synchronous design. Hardware choose AT89C51 microcontroller and 74ls164--enter the 4 × 4 matrix keyboard. Static display with five 7-segment common cathode LED display. Software calculator function from the analysis, flow charts, design, and then program the preparation of system design. Selected to compile the most efficient Keil software in assembly language programming, and with proteus simulation. Keywords: LED calculator AT89C51 chip 74LS164

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

数据结构课程设计 模拟计算器程序

数据结构课程设计 题目名称:模拟计算器程序 计算机科学与技术学院 课程设计任务书 一、设计任务 设计一个模拟计算器的程序 二、设计要求 1、要求对包含加、减、乘、除、括号运算符及SQR和ABS函数的任意整型表达式进 行求解

2、程序基本功能要求实现完整,并有简单的验证。 3、设计报告要求格式规范,符合学校课程设计报告要求。 4、报告中流程图要求描述规范,算法设计清楚正确。 三、设计期限 2018年3月5日到2018年3月30日 前言 利用本学期所学的《数据结构》课程,运用相关知识,查阅相关资料,编写C语言程序,设计一个简单计算器,要求编写的简单计算器能够模拟windows系统的计算器,用户能够用键盘输入相关数据,要求对包含加、减、乘、除、括号运算符及SQR和ABS函数的任意整型表达式进行求解,并且在程序运行过程中能够正常的退出程序。

这个程序实际上就是对一个表达式进行计算。而一个算术表达式中包含各种运算符,每个运算符的等级可能会不同,这就成了本程序需要解决的一个主要的问题之一了。另外计算器中需要有各种数学函数,比如:abs sqrt sin cos tan等,如何对这些函数进行处理,也是本程序能成功的一个关键。还有一个问题就是如何处理操作符和操作数之间的关系也是一个要点。例如:1+2*(3-2/1),经过怎么样的变换和处理能得出结果5。数据的输入这里应该要用字符,然后通过字符和整形之间的关系进行转换即可,这样处理的话,就方便很多了。 在计算器程序运行中,输入数据时如果遇到输入错误的情况,能够能过键盘上的退格键进行删除,并且重新输入正确的数据。在数据输入完成后,如果需要放弃本次计算操作,可以利用程序中设置好的按键进行清零,并为下一次运算作准备。 本课程设计主要解决的是传统计算器中,不能对表达式进行运算的问题,通过制作该计算器模拟程序,可以做到快速的求解表达式的值,并且能够判定用户输入的表达式是否合法。该模拟计算器的核心部分就在用户输入的中缀表达式的转化,程序中用到了“栈”的后进先出的基本性质。 目录 第1章需求分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5 1.1系统设计流程图‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5 1.2 主要功能表‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6

计算方法模拟题2

模拟题(二) 西安电子科技大学网络教育 2010学年上学期期末考试试题 课程名称:__ 计算方法 考试形式: 开 卷 学习中心:_________ 考试时间: 120分钟 姓 名:_____________ 学 号: 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量) 0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充 分必要条件是_ _。 A 、11

5. 用列主元消去法解线性方程组,消元的第k 步,选列主元) 1(-k rk a ,使得)1(-k rk a = 。 A 、 ) 1(1max -≤≤k ik n i a B 、 ) 1(max -≤≤k ik n i k a C 、 ) 1(max -≤≤k kj n j k a D 、 ) 1(1max -≤≤k kj n j a 6. 设?(x)= 5x 3-3x 2+x +6,取x 1=0,x 2=0.3,x 3=0.6,x 4=0.8,在这些点上关于?(x)的插值多项式为3()P x ,则?(0.9)-3(0.9)P =__________。 A 、0 B 、0.001 C 、0.002 D 、0.003 7. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =?(x ),则f (x )=0的根是: 。 A 、y =x 与y =?(x )的交点 B 、 y =x 与y =?(x )交点的横坐标 C 、y =x 与x 轴的交点的横坐标 D 、 y =?(x )与x 轴交点的横坐标 8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。 A 、7 B 、20 C 、21 D 、42 9. 已知等距节点的插值型求积公式 ()()4 6 3 k k k f x dx A f x =≈∑?,那么 4 k k A ==∑_____。 A 、0 B 、2 C 、3 D 、9 10. 用高斯消去法解线性方程组,消元过程中要求____。

数值模拟计算整个过程

数值模拟计算的整个过程 数值模拟计算的整个过程主要包括一下几个过程: 一.建立模型(应用软件:CAD工具如PRO/E,Bladegen等) 几何生成时应注意的问题主要有以下几个部分: 1. 几何生成 1.1 几何区域的规划几何的生成可以是一个整体部分,但是有时为了网格划分时的方便可以把几个分成几个部分生成,例如轴流泵几何的生成可以分为四个部分:进水流道、叶轮、导叶和出水流道(图1.2),离心泵几何分为三个部分:进口端,叶轮,窝壳(图1.2)。 图1.1 轴流泵几何 图1.2 离心泵几何

