陶瓷胶态成型方法研究新进展

陶瓷胶态成型方法研究新进展
陶瓷胶态成型方法研究新进展

陶瓷胶态注射成型技术

陶瓷胶态注射成型技术 摘要:结合注射成型和凝胶注模成型技术的优点,发明了陶瓷胶态注射成型技术,实现了水基非塑性浆料的注射成型。经过研究表明:通过调节工艺中的各项参数和添加适当的助剂,可以实现陶瓷浆料的可控固化;加入应力缓释剂调节高分子网络结构,能有效降低坯体中的内应力,制备出大尺寸陶瓷部件;利用胶态注射成型技术与设备,不仅能实现规模化大批量生产,而且产品具有较高的可靠性,具有广阔的应用前景。 关键词:胶态注射成型;水基非塑性浆料;可控固化;内应力;应力缓释剂 Colloidal Injection Molding of Ceramics Abstract:Colloidal injection molding of ceramics(CIMC) is a new ceramic forming technique,which combines the advantages of gel-casting and injection molding, to achieve a non-plastic water-based slurry injection.After the study show that;all kinds of lectors which effect solidification of slurry is studied and then we can control solidification course.Internal stress of green body is also studied and large-size ceramic component can be got by adding moderator.So high performance ceramics with complex shape is manufactured by CIMC technique with high reliability,high automation and low cost. Key words:colloidal injection molding;injection molding;controllable solidification;stress;stress release agent 引言 随着技术的进步,高性能陶瓷以其优异的耐高温、高强度、耐磨损、耐腐蚀等性能和优点被广泛地应用于工业、国防、机械、石油、汽车、家用电器等各个领域的候选材料。 高性能陶瓷产业化关键在于提高产品性能可靠性和降低其制造成本,而陶瓷材料可靠性及其制造成本与制备工艺密切相关,围绕这两个关键问题,近二三十年来,新的陶瓷粉体制备工艺、成型工艺及烧结工艺的研究逐渐成为陶瓷材料研究领域的新热点。其中成型工艺作为制备高性能陶瓷材料及部件的关键技术,它不仅是材料设计和材料配方实现的前提,而且是降低陶瓷制造成本,提高材料可靠性尤为重要的环节,已逐渐成为陶瓷材料制备科学研究的主流。 1 高性能陶瓷产业化应用的困局 目前高性能陶瓷的应用面临的两大问题是陶瓷的制造成本高和使用性能的 可靠性差。由于陶瓷的制造成本高,从而导致产品的价格高,无法与金属及其复合材料竞争,因此目前只能用于一些特殊领域。 高技术陶瓷由于硬度高质脆,不像金属那样可以加工成各种各样的形状,其中陶瓷机加工的成本几乎占到陶瓷制造成本的1/3— 2/3,主要是因为陶瓷部件的成型很难达到近净尺寸成型。 原因在于传统的陶瓷注射成型技术来源于高分子材料的注塑成型,将大量的高分子粘结剂与陶瓷粉体混练在一起,然通过注射成型机制备各种复杂形状的陶瓷零部件。因此,采用传统陶瓷制备工艺和装备很难获得显微结构均匀、无缺陷和近净尺寸陶瓷部件。 另外,陶瓷材料的性能分散性大,即陶瓷材料的可靠性差,特别是结构陶瓷

最新特种陶瓷-考试重点

普通陶器:即指土陶盆、罐、缸、瓮,以及耐火砖等具有多孔性着色坯体的制品,原料颗粒比较粗。 瓷:用高岭土等烧制成的材料,质硬且脆,比陶质细致,也称瓷器 瓷石:主要含石英和绢云母。由于它是石质,一般是用机器粉碎。瓷石是天然配好的制瓷原料,在1200-1250℃的温度下可以单独烧成瓷器,这就是所谓的“一元配方”。 高岭土:元代,景德镇发现了高岭土,并将其掺入瓷石中,即所谓的“二元配方”,它提高了原料中铝的含量,使瓷胎可以耐受1280-1300℃的高温,这是提高瓷胎坚固性的必要条件。 陶瓷:以无机非金属物质为原料,在制造或使用过程中经高温(540℃以上)煅烧而成的制品和材料。狭义:无机非金属材料中的一种类型(水泥、玻璃、陶瓷等)。广义:一切无机非金属材料及制品统称陶瓷。 特点:1、原料丰富(Clarke value,占地壳总量的70-80%)2、性能优越:(抗压)强度高、耐高温、耐磨损、耐腐蚀、抗氧化等3、与金属、高分子、复合材料呈四足鼎立之势 传统陶瓷:由粘土等硅酸盐天然原料为主的坯料制成的日用餐具、耐火材料、水泥、瓶玻璃、卫生洁具等。 近代陶瓷:以Al2O3、ZrO2、TiO2、SiC、Si3N4等人工原料或合成原料为坯料制成的陶瓷。 特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成、严格控制成型及烧结工艺所合成的,达到设计的微观结构和精确的尺寸精度,并具有优异特性的陶瓷。日本称技术陶瓷 结构陶瓷:用于机械结构零件的陶瓷。 功能陶瓷:具有特殊的电、磁、声、光、热、化学及生物功能的陶瓷。 陶瓷材料的结构与性能 1、材料的成分、显微组织结构与性能(一体化,正交化试验方法) 2、材料的结构受到组成及加工工艺的制约 3、显微结构的研究指导材料工艺的制订与优化 特种陶瓷的主要研究领域1、优化结构,获得优异性能2、材料的性能评价与可靠性 单相多晶体:陶瓷的相组成主要由单一相的多个晶体组成 多相多晶体:除了晶相(可能多相)外,还有气孔和玻璃相 晶相的结构:晶粒大小(晶粒度)、分布、形态,结晶特性、取向、晶界及表面形态 晶相:决定陶瓷基本性能的主导物相。单相多晶、多相多晶 晶形:晶体在形成、生长过程中,习惯性地、自发地按一定的规律生长和发育成一定的几何形态。(自形晶:完整(完全发育)晶体;半自形晶和他形晶:生长受到抑制,部分完整或很不完整。) 主晶相:决定材料基本性能。次生相:对陶瓷性能起重要调节性能。(析出相) 玻璃相:配料中引入的各种杂质组分经高温烧结的物理、化学反应,形成液相,冷却时转变为玻璃相(常分布于晶界部位)。 结构与作用—烧结体中起粘结作用,粘结晶相,连续分布—填充气孔、烧结体致密化—降低烧结温度,促进烧结—抑制晶体长大、防止晶形转变(低温烧结)—有利于杂质、添加物的重新分布—液相量依陶瓷的用途而定(液相量↑易变形,耐火度↓强度↓介电性↓)—热处理,促进玻璃相晶化—

