第三节 三重积分的概念及性质

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

二重积分的概念

第一节 二重积分的概念与性质 一、内容要点 1、引例 例1曲顶柱体的体积 例2平面薄片的质量 通过两个实际意义不同的例子,引出所求量可归结为同一形式的和式的极限,进而一般地抽象出二重积分的定义。 2、二重积分的概念:注意讲清楚定义中两个“任意性”及和式极限中各符号的意义。 3、二重积分的性质1-6,注意将其与定积分性质加以比较。 例3关于估值定理的应用 例4关于中值定理的应用 4、二重积分的几何意义——曲顶柱体的体积。 二、教学要求和注意点 理解二重积分,了解重积分的性质,了解二重积分的中值定理。 第二节 二重积分的计算法 一、内容要点 利用直角坐标计算二重积分 1、从几何入手,利用计算“平行截面面积为已知的立体的体积”方法,将二重分化为二次积分: ①若D 为X —型区域:{}b x a x y x y x ≤≤≤≤),()(),(21?? 则 ????=D x x b a dy y x f dx d y x f )()(21),(),(??σ ②若D 为Y —型区域:{}d y c y x y y x ≤≤≤≤),()(),(21?? 则 ????=D y y d c dx y x f dy d y x f )()(21),(),(??σ ③若D 既非X —型,又非Y —型区域,则将D 划分为若干子区域,使每一个子区域为X —型或Y —型。 2、介绍“对称性”在二重积分计算中的应用。 例1化二重积分为二次积分并求值,通过例子说明确定积分限的方法。 例2更换积分次序并计算,通过该例说明选择积分次序的重要性。

例3关于利用对称性计算二重积分的例子。 例4被积函数为绝对值函数、符号函数,取最大值或最小值等函数的例子。 利用极坐标计算二重积分 1、介绍极坐标下二重积分的换元公式。 2、何时选用极坐标进行计算,一般说来,当积分域D 的边界曲线用极坐标方程表示比较简单或被积函数用极坐标表示比较简单,可考虑用积坐标计算。 3、确定积分上下限的办法。 例1将直角坐标系下的二次积分化为极坐标系下的二次积分 例2利用二重积分计算概率积分 dx e x 2 0-+∞? 例3将极坐标系下的二次积分化为直角坐标系下的二次积分 例4利用极坐标计算二重积分 二、教学要求和注意点 1、掌握二重积分(直角坐标、极坐标)的计算方法 2、将重积分化为累次积分计算时,积分限的确定要保持每个单积分的下限小于上限,因此在交换二次积分次序时应注意符号问题。 3、在二重积分的计算时应尽量利用区域和被积函数的对称性以简化计算。 第四节 三重积分 一、内容要点 1、三重积分的概念,存在性及性质 2、三重积分在直角坐标系下的计算 ①先单积分后二重积分 ②先二重积分后单积分 3、更换积分次序 例1将三重积分化为三次积分 例2更换积分次序 例3先二重积分后单积分 4、柱面坐标系下三重积分的计算。 5、何时选用柱面坐标——当Ω是柱形,锥形或旋转体且在坐标面上的投影是圆域或其部分,或者被积函数含有式子)(22y x +?等时,常用柱面坐标计算。 6、球面坐标系下三重积分的计算。 7、何时选用球面坐标——当Ω是球体或其部分,或被积函数含有式子)(222z y x ++?

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线 所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限, 叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时 , 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

三重积分n重积分简介

§5 二重积分 一、三重积分的概念 1三重积分的物理解释 设非均匀物体A内分布着一种物质,其密度为,(x,y,z),并假定T在A上连续,那么怎样定义和计算这个物体的质量呢?我们的办法还是通过“分割,近似求和,取极限”这三个步骤得到A的质量是 m= ?(x, y, z)dxdydz A 2三重积分的定义 P243-244 3三重积分的性质、可积条件 与二重积分类似 线性性,单调性,可加性,绝对可积性,乘积可积性,中值定理等? 二、三重积分的计算---化三重积分为累次积分 1长方体[a,b] [c,d] [k,h]上的积分 定理21.15设A二[a,b] [c,d] [e, f],f是A上的连续函数,那么f在A上的三重积分 b d f 可以化为先对z,后对y,x的积分:丨丨丨f (x, y, z)dxdydz= dx dy f (x, y,z)dz, -a c e A 或先y > x > z: f b d II .1 f (x, y, z)dxdydz= dz dx f(x,y,z)dy e a c A 等等(共6种),并且此时(f连续时),各个三次积分的值与积分次序无关,他们都相等。 b d h III f (x, y,z)dxdyd^ dx dv f (x, y,z)dz. ack V 2. 一般区域上的三重积分、简单区域上的三重积分 一般区域上的三重积分、可以分解有限个简单区域上的三重积分简单区域(典型区域)的定义V 二{(x,y,z)|Z i(x,y)乞z ^Z2(x,y), (x,y) D},其中D 为V 在XY 平面上的投影, D =《x, y)|a 兰b, y i(x)兰y 兰y2(x)> 或者D ={(x,y) ^d,x1 (y)兰x2(y)}

