液压缸同步控制的应用研究

液压缸同步控制的应用研究
液压缸同步控制的应用研究

控制理论与应用

Control Theory and its Applications

《自动化技术与应用》2002年第21卷第四期

液压缸同步控制的应用研究

Synchronous Control of Hydraulic Cylinders

哈尔滨工业大学 刘 俭

哈尔滨铁路科研所 许忠华

大庆石化总厂 郭 颖

Liu Jian Xu Zho nghua G uo Y ing 摘 要:本文基于铁路货车滚动轴承压装机的实际工作,给出了压装机的同步控制模型,同时对P控制与PI控制的效果进行了比较,给出典型信号的仿真结果。选择不同的控制方法可以满足不同的设计要求,可见本文具有较强的实用意义。

关键词:同步 压装 典型信号

Abstract:The paper is bas ed on p ractical wor k of goods train press ing eq uipment.It gives out the model of this equip ment.A t the s ame time,co mpares the simulation result of Prop ortion_Integ rate control and pro por tion https://www.360docs.net/doc/c815428563.html,ing different contro l methods fit different requir ements of des ign.So we can s ee this paper is very p ractical.

Keywords:Synchronis m Pressing Typical signal

中图分类号:TP273 文献标识码:A 文章编号:1003-7241(2002)04-0013-02

1 引言

货车滚动轴承压装机是检修工作中的重要设备,为了进一步提高火车滚动轴承的压装质量,特别是实现压装力曲线绘制成F-S曲线,即按照轴承在轴颈上的位移逐点采集压装力值,给从事压装的作业人员及有关的技术人员分析、研究、改进压装过程中轴承与轴颈随压进进程而变化的受力情况提供更科学、更可靠的依据。其中一个主要环节就是液压缸的同步控制,同步性能不好会影响曲线的真实性,而且由于偏载会影响轮柄与轮轴的配合,可能危及列车运行安全。同步控制原理方框图如图1:

在压装机设计中,为保证油缸同步将轴承压装到位,设计中采用位置跟踪控制模型。该方法的主要思想是这样的。首先,选定一端油缸作为受控端,而另一端则不受电液控制,受控制端初始设定流量值应小于非受控端,这样该端油缸行进速度将小于非受控端。然后在行进中,据反馈的位移信号,结合时钟信号判断出两油缸的位置差异及目前行进速度,通过控制器改变输出值,实现同步控制。压力传感器、位移传感器将反馈油缸运动情况和负载变化情况,构成闭环反馈控制

图1 同步控制原理方框图

2 控制模型

依据上述原理,建立控制模型如下

13

u es of Aut oma tio n&Ap plicatio ns

《自动化技术与应用》2002年第21卷第四期

控制理论与应用

Control Theory and its Applications

开环传递函数G (s )

G (s )=K a ·

K yf s 2

ω2fs +2ξfs ωfs s +1·K yg

s s 2

ω2gs

+2ξgs

ωgs S +1这里K yg =1/A =1/500=0.002L /cm 2

,A 为受控油缸有效面积。

伺服阀带宽ωfs =600rad /s ,取阻尼系数ξfs =0.5ωg s 是油缸固有频率,ωgs ∝A 2

V t

,取值ωg s =30rad /s 阀的增益K yf =

额定流量额定电流输出=30L /min 50mA

=10000cm 3/s ·A

K a 为比例放大器的增益

据伺服阀、油缸特性、系统误差和稳定性要求,确定闭环反馈增益

K f =1.25

mA

Δt ·mm

≈1.25

mA Δt ·mm Δt 为流量增量将位移差降为0所需的时间。得到P 控制下闭环传递函数

G f (s )=20K a ·6002

·30

2

20K f ·K a ·6002·302+s ·(s 2+600s +6002)·(s 2+48s +302

)

取控制周期T =Δt =0.4s ,则K f =3.125≈3m A /s mm K a =0.2A /V

此时,系统阶跃信号响应如图2:

图2 P 控制下系统阶跃响应

3 改进的PI 控制模型

PI 环节如下

G c (s )=

K (T i s +1)

T i s

通常Ti ≈1/ωc ,取Ti =0.02s ,得

G c (s )=

3(0.02s +1)

0.02s

代入所有已知参数,可得系统新的传递函数

G p i =

G (s )

1+G c (s )·G (s )

G p i =

1296000000

3s 5

+2094s 4

+1266300

s 3

+111915000s 2+3645000000s +5.2488×10

10

输入阶跃信号,其响应曲线如图3:

图3 PI 控制下的阶跃响应曲线

4 结束语

前面分别给出了P 与PI 的仿真曲线,二种不同方法的差异是显而易见的。表1对其进行比较结论如下:

表1 P 与PI 控制阶跃响应比较表

参数名称普通控制器(P )比例积分控制(PI )开环上升时间t r 0.098秒0.0114秒延迟时间t d 0.097秒0.069秒峰值时间t p 0.231秒0.189秒调节时间t n 0.522秒0.237秒超调量σ%

14.9%

1.2%

可见,本文进行的P 与PI 控制,均可满足设计要求。但进行了仿真比较之后,我们不难看出其性能的显著差异。结合具体工作原理及特点,合理地选择控制方案,提高产品性能价格比,是生产实践的重要环节。本文给出的PI 控制方法,在铁路

货车滚动轴承压装机中得以实践,取得很好的控制效果。

5 参考文献

[1] 雷天觉.新编液压工程手册[M ].北京理工大学出版社,1998年12月

[2] 金以慧.过程控制[M ].清华大学出版社,1998年1月[3] 方崇智.过程辨识[M ].清华大学出版社,2001年8月[4] 刘豹.现代控制理论[M ].机械工业出版社,2000年5月

作者简介:刘俭(1974-),男,现在哈尔滨工业大学攻读硕士学位。

14

Tech niq ue s

o

液压控制系统复习资料(王春 行版)

一、简略设计应用电液比例阀控制的速度控制回路。画出原理图并加以说明。 该液压控制系统由控制计算机、比例放大器、电液比例方向阀、液压泵、液压缸、基座、负载、位移传感器和,数据采集卡组成,如图1所示。 图1 电液比例阀控制的速度控制回路 液压系统采用定量泵和溢流阀组成的定压供油单元,用电液比例方向阀在液压缸的进油回路上组成进油节流调速回路,控制活赛的运行速度。位移传感器检测出液压缸活塞杆当前的位移值,经A/D 转换器转换为电压信号,将该电压信号与给定的预期位移电压信号比较得出偏差量,计算机控制系统根据偏差量计算得出控制电压值,再通过比例放大器转换成相应的电流信号,由其控制电液比例方向阀阀芯的运动,调节回路流量,从而通过离散的精确位移实现对负载速度的精确调节。 二、说明使用电液闭环控制系统的主要原因。 液压伺服系统体积小、重量轻,控制精度高、响应速度快,输出功率大,信号灵活处理,易于实现各种参量的反馈。另外,伺服系统液压元件的润滑性好、寿命长;调速范围宽、低速稳定性好。闭环误差信号控制则定位更加准确,精度更高。