陶瓷凝胶注模成型

凝胶注模成型工艺研究 夏培 (天津大学材料科学与工程学院,教育部先进陶瓷与加工重点实验室,天津300072) 摘要:凝胶注模成型是一种优于传统成型工艺的先进陶瓷成型方法,为净尺寸高性能复杂形状陶瓷的制备提供了有效的技术途径。本文对陶瓷凝胶注模成型的原理、工艺、成型体系、特点等进行了简单的概论介绍,综述了目前凝胶注模成型的研究现状、存在的问题和应用情况并展望了发展趋势。 关键词:凝胶注模;研究现状;问题与展望 Study on the gel-casting XIA Pei (Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, college of Material Science and Engineering, Tianjin University, Tianjin 300072, Tianjin, China) Abstract: Gel-casting process is an advanced manufacturing technology for ceramic forming, which is superior to the traditional one, and has provided an effective approach to prepare high performance net size ceramics with complicated shapes. The principles,procedures,forming system and character of gel-casting are simply discussed in this paper, moreover, the present research process,problems as well as applications are also included. Finally, the tendency of this technology is forecasted in a dialectical way. Key words: gel-casting; present research; problems and prospects

LSR(注射成型)最新技术详解-精

注射成型LSR的最新进展 在这一制品中,,用作滤 图1热塑性塑料/LSR包覆成型的一个应用是水龙头滤网 包覆成型的一个应用是水龙头滤网。。在这一制品中 网的LSR被包覆成型到尼龙66上 得益于材料、设备和工艺的改进与革新,液态硅橡胶(LSR)逐渐摆脱了小众需求的现状,扩大了应用领域。其中,大型、微型和发泡制品,以及多色或多材料的组合是LSR应用的新领域。 液态硅橡胶(LSR)对于注塑加工商的商业机会的拓宽,要归功于更新的成型工艺,如发泡、多色或者多硬度注射,以及热塑性塑料/热固性塑料包覆技术的涌现。材料、设备和模具的改进增加了产品的多功能性,提高了产品质量,降低了注塑加工商准入的门槛。

今天的LSR注塑加工商拥有更多的原材料选择、更大的模具选择余地以及更好的工艺技术,不但可以成型小至数千分之一g的制品,而且也能够加工32kg以上的巨大产品。 材料、模具和加工设备供应商表示,在过去的几年里,对LSR感兴趣的人逐渐增加。“一些塑料公司对此感兴趣,一些新公司也希望开拓他们的业务,同时医疗领域的加工商也更多地加入进来。”Roembke Mfg.&Design模具公司副总裁Greg Roembke说。“我们发现,汽车工业已开始应用LSR。也许传统的硅橡胶在汽车工业中的应用已达到了极致,下一步需要从LSR获得更多的东西。”他补充说。 图2LSR的双注射包覆成型通常在一个成型单元内完成, 而LSR和热塑性塑料则分别在不同的注射机上成型 LSR注塑加工商表示,他们已经从高温硅橡胶(HCR)、EPDM、乳胶、天然橡胶、TPE、PVC甚至陶瓷的应用领域中抢占了一些市场。Momentive Performance Materials(前GE Silicones)的弹性体和RTV总经理Bill French说,由于LSR惰性、耐热且耐化学品,因此可用于生产奶嘴和奶头、医用装置阀门或密封条、医疗植入体、医用手套和汽车密封条

特种陶瓷制备工艺..