二重积分的概念及性质

二重积分的概念及性质 前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。 二重积分的定义 设z=f(x,y)为有界闭区域(σ)上的有界函数: (1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n); (2)在每一个子域(△σk)上任取一点,作乘积; (3)把所有这些乘积相加,即作出和数 (4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作: 即:= 其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域. 关于二重积分的问题 对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。 上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。 二重积分的性质 (1).被积函数中的常数因子可以提到二重积分符号外面去. (2).有限个函数代数和的二重积分等于各函数二重积分的代数和. (3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末: ≤ (5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使 其中σ是区域(σ)的面积. 二重积分的计算法 直角坐标系中的计算方法 这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

定积分与重积分的定义与性质应用

定积分与重积分的定义与性质应用 1.定义 (1)定积分: <1>定积分定义与夹逼定理的综合应用 例1 :1 2222 lim n n n n n →+∞ +… 提示:分母由夹逼定理全部替换成1/n ,然后用定积分定义求和。 <2>取对数,求积变求和后用定积分定义 例2:求122 2=1 4 (n +i ) lim n n i n n →∞ ∏ 222=1 22=122=12 22 2 2 2 2 n 0 2arctan 2-4 n ln =ln[n (1+())]-4ln 11=22ln +ln[1+()]-4ln 1=ln[1+()]2+2-2lim ln =lim ln (1+x )dx=ln (1+x )|-1+=2ln 5-4+2arctan 2lim =25n n n i n i n i n n n x i x n n i n n n n n n i n n x x x x x e →∞ →∞ →∞ =∴∑∑∑?? 令原式,则 <3>使用定义累次积分 例3:112220011lim ()() 11n n n i j n dx dy n i n j x y →+∞===++++∑∑?? <4>不是所有和式一看到就用定积分定义 例4:(stolz 定理) 例5:基本代数变换技巧 A.(隔项约分)

例5.1:33=2-1 lim +1 n n k k k →+∞ ∏求 22=222=22211 =lim 11 1(1)(1)1 lim 1 112(1)(1)12lim (1)2113 n n k n n k n k k k k k k k k k k k k n n n n →+∞ →+∞→+∞-+++-+-+-++=+-+?+-++==+-+∏∏解:原式 B.(连环反应(分子分母同乘)) a.例5.2: n n 1242n 242n 21111lim(1)(1)(1)(1)=2222 11111lim (1)(1)(1)(1)122221-2 1 lim 2(1)22 n n +→∞→∞→∞ ++++++++=-=………… 变式:22n n lim(1)(1)(1),|a|<1lim n n a a a x →∞ →∞ +++……其中,求; b.例5.3: 23232311 lim cos cos cos cos 2222 cos cos cos cos sin 22222lim sin 2 cos cos cos cos sin 22222lim 2sin 2 sin lim =12sin 2 n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x →∞→∞--→∞→∞===……………… C.本身就有公式(下例分母) 例5.4: 0lim lim n n n === (2)二重积分

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

重积分论文

重积分论文 摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用,并借以实例加以说明。其次,谈谈我个人对学习重积分的一些建议和想法。 关键词:重积分 在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。在本章中将介绍重积分的概念、计算法以及它们的一些应用。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。文章中我分为两个部分来谈重积分,第一部分主要归纳了重积分的应用,对于重积分的学习,要求主要掌握重积分的计算和应用,会用重积分的思想解决实际问题,然而计算又涵盖在具体应用中。因此学习重积分要从它的应用着手。第二部分谈了谈自己对学习重积分的一些建议和想法。主要从学习重积分的思想和计算方法两方面来谈。

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

三重积分概念及其计算

§5 三重积分 教学目的 掌握三重积分的定义和性质. 教学内容 三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求 掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议 (1) 要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可 积.由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2) 对较好学生可布置这节的广义极坐标的习题. 一、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1 设()z y x f ,,是定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于V 的任何分割T ,当它的细度δ

