工业用机器人视觉软件的功能互补_骆顺耀

工业用机器人视觉软件的功能互补_骆顺耀
工业用机器人视觉软件的功能互补_骆顺耀

《自动化技术与应用》2007年第26卷第09期

88 | T echniques of Automation & Applications

经验交流

Technical Communications

工业用机器人视觉软件的功能互补

骆顺耀

(同济大学 中德学院,上海 200092)

摘 要:本文将根据作者在德国Bosch公司视觉部门的实际经历,介绍如何在NeuroCheck软件中集成eVision软件的功能,从而弥

补NeuroCheck软件在从事条形码阅读工作时,不能够解码128码的缺陷。文章将会向大家介绍NeuroCheck软件以及eVision软件各自的主要功能及特点,尤其是条形码阅读部分的功能和特点,以及如何利用NeuroCheck软件提供的VC++的插件编程接口,调用eVision软件的条形码阅读部分的模块,从而改进NeuroCheck软件的条形码阅读功能。

关键词:NeuroCheck;eVision;条形码阅读;插件

中图分类号:TP242.62 文献标识码:B 文章编号:1003-7241(2007)09-0088-03

A Complement to the Machine-vision Software

Luo Shun-yao

(Tongji-German Institute, Tongji University, Shanghai,200092,China )

Abstract: When using NeuroCheck to read the barcodes, the code 128 can not be decoded. This deficiency can be overcomed by

writing a software plug-in for NeuroCheck, using the function library of eVision. This paper introduces NeuroCheck and eVision, the VC++ plug-in interface of NeuroCheck and the barcode- reading functions of eVision.

Keywords: NeuroCheck; eVsion; barcode reading; plug-in

收稿日期:2007-05-11

1 引言

机器视觉,根据美国机器人工业协会(Robotic IndustriesAssociation)的定义是指:“通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控

制机器人运动的装置。[1]

”在计算机技术和自动化控制技术迅速发

展的今天,机器视觉技术日趋成熟,机器视觉产业作为新兴产业,在医疗、工业控制、卫星通信等领域有着广阔的应用前景。

目前工业用机器视觉产品主要根据工业照相机是否具有图像处理功能而分为两大类,一类称为PC -Based(即由计算机中的软件进行图像处理工作),另一类称为Smart-Camera(即照相机中集成了图像处理芯片,可进行图象处理工作)。

关于PC-Based产品,典型产品有诸如德国NeuroCheck公司的NeuroCheck软件,比利时Eurosys公司的eVision软件,以及美国Cognex公司的 InSight 软件等等。

以上各种图像处理软件都有各自的特点及优缺点,而利用软件本身提供的插件编程接口,对其功能进行补充和完善,则可以使该软件的功能得以更好地发挥。

2 NeuroCheck 的主要功能及特点

NeuroCheck具有独立的操作界面,使用时不需要依附任何其它的软件,其风格简单,容易上手。其界面风格可见于下图:

它的主要功能有条形码鉴别、矩形码鉴别、存在性检验、特征量测量、定位、字符与模式识别、打印制量检查以及色彩处理等,涉及机器视觉工业应用的各个主要领域。

其特点就是已经将每个功能模块做成独立的函数,操作者只要在所应

图1 NeuroCheck 的界面

《自动化技术与应用》2007年第26卷第09期

Techniques of Automation & Applications | 89

经验交流

Technical Communications

用的“检测程序”(Check Routine)里将其一一调用,并设置合适的参数即可。

 在工业应用中,一般需将目标元件固定在某位置,然后调节好工业相机的参数以使所得图像良好;其次需要将所得图像传给NeuroCheck以进行分析,分析过程即是如上所说的在“检测程序”里的函数模块调用以及参数设置的过程;再次就是在NeuroCheck的自动模式中进行输出量显示配置,以使其满足检测需要;最后就是在自动模式中运行已设置好的该“检测程序”,进行实时检测并同时得到检测结果。

3 eVision 的主要功能及特点

eVision本身不提供独立的操作界面,其操作者需要使用VB或者C++两种编程语言作为载体,根据工程需要编制合适的操作界面,并同时调用eVision提供的库函数以进行检测。为给操作者提供方便,eVision提供了一套辅助工具 EasyAccess,用于对编程进行指导,告知编程者如何调用其库函数。

当操作者使用EasyAccess并选择相应功能时,EasyAccess会自动添加一些代码,这些代码即是编程者在VB或者C++中调用eVision库函数时所需的代码。

除此之外,为了更好的指导编程者使用,eVision还提供了一些已经用VB和VC++编好的实例,每个实例都对应一个主要的应用。

其主要应用功能有条形码鉴别、矩形码鉴别、存在性检验、特征量测量、字符与模式识别、色彩处理、图像比较、斑点检测等,与NeuroCheck的侧重点稍有不同,但也是涉及了机器视觉工业应用的各个主要领域。

4 NeuroCheck 的插件接口

NeuroCheck各应用模块的良好封装性,为使用者,尤其是初

学者带来了很大的便利;但是同时,由于开发时的局限性,这样的封装性也给一些特殊应用带来了不便。为解决这一问题,NeuroCheck的开发者们特意提供了一套接口,以便使用者针对其特殊需求编写一些可以在NeuroCheck中使用的插件。编写这些插件的比较合适的编程语言是C或者C++[1]。

以VC++开发环境为例,当编程者编写好代码后,需要将其生成为动态链接库(DLL)文件,然后由NeuroCheck将这些文件加入到其插件库中。完成这些之后,NeuroCheck和插件动态链接库之间将通过获取版本号、获取函数数目、获取函数说明、获取

数据类型、获取数据描述这5个固有函数进行通信。

每一个插件可以包含若干个插件函数(Plug-In Function),这些插件函数在使用时就和NeuroCheck自带的函数一样。

每一个插件函数又包含有相当数目的子函数,其中主要的有初始化(Init)、逆初始化(Deinit)、执行(Exec)、对话框(Dialog)等几个。在这些子函数中,则是使用者可以根据相应算法大量编写代码的地方,例如:

1.在VC++环境下,编程者可以在资源编辑器中编辑合适的操作界面,即对话框,然后可以在对话框子函数中加入相应代码,以使参数得以传递。

2.如果需要在程序开始时传递默认参数,可以在初始化子函数中添加相应代码。同时,初始化和逆初始化为一对必不可少的子函数,保证内存的分配与取消,以使NeuroCheck程序不会和系统或其他程序发生冲突。

3.在执行子函数中,则包含了主要的算法。以本文的条形码阅读为例,则是包含了对各种以及特定某种条形码解码的算法,具

体可参见下一章。

5 eVision 的条形码函数调用

不论是eVision还是NeuroCheck,当使用它们进行图像处理

操作时,一般首先都需要设定待处理区域,即通常所说的RegionOf Interest (或者Area Of Interest)。但是eVision有一个特点,它的条形码解码算法功能比较强大,大多数情况下可以自动锁定它的解码区域,所以使用它的解码函数时,只需要将整个图像作为输入参数传递。而使用NeuroCheck进行条形码解码,必须同时传递输入图像,以及手动设定的解码区域。所以在NeuroCheck中使用eVision的函数进行条形码解码时,必须把传递给NeuroCheck的解码区域参数转化为新的图像传递给eVision的函数。这样就需要读取该区域的位置参数,以及该区域内的图像灰度值, 然后依靠这些灰度值重新组成一幅新图像。

当输入参数完成后,即可调用eVision的函数库进行条形码阅读,eVision为此提供了一个叫做EBarcode的类。这个类主要有5种方法:第一种方法设定解码区域的几何参数;第二种方法设定解码方式;第三种方法设定解码参数,例如读码方向等;第四种方法设定待解码类型,常用条形码共有9种,非常用条形码还有22种[2],这里待解码类型可以设定为其中任何一种,也可以设定为其总和;最后一种方法即为解码,但是根据待解码类型为单一某种或总和,解码方法也分为两种。

解码时,在大多数情况下,不需要使用EBarcode类的前三种方法,意即其相关参数选择为默认值。然后选择待解码类型,并选择相应的解码方法即可。实际编码时,需要在对话框子函数中将待解码类型作为参数传递,然后在执行子函数中加入选择性语句,使其能根据

图2 NeuroCheck 的使用方法

图3 带检测的奔驰汽车零件的条形码

《自动化技术与应用》2007年第26卷第

09期

90 | T echniques of Automation & Applications

经验交流

Technical Communications

传入的待解码参数为单一码种或总和而自动选择相应的解码方法。

解码完成后,需要将结果存储在NeuroCheck指定的一个字符数组中,然后可以由NeuroCheck内部的函数将其调用并显示,同时也可以将其作为输出参数传递,用于PLC的控制信号。

6 结束语

图4 eVision 函数解码条形码的流程

作者简介:骆顺耀,男(1982-),男,同济大学中德学院硕

士研究生,研究方向:机器视觉软件Neuro Check的插件的开发。

如前所述,各种工业用机器视觉软件都有各自的优缺点。NeuroCheck的使用简单,但是其在条形码阅读时,不仅不能解码128码,而且还必须指定待解码类型,甚至还需指定解码之后的字符数目,所以当某些特殊情况需要解码不明条形码时,使用NeuroCheck就极其不不方便。而使用eVision虽然同时必须使用其它编程软件,但是其函数库功能相对比较强大,尤其是在条形码阅读方面。不过,在此方面eVision也有它的一些缺点。比如有些条形码可以同时被不同的条形码类型解码,得到不同的答案。此时使用eVision的总和解码方法,固然有其方便的优点,但是也有只能输出一种结果的缺点。如果需要输入所有可能性结果,然后做相似性比较的话,必须设定一个循环语句,然后在此循环内对所有可能的码种作单一解码,并输出所有解码成功的结果。

在熟练应用各种相关软件的基础上,了解其优缺点,各取其长而避其短,综合成最合适于工程需要的处理方法,其意思是相当重大的。不仅可以解决一些凭单一软件难以解决的问题,同时也因为可以避免重复购买软件而节约成本,此外对开发具有自主知识产权的同类软件也有很大的帮助。

参考文献:

[1] NeuroCheck. Programmer’s Reference[Z].2006

[2] eVision.C++ Reference Manual[Z].2004

图4 接受中断程序流程图

的中断程序流程图,如图4所示,其中RECORD为记录标志位。因程序篇幅较多,文中不再给出。

5 结束语

由于数字罗盘可以通过对地球磁场等信息的读取、计算后,精确输出航向、俯仰、横滚等参数。因此它作为一种重要的导航工具,越来越多的应用于导航和定位系统。本文介绍了数字罗盘在单片机系统中的应用,其软、硬件电路的设计方法同样适合于其它基于单片机系统的数字罗盘的设计。而且随着通信技术的发展,数字罗盘必将会得到越来越广泛的使用。

参考文献:

[1] HMR3000数字罗盘模块用户指南[M].Honeyewll2003.9.[2] 求是科技.单片机典型模块设计实例导航[M].人民邮电出版社,2004,176-194.

[3] 陈皓生,徐军,李疆.HMR3000数字罗盘在微型飞行器中的应用[J].传感器技术,2001,20(9):44-46.

[4] 张颖.基于高级语言的HMR3000 模块接口编程[J].兵工自动化,2002,21(4):41-43.

[5] 彭树生.数字电子罗盘HMR3000 的特性及应用[J].电子技术,2004,(8):39-43.

作者简介:俞红杰 (1973-),男,浙江舟山,讲师,研究生,研究方向:自动控制与应用。

(上接第116页)

工业机器人视觉分拣总结

视觉分拣总结 1.桌面找到Vision软件并打开 2.进入软件后将作业名称更改 3.点击作业下的编辑进入 4.进入后首先会出现ImageSource,如果有选择好的图片,选择图像数据库进入,需要拍 摄选择照相机选择好图像采集卡及视频格式后,点击初始化取向 设置如图所示(曝光可根据需要更改) 闪光灯和触发器里,因前期需拍照选择手动,执行程序时改成硬件自动 5.照相机设置完后点X退出,并点击文件下方三角标志图标拍摄照片