特种陶瓷材料的制备工艺 10材料1班 王俊红,学号:1000501134 摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。 目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。 当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。 压力成形不能满足形状复杂性和密度均匀性的要求。 多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;陶瓷材料 前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。 它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。 特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。 因此研究特种陶瓷制备技术至关重要。 正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。 特种陶瓷制备工艺流程图 一、 陶瓷粉体的制备 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结 成品

陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分的影响。粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。 传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。然后在一定的温度下煅烧。由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型: 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO3+TiO2→BaTiO3+CO2↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法:

金属、高分子、陶瓷材料加工成型方法

金属材料、高分子材料、陶瓷材料的成型制备方法 金属材料加工成型方法 金属材料成型工艺有以下几种 一、金属液态成型也叫铸造。它是将熔融的金属液体浇注到与零件形状相对应的铸造模型腔中,待冷却后得到实体毛坯或零件的工艺过程。 铸造加工的特点:1.适应性强2.成本低廉3.铸造组织存在一定缺陷4.工艺过程较难控制铸造方法分为砂型铸造、特殊铸造 I、砂型铸造:用型砂做铸型的铸造方法,使用率90% 砂型铸件的结构设计应注意 1、力求外形简单,轮廓平直,只需一个分型面 2、力求铸件的内腔铸造时,型芯数目最少,方便装配、清理、排气 3、起模方向应设计结构斜度 4、铸件应有合理的壁厚 5、力求铸件壁厚均匀,防止局部积聚变形,造成裂纹、缩孔、缩松等缺陷 6、尽量避免铸件中有过大的水平面,防止由于横截面突然增大,导致金属液面上升缓慢,致使型腔顶部受到长时间烘烤,造成夹砂缺陷、产生气孔等;将平面改为倾斜面 II、特种铸造 特种铸造:砂型铸造以外的其他铸造方法,包括熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、陶瓷型铸造等。 ①熔模铸造(失蜡铸造):在蜡模表面包以造型材料,待其硬化,将其中的蜡模熔去,从而获得无分型面的铸型的铸造方法。 基本过程:蜡模制造→结壳→脱蜡→造型→焙烧→浇铸→落砂清理 熔模铸造(失蜡铸造)的特点 a、铸件的精度高且表面光洁。 b、适用于各种铸造合金铸件,尤其是高熔点及难切削的合金的铸造。 c、熔模铸件的形状可以比较复杂,最小孔径0.5mm,壁厚0.3mm。 d、铸件的重量不宜太大,一般<=25kg,最大80kg左右。 e、工艺过程复杂,不易控制,使用和消耗的材料较贵,适用于形状复杂、精度较高或难以机加工的小型零件,如发动机叶片和叶轮等。 ②金属型铸造:金属型铸造又称硬模铸造,它是将液体金属浇入金属铸型,以获得铸件的一种铸造方法。铸型是用金属制成,可以反复使用多次(几百次到几千次)。 金属性铸造的优缺点 可以“一型多铸”,铸件的力学性能提高,金属型铸件的冷却速度较快、组织比较致密铸件精度较高,可以少加工或不加工。 但是,成本高、周期长;铸造透气性差、无退让性,易产生冷隔、浇不足、裂纹等缺陷;铸件熔点不宜太高,重量也不宜太大。

新型陶瓷成型方法

新型陶瓷成型方法——凝胶注模成型 宋任娇 08120188 一.前言 随着陶瓷工业的发展及其在现代工业领域中应用的不断扩大,对陶瓷成型方法的要求也越来越高,上述传统陶瓷成型工艺由于存在不同的缺点,已难以满足工艺要求,为满足航天、汽车、电子、国防等行业的市场需求[1],人们要求采用高性能陶瓷的成型方法所成型的坯体应当具有高度均匀性、高密度、高可靠性以及高强度,并在形状的复杂程度上要求更高。因此,陶瓷原位凝固成型技术便应运而生了。 原位凝固胶态成型[3,2]就是指颗粒在悬浮体中的位置不变,靠颗粒之间的作用力或悬浮体内部的一些载体性质的变化,使悬浮体从液态转变为固态。在从液态转变为固态的过程中,坯体没有收缩或收缩很小,介质的量没有改变。在这类成型方法中,首先要制备稳定悬浮的浆料,然后通过各种途径使颗粒之间产生一定的吸引力而相互聚集,形成一个密实的坯体,并保持一定的强度和形状,由此可制成高密度的素坯。原位凝固胶态成型与其它胶态成型工艺之间的区别主要在于凝固技术的不同,这将会导致对浆料性质要求的差异和整个工艺过程的差异。 国内外的陶瓷学者不断总结经验,将胶体化学和表面化学的理论引入到陶瓷浆料的成型技术中,并利用各种物理的辅助手段,在传统的注浆成型的基础之上发展起来了多种新型的胶态成型技术,如:离心注模成型[3]和压滤成型[4]等成型方法。在80年代末90年代初,凝胶注模成型首次使用较低含量的有机物使陶瓷浓悬浮体实现原位凝固,进而在90年代掀起了陶瓷原位凝固胶态成型研究的热潮。 目前,原位凝固胶态成型工艺主要包括:凝胶注模成型工艺(Gelcasting)、直接凝固注模成型(Direct Coagulation Casting)[5]、温度诱导絮凝工艺(TemperatureInduced Flocculation)[6]、胶态振动注模成型(Colloid VibrationCasting)[7]和快速凝固注射成型(Quickset Injection Molding)[8]。 二.凝胶注模成型原理及工艺 凝胶注模成型技术是传统的注浆工艺与有机化学高聚合理论的完美结合,它通过引入一种新的定型机制,发展了注浆工艺。其原理是通过制备低粘度(<1Pa·s)、高固相体积分数(>50vol%)的浓悬浮体,在其中掺入低浓度的有机单体、交联剂,在催化剂和引发剂的作用下,使浆料中的有机单体与交联剂交联聚合成三维网状结构,将大部分水封于网络中而使浆料立即原位凝固,从而使陶瓷坯体原位定型[20]。然后进行脱模、干燥、去除有机物、烧结,即可获得所需陶瓷零件。其原理见图1.1。 该工艺与其它原位凝固胶态成型工艺的相同点是需要制备低粘度、高固相体积分数的浓悬浮体,不同点在于浓悬浮体的凝固技术不同,这将会导致坯体性能的差异[21-24]。 凝胶注模成型分为两类:一种是水溶性凝胶注模成型(aqueous Gelcasting),另一种是非水溶性凝胶注模成型(Non aqueous Gelcasting)[25]。前者适用于大多数陶瓷成型场合,后者主要适用于那些与水发生反应的系统的成型。该技术首先发明的是有机溶剂的非水凝胶注模成型,随后作为一种改进,又发明了用于水溶剂的水凝胶注模成型,并广泛应用于各种陶瓷中,非水溶性凝胶注模成型采用有机溶剂,要求溶剂有较低的蒸汽压。水溶性凝胶注模成型更进一步,有许多优点[26,27]:(1)成型过程与传统方法类似,简便易行;(2)干燥过程更加容易; (3)降低了预混液的粘度;(4)对环境污染小。因此,该方法被广泛应用。