三、在什么情况下电液伺服阀可以看成震荡环节、惯性环节、比例环节? 在大多数的电液私服系统中,伺服阀的动态响应往往高于动力元件的动态响应。为了简化系统的动态特性分析与设计,伺服阀的传递函数可以进一步简化,一般可以用二阶震荡环节表示。如果伺服阀二阶震荡环节的固有频率高于动力元件的固有频率,伺服阀传递函数还可以用一阶惯性环节表示,当伺服阀的固有频率远远大于动力元件的固有频率,伺服阀可以看成比例环节。 四、在电液私服系统中为什么要增大电气部分的增益,减少液压部分的增益? 在电液伺服控制系统中,开环增益选得越大,则调整误差越小,系统抗干扰能力就越强。但系统增益超过临街回路增益,系统就会失稳。在保持系统稳定性的条件下,得到最大增益。从提高伺服系统位置精度和抗干扰刚度考虑,要求有较高的电气增益K P,因此,液压增益不必太高,只要达到所需要的数值就够了。同时,电气系统增益较液压增益也易于调节,同时成本低。 五、结合实际应用设计应用电液私服控制的位置控制系统。画原理图并加以说明。 设计送料机械手移送机构液压伺服系统工作原理图如图2所示。 图2 送料机械手移送机构液压伺服系统工作原理图 1—液压缸;2、3—液控单向阀;4、13、18—电磁换向阀;5—电液伺服 阀; 6、15—压力继电器; 该回路设计具有以下几个特点: (1)伺服泵站由交流电机、轴向柱塞泵、溢流阀、单向阀、过滤器、蓄能器,压力继电器、压力表、加热器以及冷却回路等组成。泵站同时具备温度、液位等信号的监测、报警功能,自动化程度较高。液压系统的启动、停止、溢流阀的动作、报警、紧急情况处理等由计算机及

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 The Standardization Office was revised on the afternoon of December 13, 2020

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优

升降机液压缸系统工作原理

升降机液压缸系统工作原理 作为物流机械被广泛使用的液压升降机,其结构原理和工作特点值得研究。液压升降机携带物品和升降机台工作件上升,液压缸提供动力,即液压缸输出势能可以转化成能源,并进行工作台工件的下降,其潜在的能量将被释放。 这种潜力不能有效地回收利用,将导致能源浪费。这种能量废物是不小的电梯,但负载显着提升高度所需的频率,工作模式是非常令人印象深刻答:对于这种模型,储能装置在液压系统的设计表下降,以释放潜在的能量储存起来,并在用于消费减少徒劳上升的,更高的能量利润效率,并在同一时间,以达到系统运行平稳,安全性,可靠性工作目的。在本文中,实现能量回收的液压升降机比较蓄能器液压系统的变化,分析和恢复潜力到设计中。用两个液压缸补充能量回收概述可以辅助缸回收定量方法液压系统如所示,而现在它的工作原理,过程和特性进行了分析和讨论。 该系统由主,辅液压缸,泵站和控制阀。表是主缸活塞杆增加或减少使用,根据工件放置在表未显示。增加重量的两个,两缸有杆腔的辅助缸的活塞杆使用辅助缸液压能量回收系统单路连接管,管道连接到液压控制,配有两个相反的集阀门,从两缸有杆腔的控制电路,;缸系列;三换向阀用于控制两缸的操作和反向线的方向,如使表玫瑰,阀设置的权位,泵排出的液压油通过单向阀,控制阀和阀右室副油箱杆的燃料供应,先导式止回阀打开后,副油箱无杆腔的液压油通过流体控制单,流阀进入主缸无杆腔主缸有杆腔在液压油阀的权利,两通阀右位在这种情况下,两三个单向阀在左边,在液压阀年液压和气动力的作用,在右位和节流阀流回油箱,从离开辅助缸活塞杆驾驶的体重下降,而主缸活塞杆带动工作台上升。这个过程就相当于与重新潜力,通过表。如替补下降阀门的左侧位置,液压泵出院后单向液压油阀,控制阀和阀位离开主缸杆腔油,操作员控制止回阀被打开,使主缸杆腔液机油压力先导式单向阀,流入副油箱无杆腔离开辅助缸有杆腔的液压油通过阀。两两通阀,右位在这一点上,两三个单向阀右位和节流阀流回油箱,所以主缸活活塞杆带动工作台下降,而辅助缸活塞杆驱动体重上升。 其工作原理是:在下降工作平台进行工作重速度太快,一侧的阀门控制流体压力比低到足以克服弹簧力,阀芯位是留下来切断主油箱或辅助帮助通过油缸有杆腔和油箱,溢流阀背压阀回油箱,增加回报流体阻力,减少液压缸保护作用的速度。当需求急剧下降,电气,液压阀阀电磁通电,利用电磁力阀门核心右位,切换回沥青。为了便于制造和安装,应使用同规格主缸和辅助帮助缸重量重量可调,其重量应大于表表负载的重量总和的一半。两个液压缸补充能量回收的方法,以提高设立一个辅助的液压缸和一个更大的重量,结构的升降机趋势复杂和繁琐,生产成本,液压系统的结构也更复杂的应用是有限的。累加器来实现能量回收为了克服这些缺点,应用范围不断扩大,设计使用累加器液压系统的恢复潜力。原有系统的能量回收理由:电梯下降,使液体在液压缸下腔行并存储到累加器的机械势能转换成液压能;工作台再次上升到液压泵油相当于系统采用液压系统蓄能器回收潜力设置压力罐,减少液压泵,口油压力差的电机,降低了功耗再次上升液压泵以节省能源。提起唯一的运动,在垂直方向,减少可以利用重力的优势来实现,以简化液压缸的结构,降低制造成本,使用单作用气缸,平行的两缸,液压缸的长度缩短,使这台机器设计紧凑,易于安装,使用两个伸缩液压缸;部系统采用限压变量叶片泵和速度控制阀组成的体积-节流调速回路来调整升降机液压缸速度,以提高效率;两个四通电磁阀控制液压缸侧的运动由负载可变排量泵的工作压力溢流阀用于限制最大工作压力的安全阀系统的系统;分流-集流阀两个升降机液压缸同