6. 照片拍摄完后,找到锤子图标添加模板,找到 双 击添加,再添加所需数量的 并添加如下链接,以修正坐标系 7. 点击 1出现如下图所示界面

A:点击抓取训练图像 B: 将Gurrent.InputImage更改为Gurrent.IrainImage更改完成后点击下方图片防止变动,此时图像左上方出现一个坐标系一个框 C:拖到框到任意一个方格上 拖动完后点击训练区域与原点,进入后选择中心原点点击,(坐标如不在中心位置可手动拖到方格中心)出现如下图所示时点击训练

备注:(训练区域与原点的区域形状可选对应物体形状标定) D:训练完成后,点击搜索区域,区域形状选择倒数第四个,图片上方选择Current.Input.Image,然后框选合适区域 E.点击运行查看结果

8.模板完成后打开标定工具,将图片坐标系修改为机器人坐标系 A:将模板里的XY值抄写到标定工具未校正XY值中 B:将九宫格中一个作为原点,在根据每个九宫格相距50,计算确定其他坐标系(注:1234是随机的需先确定是那个九宫格),点击计算校正,如下图所示:

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

机器人视觉传感技术及应用doc汇总

机器人视觉传感技术及应用 摘要:机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。 关键词:机器人、视觉、弧焊、采摘机器人 1.绪论 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。 2. 机器人常用的视觉传感器 2.1光电二极管与光电转换器件 图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。

图2.1 pn型光电二极管结构 在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i 层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。 2.2 PSD PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。 2.3CCD图像传感器 电荷耦合器件(CCD:Charge Coupled Device)图像传感器是由多个光电二极管传送储存电荷的装置。它有多个MOS(Metal Oxide Semiconductor)结构的电极,电荷传送的方式是通过向其中一个电极上施加与众不同的电压,产生所谓的势阱,并顺序变更势阱来实现的。根据传送电荷需要的脉冲信号的个数,施加电压的方法有两相方式和三相方式。 CCD图像传感器有一维形式的,是将发光二极管和电荷传送部分一维排列制成的。此外还有二维形式的,它可以代替传统的硒化镉光导摄像管和氧化铅光电摄像管二维传感器。二维传感器属于水平和垂直传送电荷传感器,传送方式有行间传送、帧—行间传送、帧传送及全帧传送四种方式。 图2.2所示为行间传送方式,采取一维摄像区域(接收部分)与传送区域平行布置结构

安川机器人程序示例

2 *cycle 注释:循环运行 3 MOVJ C00000 VJ= point ①:距对中台大概150mm的位置 4 PULSE OT#(68) T= RB时间测量point11(取出待机位置) 5 *Loop1 abel:Loop1 6 JUMP *cyclstop IF IN#(16)=ON JUMP命令:循环停止指令IN16为ON则跳至label「CYCLESTOP」 7 JUMP *Whip_out IF IN#(18)=ON JUMP命令:可取出压机板件IN18为ON则跳至label「Whipout」 8 *Whip_out label:Whip_out (去取对中台上的板件的工序) 9 PULSE OT#(31) T= 脉冲信号(输出指定时间:开始取出OUT31 10 PULSE OT#(16) T= 脉冲信号(输出指定时间):吸取指令OUT16 ON 11 MOVJ C00001 VJ= point ②:DF对中台吸取位置上(大概50mm上) 12 PULSE OT#(57) T= RB时间测量point2 (吸取位置上) 13 MOVL C00002 V= PL=1 point ③:DF对中台上板件吸取位置 14 PULSE OT#(58) T= RB时间测量point3 (吸取位置) 15 TIMER T= 定位精度提升的时间 16 WAIT IN#(24)=ON 待输入:吸取确认ON 17 PULSE OT#(59) T= RB时间测量(吸取完毕) 18 方MOVJ C00003 VJ= point ④:DF对中台吸取位置上(Z方向上升至与point①同样位置,X方向稍微移至负方 19 PULSE OT#(60) T= RB时间测量point4 (吸取位置上) 20 TIMER T= ?定位精度提升的时间? 21 PULSE OT#(27) T= 脉冲信号:取出完毕OUT27 22 MOVJ C00004 VJ= point ⑤:压机投入待机位置 23 PULSE OT#(61) T= RB时间测量point5 (取出待机位置) 24 PULSE OT#(62) T= RB时间测量point6 (投入待机位置)

安川机器人程序示例

精心整理 1NOP 程序起始命令(空指令)2*cycle 注释:循环运行 3MOVJ C00000 VJ=100.00point ①:距对中台大概150mm 的位置 4PULSE OT#(68) T=0.50RB时间测量point 11 (取出待机位置) 5*Loop1abel :Loop1 6JUMP *cyclstop IF IN#(16)=ON JUMP 命令:循环停止指令 IN16为ON 则跳至No.50 label 「CYCLESTOP 」 7JUMP *Whip_out IF IN#(18)=ON JUMP 命令:可取出压机 板件 IN18为ON 则跳至No.8 label 「Whipout 」 18方point 31PULSE OT#(63) T=0.50RB 时间测量point7 (释放位置上) 32MOVL C00007 V=1500.0 PL=3point ⑧:板件释放位置 33PULSE OT#(64) T=0.50RB 时间测量point8 (释放位置) 34TIMER T=0.10定位精度提升的时间 35 PULSE OT#(17) T=1.00OUT17脉冲信号:释放指令 36WAIT IN#(24)=OFF 待输入:时间测量point OFF 37PULSE OT#(65) T=0.50RB 时间测量 (释放完了) 38MOVJ C00008 VJ=100.00point ⑨:板件释放位置上 39PULSE OT#(66) T=0.50RB 时间测量point9 (释放位置上) 40MOVJ C00009 VJ=80.00point ⑩:返回轨迹时的RB 手柄防振减速 41MOVJ C00010 VJ=60.00point ?:point ⑤ 返回No.1压机投入待机位置