陶瓷注射成型技术

陶瓷注射成型 刘明亮 (武汉理工大学材料学院武汉市湖北省430000) 摘要:陶瓷注射成型是一种近净尺寸陶瓷可塑成型方法,是当今国际上发展最快、应用最广的陶瓷零部件精密制造技术。详细阐述了陶瓷注射成型技术的关健因素,重点介绍了粘结剂、注射成型及脱脂等关健工艺及其研究现状,并在此基础上评价和展望了该技术的发展前景。 关键词:陶瓷注射成型;粘结剂;脱脂;现状 Ceramic Injection Molding Liu mingliang Abstract: Ceramic injection molding (CIM) is a near-net-shape forming process for fabricating ceramic components, which is extensively used in fabricating parts with high precision and complex shape and received great attention now. In this paper, the key steps of CIM are detailedly reviewed. Their research status and the techno1ogies involved including binder,injection process,debinding and so on are discussed. At last, the development of injection molding technology is also evaluated. Keywords:ceramic injection molding; binder; debinding; status 20世纪以来,特别是二次世界大战以后,随着原子能工业的兴起和电子工业的迅速发展,对于材料的高温、高耐磨、多功能等性能要求越来越苛刻,而先进的工程陶瓷所具有的优点基本上能满足上述的苛刻条件。如:高性能结构陶瓷以其优异的耐高温、高强度、耐磨损与耐腐蚀等优良性能,被作为陶瓷发动机零部件的候选材料; 还有许多高导热性、绝缘性能良好、光学性能优良的功能陶瓷,在信息转换、存储、传递和处理方面,应用日益广泛。在未来的产业领域中,工程陶瓷将更广泛的取代现代金属材料,成为材料科学中的重要角色。 在陶瓷材料的制备工艺过程中,成形过程是一个重要环节。成形过程就是将分散体系(粉料、塑性物料、浆料)转变成为具有一定几何形状和强度的块体,也称素坯。由于陶瓷材料本身固有的脆性和一些特殊陶瓷材料的高硬度,如采用传统粉末冶金工艺,即先将粉末压制成形,再进行机械加工的方法,成本高且难以制备体积微小、形状复杂、尺寸精度高的陶瓷零部件,而采用注射成形技术,由于坯体的成形形状接近制品的最终形状,使这一问题得到了解决。特别是对于尺寸精度高、复杂形状陶瓷制品的大批量生产来说,陶瓷的注射成形(Ceramic injection molding,CIM) 更有着显著的优势,它可一次性成形复杂形状制品,产品尺寸精度高,无需机械加工或只需微量加工,易于实现生产自动化且产品性能优异。 陶瓷注射成型技术(CIM)类似于20世纪70年代发展起来的金属注射成型(MIM)技术,它们均是粉末注射成型(PIM)技术的主要分支,均是在聚合物注射成型技术比较成熟的基础上发展而来的,是当今国际上发展最快、应用最广的陶瓷零部件精密制造技术[l,2]。 1 CIM流程路线及技术特点 1.1 注射成型工艺路线