1.2几何生成的方法 1.2.1泵的叶轮和导叶部分可以根据各自的木模图使用BLADEGEN较为方便的生成 1.2.2而其他部分则可以通过Pro E等三维CAD工具生成,其中离心泵窝壳由窝壳木模图先将各断面绘制成型,再利用扫掠的方法成型。 1.3.几何输出 1.3.1从PRO/E中导出文件时可以选择保存成igs格式,也可以保存成stp格式,在导出时按其默认格式保存,即igs格式的保存成面的形式,stp格式的保存成体和壳的形式。 1.3. 2. 进出水流道部分(轴流泵),进口端(离心泵)要做适当的延伸。 1.3.3 从PRO/E中导出之前可以可以改单位,或者明确几何生成时所用单位,以便导入。 1.3.4各部分的特征位置的坐标要明确,如几何中心,原点,以便各部分导入后的合并。 二.网格划分(软件: ANSYS ICEM ) 网格划分主要有以下几部分: 2.1. 几何检查及修复通过检查几何命令检查几何并将错误的部分根据实际情况修复(以轴流泵出水流道为例,见图2.1) 图2.1(a)轴流泵出水流道几何检查 图2.1(b)修复后的轴流泵出水流道几何

模拟计算器

智能仪器仪表课程设计报告

摘要 (3) 关键词 (3) 说明 (3) 一.设计功能及工具 (4) 1.1设计功能 (4) 1.2单片机AT89C51简介 (4) 1.3 LED数码显示管简介 (7) 1.4输入设备键盘 (7) 二.电路设计 (8) 2.1时钟电路 (8) 2.2复位电路 (9) 2.3显示驱动电路 (9) 2.4蜂鸣器提示电路 (10) 2.5总电路原理图 (10) 三.C设计和运行 (12) 3.1 C程序代码 (12) 3.2 Keil C调试运行 (18) 3.3 Proteus 操作运行 (19) 四.Proteus 仿真演示 (20) 4.1加法演示 (20) 4.2减法演示 (21) 4.3乘法演示 (22) 4.4除法演示 (23) 五.总结 (24) 参考文献 (24)

摘要 本设计一简易的模拟计算器程序,实现基本的加减乘除的运算并将结果显示在相应的LED上,且在数字信息输入完毕时有声音提示。 此次设计利用proteus 7 professional 软件绘制电路原理图,在Keil C平台上实现C语言程序编制,最后联立proteus和Keil C实现仿真设计成果。采用了4X4矩阵式键盘输入,8位LED动态显示,避免了I/O口扩展使程序简化。利用的A T89C51单片机,八个引脚用来扫描键盘的输入,八个引脚用来驱动八位LED显示,八个引脚用作八位LED的位选信号。当显示器输出大于八位时,可在剩下的I/O口中任意选一个用来使扬声器发出声音警报。 关键词:A T89C51 、计算器、proteus、Keil C 说明 本次模拟计算器程序小组共2人:耿莎莎(我)和黄洁雯。 其中,我主要负责Proteus 和Keil C软件的下载并学习用法;利用Proteus绘制电路原理图;成功无错误地运行C程序并联立Proteus仿真计算器成果。 鉴于程序运行无错误无警告,然而仿真徒有信号无法输入显示,遂求教于指导老师,以期发现并改正按键键盘输入程序来使仿真成果实现。

Excel 模拟运算表使用方法

Excel 模拟运算表使用方法 大家平常都只用函数公式做运算,相信很少人用过模拟运算.现对模拟运做一实例分析,让大家对之有初步认识. 在工作表中输入公式后,可进行假设分析.查看当改变公式中的某些值时怎样影响其结果,模拟运算表提供了一个操作所有变化的捷径。 模拟运算表是一个单元格区域,它可显示一个或多个公式中替换不同值时的结果。有两种类型的模拟运算表:单输入模拟运算表和双输入模拟运算表。单输入模拟运算表中,用户可以对一个变量键入不同的值从而查看它对一个或多个公式的影响。双输入模拟运算表中,用户对两个变量输入不同值,而查看它对一个公式的影响。 1 单输入模拟运算表 当对公式中的一个变量以不同值替换时,这一过程将生成一个显示其结果的数据表格。我们既可使用面向列的模拟运算表,也可使用面向行的模拟运算表。 面向列的模拟运算表 例如我们对图中的模型进行模拟运算,假设可变成本分别为固定成本的10%、15%、20%、25%和30%,而其他条件不改变时整个公司的利润会怎样变动? 其操作步骤如下: (1)在单一列的输入单元格内,输入要Excel替换的值的序列,我们在“A6”单元格中向下输入上述的序列。在第一个值的上面一行和值列右边的单元格中,键入引用输入单元格的公式,输入单元格可以是工作表上的任一空单元格,我们指定“A5”单元格为输入单元格。输入附加的公式到同一行中第一个公式的右边,即输入“=A2+A3-B2*A5-B2”。如图所示。