带有视觉识别模块的分拣机器人

带有视觉识别模块的分拣机器人 传统的机器人分拣操作一般采用示教或离线编程方式,当机器人所处的工作环境发生改变时机器人很难即时作出相应的调整,为了使机器人具有更加智能化的功能,以阿童木并联机器人和工业智能相机为基础,组成一套带有视觉模块的机器人分拣系统。这样的分拣系统结合了并联型机器人和视觉模块两个方面的优势,通过视觉模块智能的识别不同的对象,系统可以完成高速的分拣工作,显著提升了机器人对工作环境的适应能力,提高了工作效率。同时,实验结果证明了该系统软硬件设计正确,分拣成功率高。 随着我们国家生产需求的不断增加,机器人越来越多的参与到各行各业的生产过程中来。其中,对工件的分拣作业是当前生产过程中的一个重要环节,传统的机器人分拣,其动作和目标的摆放位置都需要根据程序预先严格的设定。一旦机器人所处的环境有所改变,很容易导致抓取错误。本文模拟工业生产中的分拣作业环境,引入视觉模块,用摄像机来模拟人类的视觉功能来对待测的对象进行识别分类,可以使分拣作业拥有更高的可靠性和灵活性,作业对象以及分拣工序可以随时随地的变换,也提高了工作的效率和机器人的智能化程度。 1机器人系统组成介绍 我们设计的机器人分拣系统主要由并联机器人、视觉模块、传送带装置以及分拣对象组成,结构如图1所示: 1.1并联机器人 相比于其他工业机器人,并联机器人占用较小的空间,其更具有高速度、高精度、灵活性等特点,更能適合苛刻的工业生产需求。我们在实验中采用的是阿童木4轴并联型机器人,如图2所示,它能够完成空间中X、Y、Z方向的移动及角度的转动。除了并联型机器人本体之外,机器人配套设施还包括机器人控制柜、控制编程器和驱动机器人各关节运动的伺服交流电机。机器人末端执行机构为气动吸盘,用于吸附传送带上的分拣对象,完成抓取动作。 1.2 视觉模块 视觉模块我们采用康奈视公司的In-Sight7000型智能相机,如图3所示。该视觉模块能够智能的识别出实验中不同种类的实验对象,以及采集各个实验对象的位置信息。 1.3网络交换机 实验中,我们使用一般的家用路由器来替代网络交换机。视觉模块采集到的信息要通过局域网来络传递给机器人,因此我们要用到网络交换机来搭建局域网络,进而使各个模块间完成信息传输。

安川机器人命令一览所有指令介绍

安川机器人命令一览所有指令介绍 MOVJ功能以关节插补方式向示教位置移动。 添加项目位置数据、基座轴位置数据、 工装轴位置数据 画面中不显示 VJ=(再现速度)VJ:0.01~100.00% PL=(定位等级)PL:0~8 NWAIT UNTIL语句 ACC=(加速度调整比率)ACC:20~100% DEC=(减速度调整比率)DEC:20~100% 使用例MOVJ VJ=50.00PL=2NWAIT UNTIL IN#(16)=ON MOVL功能以直线插补方式向示教位置移动。 添加项目位置数据、基座轴位置数据、 工装轴位置数据 画面中不显示 V=(再现速度)、 VR=(姿态的再现速度)、 VE=(外部轴的再现速度) V:0.1~ 1500.0mm/秒 1~9000cm/分

R:0.1~180.0°/秒 VE:0.01~100.00% PL=(定位等级)PL:0~8 CR=(转角半径)CR:1.0~6553.5mm NWAIT UNTIL语句 ACC=(加速度调整比率)ACC:20~100% DEC=(减速度调整比率)DEC:20~100% 使用例MOVL V=138PL=0NWAIT UNTIL IN#(16)=ON MOVC功能用圆弧插补形式向示教位置移动。 添加项目位置数据、基座轴位置数据、 工装轴位置数据 画面不显示 V=(再现速度)、VR=(姿态的再现速度)、 VE=(外部轴的再现速度) 与MOVL相同。 PL=(定位等级)PL:0~8 NWAIT ACC=(加速度调整比率)ACC:20~100% DEC=(减速度调整比率)DEC:20~100%使用例MOVC V=138PL=0NWAIT 10基本命令一览

带有视觉识别模块的分拣机器人

龙源期刊网 https://www.360docs.net/doc/c913593587.html, 带有视觉识别模块的分拣机器人 作者:李德民王诗宇王嘉乐 来源:《知识文库》2018年第05期 传统的机器人分拣操作一般采用示教或离线编程方式,当机器人所处的工作环境发生改变时机器人很难即时作出相应的调整,为了使机器人具有更加智能化的功能,以阿童木并联机器人和工业智能相机为基础,组成一套带有视觉模块的机器人分拣系统。这样的分拣系统结合了并联型机器人和视觉模块两个方面的优势,通过视觉模块智能的识别不同的对象,系统可以完成高速的分拣工作,显著提升了机器人对工作环境的适应能力,提高了工作效率。同时,实验结果证明了该系统软硬件设计正确,分拣成功率高。 随着我们国家生产需求的不断增加,机器人越来越多的参与到各行各业的生产过程中来。其中,对工件的分拣作业是当前生产过程中的一个重要环节,传统的机器人分拣,其动作和目标的摆放位置都需要根据程序预先严格的设定。一旦机器人所处的环境有所改变,很容易导致抓取错误。本文模拟工业生产中的分拣作业环境,引入视觉模块,用摄像机来模拟人类的视觉功能来对待测的对象进行识别分类,可以使分拣作业拥有更高的可靠性和灵活性,作业对象以及分拣工序可以随时随地的变换,也提高了工作的效率和机器人的智能化程度。 1机器人系统组成介绍 我们设计的机器人分拣系统主要由并联机器人、视觉模块、传送带装置以及分拣对象组成,结构如图1所示: 1.1并联机器人 相比于其他工业机器人,并联机器人占用较小的空间,其更具有高速度、高精度、灵活性等特点,更能适合苛刻的工业生产需求。我们在实验中采用的是阿童木4轴并联型机器人,如图2所示,它能够完成空间中X、Y、Z方向的移动及角度的转动。除了并联型机器人本体之外,机器人配套设施还包括机器人控制柜、控制编程器和驱动机器人各关节运动的伺服交流电机。机器人末端执行机构为气动吸盘,用于吸附传送带上的分拣对象,完成抓取动作。 1.2 视觉模块 视觉模块我们采用康奈视公司的In-Sight7000型智能相机,如图3所示。该视觉模块能够智能的识别出实验中不同种类的实验对象,以及采集各个实验对象的位置信息。 1.3网络交换机