特种陶瓷教学大纲

《陶瓷工艺学》教学大纲

的物理化学变化。 本章难点:配方计算包括由化学组成计算配方,由实验公式计算配方,由矿物组成计算配方,由分子式计算配方,以及更换原料时的重配计算。可塑泥团的流变特性,陶瓷泥浆的流变特性及影响因素。矿物煅烧时的变化。 第三章釉层的工艺基础(6学时) 3.1 釉料的组成 3.1.1 釉的分类 3.1.2 确定釉料组成的依据 3.1.3 釉料配方的计算 3.2 釉层的形成 3.2.1 釉层形成过程的反应 3.2.2 釉料与坯体的作用 3.2.3 釉层的显微结构 3.3 釉层的性质 3.3.1 釉层的物理化学性质 3.3.2 坯-釉适应性 3.3.3 釉的析晶 本章重点:铅釉,石灰釉,长石釉的主要特性,釉料成分的种类,确定釉料组成的依据,釉料冷却过程的变化,釉的熔融温度范围,釉的粘度与表面张力,釉的化学稳定性,坯釉适应性,釉熔体的析晶过程,影响釉熔体析晶的因素,析晶对釉面光学性质的影响。 本章难点:釉料加热过程的变化,釉层中气泡的产生,釉料与坯体的作用,长石质透明釉,乳浊釉的显微结构,釉的热膨胀性,釉的弹性,釉的硬度,釉的介电性质。 第四章生产过程(16学时) 4.1 原料的处理 4.1.1 原料的精选 4.1.2 原料的预烧 4.1.3 原料的合成 4.2 坯料的制备 4.2.1 坯料的种类和质量要求 4.2.2 原料的细粉碎 4.2.3 泥浆的脱水 4.2.4 造粒及陈腐和真空处理 4.3 陶瓷成型方法与模具 4.4 生坯的干燥 4.4.1 干燥的工艺问题 4.4.2 干燥制度确定 4.4.3 干燥方法 4.5 施釉 4.5.1 釉浆的制备 4.5.2 施釉 4.6 烧成 4.6.1 烧成制度的制订 4.6.2 低温烧成与快速烧成 4.6.3 烧成新方法

陶瓷材料的成型方法(一)

陶瓷材料的成型方法(一) 陶瓷材料已经成为我们生活中一个智能更要的工具了,在现代陶瓷材料的生产中,常用的成型方法有挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型等。 1.挤制成型 挤制成型主要用于制造片形、棒形和管形制品,如电阻的基体蜂窝陶瓷载体的陶瓷棒、陶瓷管等陶瓷制品。该成型方法生产效率高,产量大、操作简便,使用的挤压机分卧式和立式两种。配料中新土含量较大时,成型的坯料一般不加黏合剂,配料经过真空练泥、闲料后即可用于挤制成型。坯料中一般含水量为16%一25%。配料中含茹土少或不含教土时,将均匀混合了熟合剂的粉料经真空练泥和闲料后,再用于挤制成型。挤制成型的氧化铝瓷球常用的教合剂有糊精、桐油、甲基纤维素(MC)、羧印基纤维素、泽丙基甲基纤维素(HPMC)和亚硫酸纸浆废液等。 挤制资管时应注意防止坯体变形,管的外径越大,壁越薄,机械强度越差,越容易变形。 2.干压成型 干压成型是最常用的成型方法之一,适用于成型简单的瓷件,如圆片形等,对模具质量的要求较高。该方法少产效率高,

易于自动化,制品烧成收缩率小,不易变形。干压成型方法所用坯料的含水量一般控制在4%一8%左右。干压常用熟合剂主要有聚乙烯醇(PVA)水溶液、石蜡、亚硫酸纸浆废液等。通常配料中黏合剂的加入量为:聚乙烯醇水溶液3%一8%、石蜡8%左右、亚硫酸纸浆废液10%左右。 干压成型是利用模具在泊压机上进行的。干压成型的加压方式有单面加压和双面加压两种。直接受压一端的压力大,坯体密度大;远离加压一端的压力小,密度小。金属填料的双面加压时坯体两端直接受压,两端密度大,中间密度小。造粒料并加润滑剂时,双面加压的尔意图,坯体密度非常均匀。成型压力的大小直接影响资体的密度和收缩率。如某BaTiO3系资料,外加5%聚乙烯醇水溶液造粒,在相同烧成条件下,成型压力为0.5MPa时,收缩系数为1.15—1.16;成型乐力为0.6MPa时,收缩系数为1.13—1.14;成型压力为0.7MPa时,收缩系数为1.11-1.12;成型压力为0.8MPa时,收缩系数为1.03。 原文链接:https://www.360docs.net/doc/ce14571411.html,/new/View_73.html版权所有,转载请以链接形式注明作 者及原始出处。 本站关键词:防腐施工、陶瓷防腐、化工填料、蜂窝陶瓷、

陶瓷注浆成型工艺方法

1.目的:保证精陶大件产品注浆成型顺利进行,提高成型半成品合格率。 2. 适用范围:适用于精陶产品如辊棒、方梁、立柱等产品的注浆成型作业。 3.作业要点 注浆作业前的准备 模型清理 注浆工在进行作业前,要仔细检查清理模型。对于新上的模型,首先检查核对型号,检查模型是否完好,工作面有无缺陷。核对检查合格的模型先用细砂纸(240#)将模型工作面轻轻打磨一遍,清除模型表面的脱模剂及其它杂物,并用约20%的稀浆水将模型工作面擦拭一遍。正常使用的模型,注浆作业前要将模型表面的余浆及石膏屑清理干净。模型跑浆时,对沾在模型内外及子母扣处的泥渣都要清理干净。对脱模时发现有不能脱模的情况,再次注浆前用石墨将模型对应坯体不脱模的地方薄薄抹一层,便于脱模。 模型及进浆管与添浆管的安装 清理过的模型放于支架上时,首先要保证支架每个支撑点在一条直线上,模型放置要稳定,不得有悬空的情况,以免引起模型断裂或变形。合模时要将模型子母扣对整齐,并用紧固件压紧。注意紧固件要分布均匀并锁紧,防止注浆时跑浆。进浆管与添浆管依次插紧,添浆管处用来盛浆的容器要高于模型悬挂,且管子要拉直,便于进浆、回浆及排气。 泥浆的准备 泥浆要使用配浆人员已化好的泥浆。泥浆使用前,要确保充分搅拌均匀,搅拌时间不得少于 30分钟,未充分搅拌的泥浆不得使用。在抽进注浆罐前要进行过筛,筛目要求为 100 目。过筛时要缓慢往筛内添浆,不得漫筛,防止料渣进入已过筛的浆料中。浆料的比重规定为,对不符合规定的泥浆不得使用。配浆要保证泥浆具有5天的陈腐期。 注浆操作 注浆作业时,要保证3人以上同时操作,一人控制进浆阀门,一人操作进浆管,一人在添浆管处观察。注浆前往注浆罐内充氮气,罐内压力达到— MPa时停止,并关闭阀门。注浆时要注意控制上浆速度,缓慢均匀进浆,不得猛开阀门。出现跑浆漏浆的情况要立即处理。 根据确定的不同产品的注浆时间,在吸浆过程中要经常观察添浆管中的浆面的位置,及时添加泥浆,防止缺浆造成坯体厚度不够及局部厚薄不均。添浆时要注意不得踩在模型上,避免造成模型振动,引起坯体坍塌。 在吸浆到注浆时间的60%左右时,翻转模型。翻转模型必须由3人以上人员同时操作,翻转模型时要保证轻、慢、稳,禁止动作过猛,引起模型振动,导致坯体振动坍塌。