控制系统习题及部分答案

1、液压控制系统是由哪些组成部分的? 指令元件,比较元件,反馈元件,放大元件,执行元件,被控对象,能源装置及其他辅助装置 2、液压控制系统工作的基本原理? 以液压速度控制系统为例说明,当指令电位器给出一个指令信号ur时,通过比较器与反馈信号uf比较,输出偏差信号Δu,偏差信号经伺服放大器输出控制电流i,控制电液伺服阀运动,电液伺服阀输出流量、压力来控制液压伺服缸,推动工作台运动。 3、液压控制系统的主要优点和缺点是什么? 优点:①加速性好,结构紧凑,质量小;②系统刚度大,定位准确,控制精度高;③控制系统频带宽,响应速度快;④散热性能好;⑤润滑性能好,系统寿命长。 缺点:控制系统的制造成本。①抗污染性能差;②温升对系统稳定和密封性能有不利影响; ③制造精度要求高,成本较高;④能源供给不方便,进一步提高了液压 4、液压控制阀在液压控制系统中的作用是什么? 液压控制阀是一个集能量转换、功率放大和系统控制的原件。故作为能量转换器、功率放大器、控制器。 5、正开口四通滑阀,与零开口阀相比较,在零位时各个阀系数有何不同之处? 与零开口四通阀阀系数比较:正开口阀流量增益大一倍,正开口阀稳态特性曲线线性度好,正开口阀泄漏量大。 6、零开口四通滑阀,当处于零位工作时,各个阀系数(流量增益、压力增益、流量压力系数)以及阻尼比处于最大值还是最小值?零位工况点,是工况最好的点还是最差的点? 流量增益最大,流量-压力系数最小,压力增益最高,系统阻尼比最小。最差 7、圆柱滑阀的边、通的概念是什么?从控制性能看,哪种圆柱滑阀最好,哪种最差? 从控制性能来看,四边阀最好,单边阀最差。 8、作用在阀芯上的液动力分为哪两种?其中哪种液动力的方向恒为使阀芯关闭的方向? 分为稳态液动力和瞬态液动力;稳态液动力 9、四通滑阀与三通滑阀的阀系数相比较,有何不同之处? ①流量增益Kq:零开口阀是正开口阀的一半;开口型式相同,流量增益相同;②流量压力系数Kc:三通阀是四通阀的2倍;正开口是零开口的2倍;③压力增益Kp:三通阀是四通阀的一半;通道数相同,压力增益相同 10、设计滑阀时应注意什么因素? ①为确保滑阀正常稳定地工作,设计时注意保证正阻尼总长度必须大于负阻尼总长度。;②为确保阀芯有足够强度,阀芯台肩直径d与阀芯轴直径dr应满足:dr≥0.5d。通常取0.7d; ③通常阀芯总长度为L≈6d;④总的阻尼长度包括正阻尼长度和负阻尼长度之和,即L1+L2应为阀芯总长度的三分之一;⑤面积梯度w、滑阀最大位移χvmax的确定要防止阀腔内流量饱和现象的产生,以及满足节流口可控的条件。 11、喷嘴挡板阀处于零位时,控制腔内的压力为多少?(与供油压力ps相比较) 12、液压动力机构的组成部分是什么?按控制方式分,液压动力机构分为哪两种? ①液压动力机构由液压控制元件、执行元件和负载组成;②泵控系统、阀控系统,又称节流式控制系统。液压源通常是恒压源。 13、液压固有频率对液压控制系统有何影响?如何提高液压固有频率? (1)液压固有频率限制了系统的响应速度。(2)①增大液压缸活塞面积A。注意与A不成