机器人上用的传感器的介绍

机器人上用的传感器的介绍 作者:Ricky 文章来源:https://www.360docs.net/doc/c913593587.html,更新时间:2006年05月20日打印此文浏览数:18549 感知系统是机器人能够实现自主化的必须部分。这一章,将介绍一下移动机器人中所采用的传感器以及如何从传感器系统中采集所需要的信号。 根据传感器的作用分,一般传感器分为: 内部传感器(体内传感器):主要测量机器人内部系统,比如温度,电机速度,电机载荷,电池电压等。 外部传感器(外界传感器):主要测量外界环境,比如距离测量,声音,光线。 根据传感器的运行方式,可以分为: 被动式传感器:传感器本身不发出能量,比如CCD,CMOS摄像头传感器,靠捕获外界光线来获得信息。 主动式传感器:传感器会发出探测信号。比如超声波,红外,激光。但是此类传感器的反射信号会受到很多物质的影响,从而影响准确的信号获得。同时,信号还狠容易受到干扰,比如相邻两个机器人都发出超声波,这些信号就会产生干扰。 传感器一般有以下几个指标: 动态范围:是指传感器能检测的范围。比如电流传感器能够测量1mA-20A的电流,那么这个传感器的测量范围就是10log(20/0.001)=43dB. 如果传感器的输入超出了传感器的测量范围,那么传感器就不会显示正确的测量值了。比如超声波传感器对近距离的物体无法测量。 分辨率:分辨率是指传感器能测量的最小差异。比如电流传感器,它的分辨率可能是5mA,也就是说小于5mA的电流差异,它没法检测出。当然越高分辨率的传感器价格就越贵。 线性度:这是一个非常重要的指标来衡量传感器输入和输出的关系。 频率:是指传感器的采样速度。比如一个超声波传感器的采样速度为20HZ,也就是说每秒钟能扫描20次。 下面介绍一下常用的传感器: 编码器:主要用于测量电机的旋转角度和速度。任何用电机的地方,都可以用编码器来作为传感器来获得电机的输出。

安川机器人远程控制总结 _机器人端

安川机器人远程控制总结 一、m aster程序 1、master程序的设置 单击【主菜单】—>选择屏幕上的【程序内容】—>【新建程序】,如图1-1。 图1-1 单击【选择】显示如图1-2所示的界面,单击【选择】,输入程序名,单击软键盘【ENTER】,显示如图1-3所示的界面,单击【执行】,此处程序名为“MASTER”,程序创建完毕。

图1-2 图1-3 单击【主菜单】—>选择屏幕上的【程序内容】—>【主程序】,如图1-4。 图1-4 单击【选择】,显示如图1-5所示的设置主程序界面。

图1-5 单击【选择】,出现如图1-6所示的界面,单击【向下】选择“设置主程序”。 图1-6 显示如图1-7所示的界面,单击【向下】选择“MASTER”单击【选择】。

如图1-7 主程序设置完毕。 2、MASTER程序的编辑 单击【主菜单】—>选择【程序内容】—>【选择程序】—>【选择】,出现如图1-7所示的界面,单击【向下】,选择“MSATER”,单击【选择】。在如图2-1所示的界面下编辑主程序。 图2-1 此处以2个工位,每个工位3种工件的工作站为例创建主程序内容,需要熟悉机器人示教器的基本操作(如【命令一览】【插入】【回车】【选择】)。 插入DOUT OT#(1) OFF程序举例: 光标定位在左侧行号处,如图2-2,如图单击【命令一览】,选择【I/O】,单击【选择】,选择【DOUT】,如图2-3所示的界面

图2-2 图2-3 单击【选择】,显示如图2-4所示的界面,光标定位在“DOUT”上,单击【选择】,显示如图2-5所示的界面,光标定位到“数据”行的ON,单击【选择】,切换成“OFF”,单击两次【回车】则可出入该指令。需要指出的是在光标定位处插入指令是向下插入。

机器人最实用的10种传感器盘点

机器人最实用的10种传感器盘点 随着智能化的程度提高,机器人传感器应用越来越多。智能机器人主要有交互机器人、传感机器人和自主机器人3种。从拟人功能出发,视觉、力觉、触觉最为重要,早已进入实用阶段,听觉也有较大进展,其它还有嗅觉、味觉、滑觉等,对应有多种传感器,所以机器人传感产业也形成了生产和科研力量。 内传感器 机器介机电一体化的产品,内传感器和电机、轴等机械部件或机械结构如手臂(Arm)、手腕(Wrist)等安装在一起,完成位置、速度、力度的测量,实现伺服控制。 位置(位移)传感器 直线移动传感器有电位计式传感器和可调变压器两种。角位移传感器有电位计式、可调变压器(旋转变压器)及光电编码器三种,其中光电编码器有增量式编码器和绝对式编码器。增量式编码器一般用于零位不确定的位置伺服控制,绝对式编码器能够得到对应于编码器初始锁定位置的驱动轴瞬时角度值,当设备受到压力时,只要读出每个关节编码器的读数,就能够对伺服控制的给定值进行调整,以防止机器人启动时产生过剧烈的运动。 速度和加速度传感器 速度传感器有测量平移和旋转运动速度两种,但大多数情况下,只限于测量旋转速度。利用位移的导数,特别是光电方法让光照射旋转圆盘,检测出旋转频率和脉冲数目,以求出旋转角度,及利用圆盘制成有缝隙,通过二个光电二极管辨别出角速度,即转速,这就是光电脉冲式转速传感器。此外还有测速发电机用于测速等。 应变仪即伸缩测量仪,也是一种应力传感器,用于加速度测量。加速度传感器用于测量工业机器人的动态控制信号。一般有由速度测量进行推演、已知质量物体加速度所产生动力,即应用应变仪测量此力进行推演,还有就是下面所说的方法: 与被测加速度有关的力可由一个已知质量产生。这种力可以为电磁力或电动力,最终简化为对电流的测量,这就是伺服返回传感器,实际又能有多种振动式加速度传感器。