则()z y x f ,,必在V 上可积. 二、化三重积分为累次积分 定理21.15 若函数()z y x f ,,在长方体V =[][][]f e d c b a ,,,??上的三重积分存在,且对任何x ∈[]b a ,,二重积分 ()x I =()dydz z y x f D ??,, 存在,其中D =[][]f e d c ,,?,则积分 ?b a dx ()??D d z y x f σ ,, 也存在,且 ()???V dxdydz z y x f ,,=?b a dx ()??D d z y x f σ ,,. (1) 为了方便有时也可采用其他的计算顺序.若简单区域V 由集合 ()()()()(){} b x a x y y x y y x z z y x z z y x V ≤≤≤≤≤≤=,,,,,,2121 所确定,V 在xy 平面上的投影区域为 D =()()(){ }b x a x y y x y y x ≤≤≤≤,,21 是一个x 型区域,设()z y x f ,,在上连续, ()y x z ,1,()y x z ,2在D 上连续,()x y 1,()x y 2上[]b a ,连续,则 ()???V dxdydz z y x f ,,= ()()???D z y x z dz z y x f dxdy 21,,,=()()()() ???b a x y x y z y x z dz z y x f dy dx 212 1,,,, 其他简单区域类似. 一般区域V 上的三重积分,常将区域分解为有限个简单区域上的积分的和来计算. 例1 计算 ???+V dxdydz y x 221 ,其中V 为由

重积分论文

《高等数学》——重积分 麻安平 贵州民族大学建筑工程学院土木一班 摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用。 关键词:重积分;曲面面积. I .重积分的应用归纳如下: 1.1曲面的面积 设曲面∑的方程为(),y x f z ,=∑在xoy 面上的投影为xy D ,函数 ()y x f ,在D 上具有连续偏导数,则曲面∑的面积为: ()()????++=? ??? ????+??? ????+=D y x D d y x f y x f dxdy y f x f A σ,,11222 2 若曲面∑的方程为 (),z y g x ,=∑在yoz 面上的投影为yz D ,则曲面 ∑ 的面积为:

()()???? ++=??? ????+? ??? ????+=D z y D d z y f z y f dydz z g y g A σ,,112 22 2 若曲面∑的方程为(),x z h y ,=∑在zox 面上的投影为zx D , 则曲面∑的面积为: ()()????++=??? ????+??? ????+=D x z D d x z f x z f dzdx x h z h A σ,,112 22 2 例1:计算双曲抛物面xy z =被柱面222R y x =+所截出的面积A 。 解:曲面在xoy 面上投影为222 :R y x D ≤+,则 ??++=D y x dxdy z z A 2 2 1 即有 : ()322 20 2113R D A d R πθπ??===+-???? ???? 从而被柱面222 R y x =+所截出的面积A 如上所示。 1.2质量 1.2.1平面薄片的质量 若平面薄片占有平面闭区域 D ,面密度为()y x ,μ,则它的质量为 ()??=D d y x m σμ,,其中()σμd y x dm ,=称为质量元素. 1.2.2物体的质量

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

二重积分的概念及计算法(一)

习题9-1,9-2 二重积分的概念及计算法(一) 1.填空题: (1)由二重积分的几何意义得 ∫∫≤+=??122221y x d y x σ . (2)根据二重积分的性质,比较下列积分的大小: ① ,其中是三角形区域,三顶点为(1,0),(1,1),(2,0),则 ∫∫+=D d y x I σ)ln(1∫∫ +=D d y x I σ22)][ln(D 1I 2I . ②,,其中是由∫∫++=D d y x I σ21)1(∫∫ ++=D d y x I σ32)1(D x 轴与直线围成的区域,则 1,0?==+x y x 1I 2I . (3)化二重积分为两种不同次序下的二次积分,其中是直线D 2,==x x y 及双曲线)0(1f x x y =所围成的闭区域,= ∫∫d y x f σ),(D = (4)①交换积分次序: ∫∫??=22221),(x x x dy y x f dx ②交换积分次序: ∫∫∫∫?=+y y dx y x f dy dx y x f dy 20313010),(),( 2.利用二重积分的性质,估计积分的值: ∫∫++=D d y x I σ)94(22,其中是圆形闭区域:. D 422≤+y x 3.计算下列二重积分: (1)∫∫+= D d x x y I σ2)1(cos ,其中是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域. D (2),其中是由∫∫+=D y x d e I σD 1≤+y x 所确定的闭区域. 4.计算二次积分∫∫101dx e dy y x y . 5.交换积分次序,证明: ∫∫∫???=a y a x a m x a m dx x f e x a dx x f e dy 000)()()()()(. 6.设平面薄片所占的闭区域是由直线D x y y x ==+,2和x 轴所围成,它的面密度

相关文档
最新文档