陶瓷粉末成型技术的工艺与控制

陶瓷粉末成型技术的工艺与控制 2008-11-5 1:29:52 人们总是希望陶瓷制品,尤其是特种陶瓷是均质的,能满足良好的机、电、热、化学或某种特殊性能要求,并能实现生产自动化、质量可控、性能一致性好的规模化生产。为此,首先要实现陶瓷坯体在粉末成型过程中是均质的或接近均质的。采用干粉压制、等静压成型是近世纪才发展起来的新型粉末成型工艺。为了最大限度实现陶瓷坯体均质化,不仅需要有先进的粉末成型设备,而且还有陶瓷粉体制备的质量,即每个单一粉末颗粒是均质的,而且是可控的。 1.实现坯体均质化途径 无论是干粉压制或等静压成型,由于粉末颗粒之间、粉体与模具壁之间,都存在内外摩擦而导致坯体密度分布不均匀,尤其是干粉压制,在压制方向上,压力随高度变化而呈指数衰减,形成一个密度梯度,确实很难达到坯体密度上下一致。其次,粉体本身颗粒为满足压制成型所需的粉末成型特性,需要添加一定量的添加剂,它们在每个单一颗粒中是否均匀,也是影响坯体均质的重要因素。 1.1压制方式 影响压坯密度的因素很复杂,除粉体本身特性外,主要有坯体形状和大小、压制件的侧正面积比、压制压力、模具粗糙度、润滑条件以及压制方式和粉末在模具中运动的摩擦系数等都起重要作用。实践证实等静压成型优于干粉压制,湿等静压优于干袋式等静压。现在国际流行的全自动干粉压机结构上采用强制双向拉下压制的曲柄连杆机构,图1给出典型压制过程中上下模头和凹模的运动轨迹,当上模头和凹模同时向下时实现反压,能最大限度地使坯体各部密度均匀。

图1典型压制过程中上下模头和凹模的运动轨迹 很多制品并非简单的等厚坯件,厚薄不一致,甚至有多个台阶,图2给出异形制品成型时模具各部件在压机中的运动轨迹。达到各部位厚度不一样按成型要求密度分层加料,以求成型后坯体各部位基本一致。关于压制成型技术,应视工件形状选择加料方式、上下模头压制次数、压制线的位置以及是否采用保护脱模,即使是1mm厚的制品,也应采用双面压制,也存在压制线位置,即上下压力的调整,且有利于烧成时坯体平整。有关陶瓷压片机设备使用可参阅有关设备说明书。 1.2粉体制备 无论干粉压制或等静压成型均要求粉料呈颗粒状,有较好的流动性;颗粒有一定的强度,以免在运输和加料过程中破碎;有一定的颗粒级配,加料时实现紧密堆积;具有一定的粘结特性和润滑特性,颗粒之间不应相互粘结等造粒特性。 为了达到上述特性要求,无论采用哪种造粒方式,往陶瓷原料中添加各种辅助材料是必然的,这些材料既不能影响坯料组分,又要求它们能均匀分布在每一个粉末颗粒中,从微观上讲是均质的。辅助材料通常有以下几种: 图2 异形制品成型 时候具备部件在机中的运动轨迹 (1)聚乙烯醇:不要以为喷雾造粒就一定能得到均质的粉体,粘结剂选择与搭配是关键。我们希望粘结剂能均匀分给每个粒子,在颗粒内形成的微观结构是均质化的事实上,如果仅往坯料中加入单一的聚乙烯醇作为结合剂,造粒后颗粒表面坚硬,有凹坑,在压制过程中往往存在大量颗粒间隙,坯体难以密实,这种粉末从颗粒上讲就是非均质的。 (2)水溶性聚合物:陶瓷用粘结剂一般采用水溶性聚合物,经验证明往高聚合度粘结剂材料中添加少量低分子粘结剂混合使用,有利于改善粉料颗粒形状和松装密度。实践证明聚乙烯醇是特性最好的粘合剂,但并不能获得最理想的颗粒形状和松装密度,添加少量水溶性低聚合物,如淀粉类及其衍生物,有较好的效果。