(2)选定包含公式和替换值序列的矩形区域,如图所示。 (3)执行“数据”菜单中“模拟运算表”命令,出现如图对话框。 (4)在“输入引用列的单元格”框中,输入可变单元格地址,在这里我们输入“A5”单元格。按下“确定”按钮。之后,Excel就会替换输入单元格中的所有值,且把结果显示在每一个输入值的右侧,如图所示。还可以提供新值来替换工作表上原来输入的值,这样Excel将使用新值重新进行计算。使用基于行的模拟运算表的过程和列类似,大家可以自己练习一下

计算方法模拟试题

1 模拟题(三) 一、选择题(单选,14道小题,每题3分,共42分) 1. 设A X =3.141是真值T X =π的近似值,则A X 有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 用毫米刻度的直尺测量一长度为x*的物体,测得其长度的近似值为x = 25mm , mm 。 A 、20.510-? B 、10.510-? C 、0.5 D 、 5 3. 下面不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 数值x *的近似值为x ,那么按定义x 的绝对误差是。 **A B *C *D ** x x x x x x x x x x ----、、、、 5. 用列主元高斯消去法解线性方程组???? ??????=????????????????????-20111.0310********x x x , 进行第二次列主元选择时所选取的列主 A 、5 B 、4 C 、-2.5 D 、-3 6. 用选列主元的方法解线性方程组AX = b A 、提高计算速度 B 、简化计算步骤 C 、降低舍入误差 D 、方便计算 7. 以下方程求根的数值计算方法中,其迭代格式为111()()()() k k k k k k k f x x x x x f x f x +--=--- A 、二分法 B 、简单迭代法 C 、牛顿迭代法 D 、割线法 8. 牛顿迭代法是用曲线f (x ) x 轴的交点的横坐标逐步逼近f (x )=0的解。 A 、弧线 B 、折线 C 、割线 D 、切线 9. 设b >a ,在区间[],a b 上的插值型求积公式其系数为01 ,,A A ┅,n A ,则01A A ++┅+n A =。

电磁仿真软件心得

1、简介 目前,国际上主流的三维高频电磁场仿真软件有德国cst 公司的microwave studio(微波 工作室)、美国ansoft 公司的hfss(高频电磁场仿真),而诸如zeland 等软件则最多只能算作 2.5 维的。 就目前发行的版本而言,cst 的mws 的前后处理界面及操作感比hfss 好很多,然而ansoft 也意识到了自己的缺点,在将要推出的新版本hfss(定名为ansoft designer)中,界面及操作都得到了极大的改善,完全可以和cst 相比;在性能方面,2 个软件各有所长,在业界每隔一定时间就会有一次软件比赛,看看谁的软件算的快,算的准,在过去的时间里,cst 和ansoft 成绩相差不多;价格方面,2 个软件相差不多,大约在7~8 万美元的水平,且都有出 国培训的安排。 值得注意的是,mws 采用的理论基础是fdtd(有限时域差分方法),所以mws 的计算是 由时域得到频域解,对于象滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而hfss 采用的理论基础是有限元方法,是一种积分方法,其解是频域的,所以hfss 是由频域到 时域,对于设计各种辐射器及求本征模问题很擅长。当然,并不是说 2 个软件在对方的领域 就一无是处。 由于ansoft 进入中国市场较早,所以目前国内的hfss 使用者众多,特别是在各大通信 技术研究单位、公司、高校非常普及。 2、使用心得 和大部分的大型数值分析软件相似,以有限元方法为基础的ansoft hfss 并非是傻瓜软 件,对于绝大部分的问题来说,想要得到快速而准确的结果,必须人工作一定的干预。除了必须十分明了模型细节外,建模者本身也最好具备一定的电磁理论基础。 作者假定阅读者使用过hfss,因此对一些属于基本操作方面的内容并不提及。 2.1、对称的使用 对于一个具体的高频电磁场仿真问题,首先应该看看它是否可以采用对称面。这里面的 约束主要在几何对称和激励对称要求。如果一个问题的激励并不要求是可改变的,比如全部同相馈电的阵列,此时最好采用对称,甚至可以采用2 个对称(e 和h 对称),将可以大大节约时间和设备资源。 2.2、面的使用 在实际问题中,有很多结构是可以使用2 维面来代替的,使用2 维面的好处是可以极大 的减少计算量并且结果与使用 3 维实体相差无几。例如计算一个微带的分支线耦合器,印制 板的微带以及地都可以指定某些面为理想电面代替,这样可以很快的获得所需要的物理尺寸及其性能。再以计算偶极子为例,如果偶极子是以理想导体为材质的圆柱,那么相同的其他条件下其计算时间大约是采用等效面为偶极子的4~5 倍,由此可见一般。 2.3、lump port(集中端口)的使用 在hfss8 里提供了一种新的激励:lump port,这种激励避免了建立一个同轴或者波导激励,从而在一定程度上减轻了模型量,也减少了计算时间。lump port 也可以使用一个面来代表,要注意的是对该port 的校准线和阻抗线的设置一定要准确,端口在空间上一定要与其他金属(或电面)相接,否则结果极易出错。 2.4、关于辐射边界的问题