安川视觉使用步骤

安川视觉使用步骤 1、启动 第一步:打开电源; 第二步:左击(注:切换摄像头),右击(注:显示存储的图像) 第三步:左右键同时长按进入主菜单选项; 2、物体有无检测 第一步:点击Object Existence Check(物体有无检测); 第二步:点击Set Parameters(设置参数); 第三步:点击Camera1 Countof Work (摄像头1工作计数个数,最多可以识别16个); 第四步:根据实际情况设定个数; 第五步:点击Exit (退出); 第六步:点击Train CheckPattem (参数登陆菜单); 第七步:点击Select Camera(选择摄像头)选择摄像头1; 第八步:点击Select Object(选择物体)选择物体1; 第九步:点击MoveL/T(左上移动)框好工件; 第十步:点击Move R/B(右下移动)框好工件; 第十一步:点击Move Entirely (整体移动) 框好工件; 第十二步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十三步:点击Select Object(选择物体)选择物体2; 第十四步:点击MoveL/T(左上移动)框好工件; 第十五步:点击Move R/B(右下移动)框好工件; 第十六步:点击Move Entirely (整体移动) 框好工件; 第十七步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十八步:(根据实际需要学习的个数重复以上步骤); 第十九步:点击Search Param (设定阀值); 第二十步:点击Threshold/

第二十一步:点击Exit (退出); 第二十二步:点击Tryout (试运行)检测学习是否成功; 第二十三步:点击Exsecut(执行); 3、尺寸检测 第一步:点击Dimension Check (物体尺寸检测); 第二步:点击Measure Number (检测物体个数),根据实际需要输入物体个数; 第三步:点击Training Template (转移到模板登陆菜单); 第四步:点击Select Camera (选择相机),选择1号相机; 第五步:点击Measure No.(选择几号工件); 第六步:SelectPos(选择测量的点),选择第一个点; 第七步:点击Move L/T (左上移动),框好位置; 第八步:点击Move R/B(右下移动),框好位置; 第九步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十步:点击Set Locate Pos(选择方式); 第十一步:点击Cursor(光标); 第十二步:选择好位置; 第十三步:SelectPos(选择测量的点),选择第二个点; 第十四步:点击Move L/T (左上移动),框好位置; 第十五步:点击Move R/B(右下移动),框好位置; 第十六步:点击Run Training(执行模板登陆)每次学习完都需要试运行一下; 第十七步:点击Set Locate Pos(选择方式); 第十八步:点击Cursor(光标); 第十九步:选择好位置; 第二十步:点击Exit(退出); 第二十一步:点击Regist Tolerance (转移到基准状态登陆菜单)

一张图搞懂机器人视觉与机器视觉

机器人视觉与计算机视觉:有什么不同? By Alex 机器人视觉、计算机视觉、图像处理、机器视觉和图形识别,这几者之间到底有神马区别呢? 要弄清楚他们哪一个是哪一个,有时候也真的是容易混淆的。接下来看看这些术语的具体含义是什么,以及他们与机器人技术有什么关联。读了这篇文章后,你就再也不会被这些概念弄糊涂了! 当人们有时候谈论机器人视觉的时候,他们搞混淆了。当他们说,他们正在使用“计算机视觉”或“图像处理”的时候,实际上,他们的意思是正在使用…机器视觉?,这是一个完全可以理解的错误。因为,所有不同术语之间的界限有时候也是有些模糊的。 在这篇文章当中,我们分解了机器人视觉的“族谱”,以显示在更广泛的信号处理领域所在的位置。 什么是机器人视觉(Robot Vision)? 在基本术语中,机器人视觉涉及使用相机硬件和计算机算法的结合,让机器人处理来自现实世界的视觉数据。例如,您的系统可以使一个二维摄像头,检测到机器将拿起来的一个对象物。更复杂的例子可能是使用一个3D立体相机来引导机器人将车轮安装到一个以移动中的车辆上。 如果没有机器视觉,你的机器人基本上是个瞎子。对一些机器人任务来说,这也许不是一个问题。但对于某些应用来说,机器人视觉是有帮助的,甚至是必不可少的。 机器人视觉(Robot Vision)的“族谱” 机器人视觉与机器视觉密切相关,机器视觉我们稍后再介绍。他们两个又都与计算机视觉密切相关。如果他们谈论的是一个“族谱”,计算机视觉可以看作是他们的“父母”。然而,为了详细的了解他们在整个系统中的位置,我们要更进一步介绍他们的“祖父母”-信号处理。 族谱 信号处理(Signal Processing)

机器人视觉系统的组成及工作原理

机器人视觉系统的组成及工作原理 【摘要】随着大规模集成电路技术的发展,视觉系统逐渐走向实用化。由于微型计算机的飞速发展,使用的视觉系统已经进入领域,其中机器人视觉系统是机器视觉应用的一个重要领域。本文叙述机器人视觉系统的各部分组成,及各部分组成的工作原理。 【关键词】CCD;视频数字;信号处理器 1.机器人视觉系统的硬件系统 1.1机器人视觉系统的硬件由下述几个部分组成 (1)景物和距离传感器常用的摄像机、CCD图像传感器、超声波传感器和结构光设备等。 (2)视频信号数字化设备其任务是把摄像机或CCD输出的信号转换成方便计算和分析的数字信号。 (3)视频信号快速处理器,视频信号实时、快速、并行算法的硬件实现设备:如DSP系统。 (4)计算机及其外设根据系统的需要可以选用不同的计算机及其外设来满足机器人视觉信息处理及机器人控制的需要。 (5)机器人或机械手及其控制器。 1.2机器人视觉的软件系统有以下几个部分组成 (1)计算机系统软件选用不同类型的计算机,就有不同的操作系统和它所支持的各种语言、数据库等。 (2)机器人视觉信息处理算法图像预处理、分割、描述、识别和解释等算法。 (3)机器人控制软件。 https://www.360docs.net/doc/c913593587.html,D原理 视觉信息通过视觉传感器转换成电信号,在空间采样和幅值化后,这些信号就形成了一幅数字图像。机器人视觉使用的主要部分是电视摄像机,它由摄像管或固态成像传感器及相应的电子线路组成。这里我们只介绍光导摄像管的工作原理,因为它是普遍使用的并有代表性的一种摄像管。固态成像传感器的关键部分有两种类型:一种是电荷耦合器件(CCD);另一种是电荷注入器件(CID)。与具有摄像管的摄像机相比,固态成像器件重量轻、体积小、寿命小、功耗低。不过,某些摄像管的分辨率仍比固态摄像机高。光导摄像管外面是一圆柱形玻璃外壳2,内部有位于一端的电子枪7以及位于另一端的屏幕1和靶。加在线圈6、9上的电压将电子束聚焦并使其偏转。偏转电路驱使电子束对靶的内表面扫描以便“读取”图像。玻璃屏幕的内表面镀有一层透明的金属薄膜,它构成一个电极,视频信号可从此电极上获得。一层很薄的光敏“靶”附着的金属膜上,它是一层由一些极小的球状体组成,球状的电阻反比于光的强度。在光敏靶的后面有一个带正电荷的细金属网,它使电子枪发射出的电子减速,以接近于0的速度达到靶面。在正常工作时,将正电压加在屏幕的金属镀膜上。在无光照时,光敏材料呈现绝缘体特性,电子束在靶的内表面上形成一个电子层以平衡金属膜上的正电荷。当电子束扫描靶内表面时,光敏层就成了一个电容器,其内表面具有负电荷,而另一面具有正电荷。光投射到靶层,它的电阻降低,使得电子向正电荷方向流动并与之中和。由于流动的电子电荷的数量正比于投射到靶的某个局部区域上的光的强度,因此其效果是在靶表面上形成一幅图像,该图像与摄像管屏幕上的图像亮