陶瓷成型技术

陶瓷成型技术 摘要: 成型技术是制备陶瓷材料的一个重要环节。陶瓷制造经历数千年历史,直到20世纪中叶因为烧结理论的创立获得了飞速发展。上世纪七八十年代关于超细粉体制备和表征的发展,促使陶瓷工艺第二次大发展。当前阻碍陶瓷材料进一步发展的关键之一是成型工艺技术没有突破.压力成型不能满足形状复杂性和密度均匀性的要求。本文评述了国内外陶瓷现代成型技术,讨论了上述成型方法的基本原理和特点。 关键词:陶瓷, 成型, 技术,进展 一引言 成型工艺是陶瓷材料制备过程的重要环节之一,在很大程度上影响着材料的微观组织结构,决定了产品的性能、应用和价格[1]。过去,陶瓷材料学家比较重视烧结工艺,而成型工艺一直是个薄弱环节,不被人们所重视。现在,人们已经逐渐认识到在陶瓷材料的制备工艺过程中,除了烧结过程之外,成型过程也是一个重要环节。在成型过程中形成的某些缺陷(如不均匀性等)仅靠烧结工艺的改进是难以克服的,成型工艺已经成为制备高性能陶瓷材料部件的关键技术,它对提高陶瓷材料的均匀性、重复性和成品率,降低陶瓷制造成本具有十分重要的意义。本文简单回顾了陶瓷成型方法的发展及技术特点。 二成型方法 1 胶态浇注成型[2] 胶态浇注成型是将具有流动性的浆料制成可自我支撑形状的一种成型方法。该法利用浆料的流动性,使物料干燥并固化后得到一定形状的成型体。主要包括以下几种方法: ①注浆成型(Slip Casting) 是将浆料注入具有渗透性的多孔模具(如石膏)中,模具内部的形状即为所需要的素坯形状,利用多孔模具的毛细管力而使液体排除,从而固化。注浆成型的模具要具有一定的强度,吸水性好,吸水速度适中。注浆成型工艺成本低,过程简单,易于操作和控制,但成型形状粗糙,注浆时间较长,坯体密度、强度也不高。80年代中期,人们在传统注浆成型的基础上,相继发展产生了新的压滤成型(Pressure Filtration)和离心注浆成型(Centrifugal Casting),借助于外加压力和离心力的作用,来提高素坯的密度和强度,而且几乎不需要使用有机添加剂,因而避免了注射成型中复杂的脱脂过程,但由于坯体均匀性差,因而不能满足制备高性能高可靠性陶瓷材料的要求 ②流延成型(Tape Casting)〔1-2〕 也称带式浇注,或刀片法(Doctor-blade)。它是将粉料与塑化剂混合得到可流动的粘稠浆料,然后将浆料均匀地流到或涂到转动着的基带上,或用刀片均匀地刷到支撑面上,形成浆膜,干燥后得到一层薄膜,带膜厚度一般为0.01-1mm。60年代中期,由Wentworth等首次将流延法用于铁电材料的浇注成型。此外,它还被广泛用于多层陶瓷、电子电路基板、压电陶瓷等器件的生产中。 随着工业上对更大尺寸、更复杂形状陶瓷零部件需求的不断提高,用注射成型等传统的成型技术来制造已难以实现。它们都受到来自部件壁厚和复杂程度等方面的严重限制。围绕提高陶瓷材料的均匀性和可靠性问题,人们在传统成型工艺的基础上进行了不断深入的研究,并在90年代初期出现了一系列令人耳目一新的原位凝固成型工艺,其中最具代表性也是目前研究最活跃的两种成型方法是注凝成型和直接凝固注模成型,此外还有胶态振动注模成型、温度诱导絮凝成型等,原位凝固成型工艺受到了普遍的重视。 ③注凝成型(Gel Casting)

陶瓷的生产工艺流程

陶瓷的生产工艺流程 一、陶瓷原料的分类 (1)粘土类 粘土类原料是陶瓷的主要原料之一。粘土之所以作为陶瓷的主要原料,是由于其具有可塑性和烧结性。陶瓷工业中主要的粘土类矿物有高岭石类、蒙脱石类和伊利石(水云母)类等,但我厂的主要粘土类原料为高岭土,如:高塘高岭土、云南高岭土、福建龙岩高岭土、清远高岭土、从化高岭土等。 (2)石英类 石英的主要成分为二氧化硅(SiO2),在陶瓷生产中,作为瘠性原料加入到陶瓷坯料中时,在烧成前可调节坯料的可塑性,在烧成时石英的加热膨胀可部分抵消部分坯体的收缩。当添加到釉料中时,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性。我厂的石英类原料主要有:釉宝石英、佛冈石英砂等。 (3)长石类 长石是陶瓷原料中最常用的熔剂性原料,在陶瓷生产中用作坯料、釉料熔剂等基本成分。在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。在釉料中做熔剂,形成玻璃相。我厂的主要长石类原料有南江钾长石、佛冈钾长石、雁峰钾长石、从化钠长石、印度钾长石等。 二、坯料、釉料制备 (1)配料 配料是指根据配方要求,将各种原料称出所需重量,混合装入球磨机料筒中。我厂坯料的配料主要分白晶泥、高晶泥、高铝泥三种,而釉料的配料可分为透明