电力系统仿真计算软件介绍

电力系统仿真计算软件介绍 钱鑫,李琥,施围 (西安交通大学电气工程学院,陕西西安710049) 摘要:以电力系统仿真软件EMTP为例对其历史、计算原理及程序的功能做了较为全面的描述,另外,文中列举当前几种较为流行的电力系统仿真软件及其特点,对于提高电力工作者的工作效率有一定帮助。 关键词: 仿真软件;EMTP 1引言 电力系统仿真就是通过建立适当的数学模型来模拟实际电路的一种研究方法,随着电力系统的不断扩大和网络化,实际电力网络拓扑系统变得越来越复杂,而这时候掌握高效的模拟仿真计算软件也变得越来越重要,随着计算机技术的不断发展,电力系统仿真软件已成为电力系统工作者进行电力系统规划、保护、调度及故障研究的重要工具。为使读者对于电力系统仿真软件有一个全面、清晰的了解,下面以在电力系统应用最为广泛的EMTP为例,介绍其历史、计算原理及程序功能,并介绍当今流行仿真软件的各自特点。 2EMTP介绍 2.1EMTP的历史与现状 电力系统分析程序EMTP是目前国际通用的一种数字程序。它规模大、功能强,最初由加拿大不列颠哥伦比亚大学(UBC)的H.W.Dommel教授创立,又经过很多专家的共同努力而不断完善。美国邦纳维尔电力局(BPA)对程序的开发做了很大的贡献。近年来成立的包括美国、加拿大、日本及欧洲一些国家在内的EMTP联合发展中心(DCG)和在欧洲成立的另一个EMTP用户协会(LEC),都还在为该程序的改进提高和推广进行着大量的工作。EMTP 的UBC版本、BPA版本、DCG版本分别为以上机构各自开发的产品[1]。 EMTP发展经历了几十年时间才日趋完整。首先,1960~1963年H.W.Dommel在德国慕尼黑进行电磁暂态分析程序的研究工作,并对单相回路,含元件R、L、C无损线路,一个开关,一个电源,集中参数用梯形积分法,输电线路采用贝杰龙法(即特性线法)等建立相应模型算法。而后到1969年,一些组织和个人的不断介入使程序功能不断得到完善,又建立了多相π输电线路、多相分布参数(包括不同换位情况)和随频率变化特性模型。 1969年4月IEEE PASH.W.Dommel的一篇文章标志着EMTP雏形的完全建立,当时有十多种计算机版本。此后到1973年出现了不少使用组织,除了北美外,还有南美(巴西),欧洲,日本,澳大利亚,印度等,中国台湾大约1980年引入,中国大陆1982年初引入。同时出现了微机版本。大约在1984年,美国EPRI(电力科学研究院)成立了DCG,改用OS/2系统。形成了DCGEM TP。 欧洲一些公司、大学,在欧洲成立了A TPEMTP(微机版本)一直发展到现在,在世界范围内有许多用户,特别是最近开发了A TPdraw,通过绘电路图,在界面上输入数据,借助微机建立数据文件,使用非常方便。但获得A TPEMTP表面上不要费用,但必须买他们的使用手册及相关资料并要写保证书(不做商业目的),才能给你口令,从网上下载。 2.2EMTP的模型与算法原理 电力系统包含有电机、变压器、输电线路、电缆、断路器、电抗器、电容器组、逆变器组、互感器、避雷器等设备,它们结构与功能、特性上千差万别,但从电路的角度来讲,除电源外,总可以用R,L,C(单个或组合,常量或变量)来表征它们的这些功能、特征。如果该