液压控制系统课后题答案

1、为什么把液压控制阀称为液压放大元件? 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀? 答:理想滑阀是指径向间隙为零,工作边锐利的滑阀。实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 3、什么叫阀的工作点?零位工作点的条件是什么? 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L , 阀位移x V 时,阀的负载流量为q L 的位置。零位工作点的条件是 q=p=x=0 L L V 。 4、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数?为什么? 答:流量增益 q q = x L V K ? ? ,为放大倍数,直接影响系统的开环增益。流量-压力系 数 c q =- p L L K ? ? ,直接影响阀控执行元件的阻尼比和速度刚度。压力增益 p p = x L V K ? ? ,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力,当各系 数增大时对系统的影响如下表所示。 稳定性响应特 性稳态误差 q K c K p K 5、什么是稳态液动力?什么是瞬态液动力? 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。 6、什么叫液压动力元件?有哪些控制方式?有几种基本组成类型? 答:液压动力元件(或称为液压动力机构)是由液压放大元件(液压控制元件)和液压执行元件组成的。控制方式可以是液压控制阀,也可以是伺服变量泵。有四种基本形式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸和泵控液压马达。 7、何谓液压弹簧刚度?为什么要把液压弹簧刚度理解为动态刚度? 答:液压弹簧刚度 2 e p h t 4A K V β =,它是液压缸两腔完全封闭由于液体的压缩性所

液压控制系统王春行版课后题答案

液压控制系统王春行版 课后题答案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

第二章 思考题 1、为什么把液压控制阀称为液压放大元件 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀什么是实际滑阀 答:理想滑阀是指径向间隙为零,工作边锐利的滑阀。 实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点零位工作点的条件是什么 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L , 阀位移x V 时,阀的负载流量为q L 的位置。 零位工作点的条件是q=p=x=0 L L V 。 5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数为什么 答:流量增益 q q = x L V K ? ? ,为放大倍数,直接影响系统的开环增益。 流量-压力系数 c q =- p L L K ? ? ,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益 p p = x L V K ? ? ,表示阀控执行元件组合启动大惯量或大摩擦力负载的 能力 当各系数增大时对系统的影响如下表所示。 7、径向间隙对零开口滑阀的静态特性有什么影响为什么要研究实际零开口滑阀的泄漏特性