釉和有色釉。 (2)球磨 球磨是指在装好原料的球磨机料筒中,加入水进行球磨。球磨的原理是靠筒中的球石撞击和磨擦,将泥料颗料进行磨细,以达到我们所需的细度。通常,坯料使用中铝球石进行辅助球磨;釉料使用高铝球石进行辅助球磨。在球磨过程中,一般是先放部分配料进行球磨一段时间后,再加剩余的配料一起球磨,总的球磨时间按料的不同从十几小时到三十多个小时不等。如:白晶泥一般磨13个小时左右,高晶泥一般磨15-17小时,高铝泥一般磨14个小时左右,釉料一般磨33-38小时,但为了使球磨后浆料的细度要达到制造工艺的要求,球磨的总时间会有所波动。 (3)过筛、除铁 球磨后的料浆经过检测达到细度要求后,用筛除去粗颗粒和尾沙,通常情况下,我厂所用的筛布规格为:坯料一般在160-180目之间;釉料一般在200-250目之间。过筛后,再用湿式磁选机除去铁杂质,这是工序就叫除铁。如不除铁,烧成的产品上会产生黑点,这就是通常所说的斑点或者杂质。过筛、除铁通常都做两次。 (5)压滤 将过筛、除铁后的泥浆通过柱塞泵抽到压滤机中,用压滤机挤压出多余水分。(6)练泥(粗练) 经过压滤的所得的泥饼,组织是不均匀的,而且含有很多空气。组织不均匀的泥饼如果直接用于生产,就会造成坯体在此后的干燥、烧成时的收缩不均匀而产生变形和裂纹。经过粗练后,泥段的真空度一般要求达到0.095-0.1之间。粗练后的泥团还有另一个好处就是将泥饼做成一定规格的泥段,便于运输和存放。

陶瓷的生产工艺流程

陶瓷的生产工艺流程(图) 2010年08月16日09:21 【字号大中小】打 印 留 言 论 坛 网 摘 手机点 评 纠错 E-mail推荐:

陶瓷的生产工艺流程 原料工序:坯釉原料进厂后,经过精选、淘洗,根据生产配方称量配料,入球磨细碎,达到所需细度后,除铁、过筛,然后根据成型方法的不同,机制成型用泥浆压滤脱水,真空练泥,备用;对于化浆工艺,把泥浆先压滤脱水,后通过加入解凝剂化浆,除铁、过筛后备用;对注浆成型用泥浆,进行真空处理后,成为成品浆,备用。 成型工序:分为滚压成型和注浆成型。然后干燥、修坯,备用。 烧成工序:在取得白坯后,入窑素烧,经过精修、施釉,进行釉烧,对出窑后的白瓷检选,得到合格白瓷。 彩烤工序:对合格白瓷进行贴花、镶金等步骤后,入烤花窑烧烤,开窑后进行花瓷的检选,得到合格花瓷成品。 包装工序:对花瓷按照不同的配套方法、各种要求进行包装,即形成本公司的最终产品,发货或者入库。 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷是指用粘土、石英等天然硅酸盐原料经过粉碎、成型、煅烧等过程而得到的具有一定形状和强度的制品。主要指日常生活中常见的日用陶瓷和建筑陶瓷、电瓷等。 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程

都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土 粘土主要是由铝硅酸盐岩石(火成的、高质的、沉积的)如长石岩、伟晶花岗岩、斑岩、片麻岩等长期风化而成,是多种微细矿物的混和体。

特种陶瓷制备工艺

特种陶瓷制备工艺 摘要: 采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制制造的方法进行制造、加工,具有优异特性的陶瓷称为特种陶瓷。由于不同的化学组分和显微结构而决定其具有不同的性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、铁电、光电、电光、声光、磁光、超导、生物相容性等。由于绝缘特殊,这类陶瓷可运用于高温、机械、电子、宇航、医学工程等方面,成为近代尖端科技技术的重要组成部分。 关键词:特种陶瓷陶瓷制备陶瓷成型陶瓷烧结 一、前言 特种陶瓷是一类采用高精度精选原料,具有能精确控制化学组成,按照便于控制的制造技术加工,便于进行结构设计,并具有优异特性的陶瓷。由于其具有良好的力学、电学、光学和生物学等特性,成为航空航天、能源、机械、电子信息和生物工程等高技术的基石,并在世界各国掀起了一股“特种陶瓷热”。特种陶瓷成型方法在特种陶瓷的制备中占有十分重要的地位,它是将陶瓷粉体转变成具有一定形状、体积和强度坯体的过程。特种陶瓷成型方法总的来说可以分为干法和湿法,近些年来固体无模成型在陶瓷成型的研究中也取得了较为快速的发展。 二、陶瓷粉体的制备 粉体的制备方法有:固相法、液相法、和气相法等。 1.固相法: 化合反应法:化合反应一般具有以下的反应结构式: A(s)+B(s)→C(s)+D(g) 两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。 钛酸钡粉末的合成就是典型的固相化合反应。等摩尔比的钡盐BaCO 3 和二氧化钛混合物粉末在一定条件下发生如下反应: BaCO 3+TiO 2 →BaTiO 3 +CO 2 ↑ 该固相化学反应在空气中加热进行。生成用于PTC制作的钛酸钡盐,放出二氧化碳。但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。 热分解反应法: 用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。 氧化物还原法: 特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。其大致历程如下: SiO2+C→SiO+CO↑ SiO+2C→SiC+CO↑ SiO+C→Si+CO↑ Si+C→SiC 2.液相法:

相关文档
最新文档