工业机器人有那些常用的传感器三维视觉传感器有那些优势

工业机器人有那些常用的传感器三维视觉传感器有那些优势 在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。机器人已经开始应用大量的传感器以提高适应能力。例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。在此枚举一些常用的可以集成到机器人单元里的各种传感器,供诸君参考。 二维视觉传感器 二维视觉基本上就是一个可以执行多种任务的摄像头。从检测运动物体到传输带上的零件定位等等。二维视觉在市场上已经出现了很长一段时间,并且占据了一定的份额。许多智能相机都可以检测零件并协助机器人确定零件的位置,机器人就可以根据接收到的信息适当调整其动作。 三维视觉传感器 与二维视觉相比,三维视觉是最近才出现的一种技术。三维视觉系统必须具备两个不同角度的摄像机或使用激光扫描器。通过这种方式检测对象的第三维度。同样,现在也有许多的应用使用了三维视觉技术。例如零件取放,利用三维视觉技术检测物体并创建三维图像,分析并选择最好的拾取方式。 如果说视觉传感器给了机器人眼睛,那么力/力矩传感器则给机器人带去了触觉。机器人利用力/力矩传感器感知末端执行器的力度。多数情况下,力/力矩传感器都位于机器人和夹具之间,这样,所有反馈到夹具上的力就都在机器人的监控之中。 有了力/力矩传感器,像装配,人工引导、示教,力度限制等应用才能得以实现。 碰撞检测传感器 这种传感器有各种不同的形式。这些传感器的主要应用是为作业人员提供一个安全的工作环境,协作机器人最有必要使用它们。一些传感器可以是某种触觉识别系统,通过柔软的表面感知压力,如果感知到压力,将给机器人发送信号,限制或停止机器人的运动。 有些传感器还可以直接内置在机器人中。有些公司利用加速度计反馈,还有些则使用电流

安川机器人涂胶系统方案设计说明书讲解学习

XXXX 有限公司 方 案 设 计 说 明 书 2014年01月08日

目录 一、项目内容 二、系统设计依据 三、系统方案介绍 四、系统主要设备构成 五、系统主要设备说明 六、工作环境条件 七、附表、附图 八、附件

一、项目内容 1.设备名称: 四门两盖涂胶系统 2.设备数量: 2套 3.设备用途: 四门两盖涂胶。 二、系统设计依据 1.技术要求。 2.MOTOMAN-MH50/ES165D机器人的特性参数。 3. GRACO涂胶系统参数(客户现场设备,客户负责自行改造) 三、系统方案介绍 1.系统概述: MH50机器人2套、胶泵4套、胶枪4把、控制系统及安全防护装置1套。 2.作业流程: A、操作者将工件放置在夹具上,操作者退出光栅区后按下启动按钮。 B、机器人进行注胶(折边胶和减震胶),MH50机器人自动切换胶枪。 B、或者机器人进行注胶(折边胶和减震胶),ES165D机器人带两把胶枪。 C、操作者取件,操作者退出光栅区后按下启动按钮。 D、人自动下移,并开始注胶。 E、依次循环。 3.生产节拍依据客户生产需要 4.系统特点:

⑴本系统选用的日本安川MOTOMAN- MH50,有如下特点: ●机器人R臂上特别设计机构部位有动力电缆接口、水管接口、气管接口以及电气控制接口。电缆紧凑结构可以使机器人方便的接近夹具和工件,将极大的降低对夹具结构的设计要求。 ●与普通机器人相比,该型机器人电缆寿命有很大的提高;普通机器人电缆使用寿命是2000到4000小时,该型机器人电缆使用寿命可以达到24000小时。因此,这将降低用户机器人维护保养费用,同时将极大减少机器人维护工作量以及由于维护保养所造成的非生产时间。 ●该型机器人具备很强的扩展应用能力。由于电缆的可确定性,以后应用机器人离线编程功能,则可以在计算机上直接进行编程示教,然后输入到机器人控制柜内对离线编程动作基本不做修改就可以启动运转。(离线编程功能是选项) ●具有中文界面的机器人操作系统,方便操作者在很短的时间内就掌握机器人的基本操作功能,充分发挥机器人的生产效率,使机器人投资最快地产生效益。 四、系统主要设备构成 自动切换胶枪模式:

机器人传感器论文

机器人传感器 正文: 传感器是机器人完成感觉的必要手段,通过传感器的感觉作用,将机器人自身的相关特性或相关物体的特性转化为机器人执行某项功能时所需要的信息。根据传感器在机器人上应用的目的和使用范围不同,可分为内部传感器和外部传感器。 内部传感器用于检测机器人自身状态(如手臂间角度、机器人运动工程中的位置、速度和加速度等);外部传感器用于检测机器人所处的外部环境和对象状况等,如抓取对象的形状、空间位置、有没有障碍、物体是否滑落等。 机器人传感器的要求和选择 机器人传感器的选择取决于机器人工作需要和应用特点,对机器人感觉系统的要求时选择传感器的基本依据。 机器人传感器的选择的一般要求: 精度高、重复性好; 稳定性和可靠性好; 抗干扰能力强; 重量轻、体积小、安装方便。 内部传感器 位移传感器 按照位移的特征,可分为线位移和角位移。 线位移是指机构沿着某一条直线运动的距离,角位移是指机构沿某一定点转动的角度。 (1)电位器式位移传感器 电位器式位移传感器由一个线绕电阻(或薄膜电阻)和一个滑动触点组成。其中滑动触点通过机械装置受被检测量的控制。当被检测的位置量发生变化时,滑动触点也发生位移,从而改变了滑动触点与电位器各端之间的电阻值和输出电压值,根据这种输出电压值的变化,可以检测出机器人各关节的位置和位移量。 (2)直线型感应同步器 直线感应同步器的组成是由定尺和滑尺组成。定尺和滑尺间保证与一定的间隙,一般为左右。在定尺上用铜箔制成单项均匀分布的平面连续绕组,滑尺上用铜箔制成平面分段绕组。绕组和基板之间有一厚度为的绝缘层,在绕组的外面也有一层绝缘层,为了防止静电感应,在滑尺的外边还粘贴一层铝箔。定尺固定在设备上不动,滑尺则可以再定尺表面来回移动。 (3)圆形感应同步器 圆形感应同步器主要用于测量角位移。它由钉子和转子两部分组成。在转子上分布着连续绕组,绕组的导片是沿圆周的径向分布的。在定子上分布着两相扇形分段绕组。定子和转子的截面构造与直线型同步器是一样的,为了防止静电感应,在转子绕组的表面粘贴一层铝箔 绝对速度传感器 绝对速度传感器,图4-11为国产CD-1型绝对速度传感器的结构图。途中磁钢6借铝架5固定在壳体4内,并通过壳体形成磁回路。线圈2和阻尼环3安装在芯杆2上,芯杆用弹簧1和8支承在壳体内,构成传感器的活动部分。当传感器的壳体与振动物体一起振动时,如振动的频率较高,由于芯杆组件的质量很大,故产生的惯性力也大,可以阻止芯杆随壳体一起运动。当振动频率高到一定程度时,可以认为芯杆组件基本不动,只是壳体随被测物体振动。这时,线圈以物体的振动速度切割磁力线而在线圈两端产生感应电压。并且线圈输出的电压与线圈相对可替代运动速度成正比。当振动速度高到一定程度时,线圈与壳体的相对速度就是被测振动物体的绝对速度。

机器人视觉传感器的应用

机器人视觉传感器应用 庞浜 学号19920141152889 (厦门大学物理与机电工程学院,福建厦门 361005) 摘要:传感器是自动控制特别是机器人技术中一个很重要的部分。它类似人的五感(眼、耳、鼻、舌、身)对对象物,周围环境,系统内部状态进行快速、准确的感觉、检测、识别。本译文介绍了几种类似人视觉功能的传感器(红外线传感器,视觉—位置传感器,色识别传感器),及其原理、特点、应用及主要技术指标。在机器人发展日益成熟的今天,视觉传感器的重要作用日益显现。 关键词:视觉传感器,图像处理,机器人 Abstract:Sensor is a very important part of automatically controlled in particular robotics. It is similar to one of the five senses (eyes,ears,nose, tongue,body) to the object, the surroundings, the internal state of the system for fast, accurate feeling, detection, identification.The translation introduces several features similar to human vision sensors (infrared sensors, vision - position sensors,color recognition sensor),and its principles,characteristics,applications and main technical indicators.In today's increasingly sophisticated robot development, the important role of the visual sensor becomes increasingly obvious. 1引言 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量 大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强藕合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。计算机视觉应用多采用光电传感器、视觉传感器或者视觉系统来实现。光电传感器结构简单,价格

基于机器视觉的工业机器人分拣技术研究

基于机器视觉的工业机器人分拣技术研究 机器人分拣技术一直受到业内人士的广泛关注。为探讨该技术的特性,文章基于机器视觉搭建一个工业机器人分拣技术平台,并将其做而已实验系统,着重探讨了机器人在相机静止-目标自静止,相机静止-目标运动两种情况下的分拣技术特点,得出相关结论,供同行参考借鉴。 标签:机器视觉;工业机器人;分拣技术;分析和研究 对机器人工作进行分析,发现搬运、分拣是所有工作的基础,无论机器人应用于哪一行业,都会涉及到搬运和分拣工作。考虑到机器人的搬运、分拣工作实现基础是机器视觉,而机器视觉又分为两种情况,即相机静止-目标静止,相机静止-目标运动,一旦机器视觉定位不当,分拣工作就会受到影响,甚至于无法完成。为此,文章在机器视觉基础上搭建一个在机器人分拣实验系统,对机器人工作中应用到的分拣技术作详细论述。 1 国内关于机器人分拣系统的研究 尽管我国已经研发研制出了多种类、多造型的机器人,但整体研究工作目前还处于初级阶段,所以真正意义上的国产视觉机器人尚未研发出,更多的是在国外研究基础上进行改进、二次开发。关于视觉机器人分拣系统,国内研究人士提出了几种可行的算法,如连通域矩特征提取法;贝叶斯估计跟踪算法;目标识别法等等。这些算法都能在一定程度上对机器人分拣动作进行辅助,确保机器人分拣动作的顺利完成,防止错抓。 2 基于机器视觉下的机器人分拣系统构建 为了探讨机器人分拣技术的特点,文章现以MOTOMAN-UP6机器人为例,基于机器人视觉构建一个机器人分拣系统,并对该系统在相机静止-目标静止,相机静止-目标运动两种情况下的运行情况做详细论述。 2.1 机器人分拣系统的构成 实验中所构建的机器人分拣系统由四个部分构成,分别为相机标定、图像处理、模式识别以及机器人控制,四个部分缺一不可。相机标定的作用是为系统建立一个图像坐标系与机器人坐标系,并以此来研究二者之间的关系;图像处理的作用是对相机拍摄到的外界图像进行预处理,提取图像中的某些特征,并根据这些特征来确定出联通成分的中心坐标;模式识别需以图像作基础,对图像及图像中的联通成分进行识别、分类;机器人控制是最后步骤,控制的实现方法是在计算机和机器人之间建立一个连接通信,利用计算机程序来对机器人动作进行控制。 2.2 机器人分拣技术分析

相关文档
最新文档