答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影 响,存在泄漏流量2c c0r = 32W K πμ ,p0c =K ,两者相差很大。 理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。 9、什么是稳态液动力什么是瞬态液动力 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。 瞬态液动力是指,在阀芯运动过程中,阀开口量变化使通过阀口的流量发生变化,引起阀腔内液流速度随时间变化,其动量变化对阀芯产生的反作用力。 习题 1、有一零开口全周通油的四边滑阀,其直径-3d=810m ?,径向间隙 -6c r =510m ?,供油压力5s p =7010a P ?,采用10号航空液压油在40C 。工作,流 量系数d C =0.62,求阀的零位系数。 解:零开口四边滑阀的零位系数为: 零位流量增益 q0d K C =零位流量-压力系数 2c c0r 32W K πμ = 零位压力增益 p0c K = 将数据代入得 2q0 1.4m s K = 123c0 4.410m s a K P -=?? 11p0 3.1710a m K P =?

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优点是比较简单。缺点是同步效果不佳。调整后同步的偏差仍然比较大。图1 在油缸进出油口加节流阀3、在液压回路中使用分流阀与集流阀或者调速阀分流阀与集流阀或者调速阀调整两个油缸的同步效果要比采用节流阀好一些。这是因为分流阀与集流阀或者调速阀对流量的控制相对准确。图2 在两个油缸的有杆腔与无杆腔进出油口加分流阀与集流阀或调速阀4、两个油缸分别使用独立定量泵供油实现双缸同步采用两个油泵分别驱动两个油缸,由于两个油泵的流量相等。两个油缸之间的进出油缸的液压油不受相互牵连。尽管载荷有所不同,但在流量相同的条件下可以实现同步。5、回路中采用同步马达实现双油缸同步图3 在双缸的进油口加同步马达供油的同

液压控制系统

液压控制系统是以电机提供动力基础,使用液压泵将机械能转化为压力,推动液压油。通过控制各种阀门改变液压油的流向,从而推动液压缸做出不同行程、不同方向的动作,完成各种设备不同的动作需要 液压控制系统的优点: 1、可以在运行过程中实现大范围的无机调速。 2、在同等输出功率下,液压传动装置的体积小、重量轻、运动惯量小、动态性能好。 3、采用液压传动可实现无间隙传动,运动平稳。 4、便于实现自动工作循环和自动过载保护。 5、由于一般采用油作为传动介质,因此 液压元件有自我润滑作用,有较长的使用寿命。 6、液压元件都是标准化、系列化的产品,便于设计、制造和推广应用。 液压控制系统的缺点: 1、损失大、效率低、发热大。 2、不能得到定比传动。 3、当采用油作为传动介质时还需要注意防火问题。 4、液压元件加工精度要求高,造价高。 5、液压系统的故障比较难查找,对操作人员的技术水平要求高。编辑本段 液压系统噪声控制的实例 以WLYl00型液压挖掘机的液压系统为例,对其可能产生噪声的原因、排除方法介绍如下。 1.柱塞泵或马达的噪声 (1)吸空现象是造成液压泵噪声过高的主要原因之一。当油液中混入空气后,易在其高压区形成气穴现象,并以压力波的形式传播,造成油液振荡,导致系统产生气蚀噪声。其主要原因有: ①液压泵的滤油器、进油管堵塞或油液粘度过高,均可造成泵进油口处真空度过高,使空气渗入。 ②液压泵、先导泵轴端油封损坏,或进油管密封不良,造成空气进入o ②油箱油位过低,使液压泵进油管直接吸空。 当液压泵工作中出现较高噪声时,应首先对上述部位进行检查,发

现问题及时处理。 (2)液压泵内部元件过度磨损,如柱塞泵的缸体与配流盘、柱塞与柱塞孔等配合件的磨损、拉伤, 使液压泵内泄漏严重,当液压泵输出高压、小流量油液时将产生流量脉动,引发较高噪声。此时可适当加大先导系统变量机构的偏角,以改善内泄漏对泵输出流量的 影响。液压泵的伺服阀阀芯、控制流量的活塞也会因局部磨损、拉伤,使活塞在移动过程中脉动,造成液压泵输出流量和压力的波动,从而在泵出口处产生较大振动 和噪声。此时可对磨损、拉伤严重的元件进行刷镀研配或更换处理。 (3)液压泵配流盘也是易引发噪声的重要元件之一。配流盘在使用中因表面磨损或油泥沉积在卸荷 槽开启处,都会使卸荷槽变短而改变卸荷位置,产生困油现象,继而引发较高噪声。在正常修配过程中,经平磨修复的配流盘也会出现卸荷槽变短的后果,此时如不 及时将其适当修长,也将产生较大噪声。在装配过程中,配流盘的大卸荷槽一定要装在泵的高压腔,并且其尖角方向与缸体的旋向须相对,否则也将给系统带来较大 噪声。 2。溢流阀的噪声 溢流阀易产生高频噪声,主要是先导阀性能不稳定所致,即为先导阀前腔压力高频振荡引起空气振动而产生的噪声。其主要原因有: (1)油液中混入空气,在先导阀前腔内形成气穴现象而引发高频噪声。此时,应及时排尽空气并防止外界空气重新进入。 (2)针阀在使用过程中因频繁开启而过度磨损,使针阀锥面与阀座不能密合,造成先导流量不稳定、产生压力波动而引发噪声,此时应及时修理或更换。 (3)先导阀因弹簧疲劳变形造成其调压功能不稳定,使得压力波动大而引发噪声,此时应更换弹簧。 3.液压缸的噪声 (1)油液中混有空气或液压缸中空气未完全排尽,在高压作用下产生气穴现象而引发较大噪声。此时,须及时排尽空气。 (2)缸头油封过紧或活塞杆弯曲,在运动过程中也会因别劲而产生噪声。此时,须及时更换油封或校直活塞杆。 4.管路噪声 管路死弯过多或固定卡子松脱也能产生振动和噪声。因此,在管路布置上应尽量避免死弯,对松脱的卡子须及时拧紧。

液压多缸同步方法的选择

1有关程控液压同步分流器 第一章概况 液压技术是实现现在传动与自动化控制的关键技术之一,液压技术以器特有的特性,可以实现体积小,高响频,易扩展,柔性传输,无缝无级变速,可操控性能好,易于实现直线运动等优点征服世界,从而世界各国都对液压工业的发展给予了很大在重视,而液压同步技术,则是液压技术里的一个很大的分支,有这举足轻重的地位,特别是在高精度,高响频率,大流量,长行程领域.然而,这个技术基本全部掌握在国外几家大公司受力,因此很多地方的运用都受到了这样那样的限制. 一目前运用的液压多缸同步优缺点分析 1: 同步阀同步: 同步阀是最老的技术之一,使用分流截流方式实现同步,有点的价格便宜,安装方便.流量范围大.缺点精度低,抗偏载能力差,需要反复调节,只适用同步要求不高,没有同步危险的地方.属于低端产品,也比较成熟.误差终点补偿.如果出现偏载严重或者油缸卡滞,同步效果随即失效. 正常同步精度5%-10% 1 无调节同步阀 2可调节同步阀 3 电控调节同步阀

2、同步缸同步: 同步缸是容积同步,同步精度高,抗偏载能力强,对油品抗污染能力强, 价格相应较高,属于被动同步, 缺点是体积大, 流量小, 补油困难, 安装受限, 体积不能做的很大, 否则会严重影响同步精度和安全, 油缸出现内泄补油困难.可以在合适的地方使用.液压油不循环,容易 升温和污染,影响系统工作. 正常同步精度0.1%-5% 1 同步缸(流量小) 2 串联油缸(制作工艺要求高) 3 双出头油缸串联(压力损失大,加工精度要求高,维修困难) 4 同步缸是同步精度理论上的0,但是由于制造精度的原因,不 能做得很大,在流量,小行程时可以采用,大流量,大行程时, 不适合. 3、同步马达(同步分流马达): 同步马达也是采用容积同步方式, 用同心轴连接,同步性能好,抗 偏载能力强,抗污染能力强, 缺点体积大,价格高, 维修困难,使用有 限制,必须在转速范围才可以, 目前是主流,使用范围广.也可用于增压. 同步精度1%-10%

液压控制系统设计

1 液压缸选型 四足机器人大腿上的液压缸所受的推力较大,而小腿上的液压缸所受的推力较小,而且,4个大腿上的液压缸所受的最大推力接近,4个小腿上的液压缸所受的最大推力也接近。因而,在设计液压缸时,大腿上的液压缸设计成相同尺寸,小腿上的液压缸设计成相同尺寸。 而四足机器人髋上的液压缸仅在四足机器人受到横向冲击的情况下工作。根据仿真结果可知,髋上的4个液压缸所受到的最大推力为 1.8kN,最大速度为130mm/s。由于髋上的液压缸推力和速度比大腿与小腿上的液压缸推力和速度小很多,在设计时,总流量主要考虑大腿和小腿上液压缸的叠加,髋上的液压缸流量由蓄能器供给。 根据仿真计算结果图,大腿上的液压缸所受最大推力取8kN,小腿上的液压缸所受的最大推力取4kN,即液压系统的最大载荷为8kN。查阅《液压工程师技术手册》如下表所示, 当载荷为5~10kN时,工作压力宜取1.5~2MPa,为了使液压控制系统的动态性能更好,同时使机械结构更紧凑,取液压缸的负载压力为6MPa。 液压缸暂定交由常州恒力液压有限公司生产。 1.1 大腿上的液压缸 大腿上的液压缸设计成相同尺寸,该液压缸的最大负载压力为P Lm=6MPa,所受最大负载推力为F m=8kN。 P1A1?P2A2=F 其中,P1——液压缸无杆腔压力; P2——液压缸有杆腔压力; D2; A1——液压缸无杆腔有效面积,A1=π 4 (D2?d2); A1——液压缸无杆腔有效面积,A2=π 4 F——负载推力; 液压缸负载压力F满足:

P Lm=F m A1 =P1?P2 A2 A1 =6MPa 由上式可以得到 A1=F m P Lm = 8000 6 mm2=1333.3mm2 所以, D=4A1 π = 4×1333.3 π =41.2mm 圆整后取D=40mm。 查阅《液压工程师技术手册》如下表所示, 取d=25mm。根据仿真结果,液压缸行程大于70mm即可。液压缸和伺服阀组合成的液压包外形图按照之前设计的电动缸伺服电机外形图设计。 1.2 小腿上的液压缸 小腿上的液压缸设计成相同尺寸,该液压缸的最大负载压力也为P Lm=6MPa,所受最大负载推力为F m=4kN。 P1A1?P2A2=F 其中,P1——液压缸无杆腔压力; P2——液压缸有杆腔压力; A1——液压缸无杆腔有效面积,A1=π 4 D2; A1——液压缸无杆腔有效面积,A2=π 4 (D2?d2); F——负载推力; 液压缸负载压力F满足: P Lm=F m 1 =P1?P2 A2 1 =6MPa 由上式可以得到 A1=F m Lm = 4000 mm2=666.6mm2 所以,

一种补偿的双杆串联液压缸新同步回路

在液压系统中,使两个或多个液压缸在运动中保持相对位置或速度不变的回路称为同步回路。在多缸液压系统中,往往由于液压缸负载、摩擦阻力、泄漏、制造精度、结构变形以及油液中的含气量等因素的差异而不能使串联的液压缸保持同步,性能良好的液压回路要尽量克服或减少这些因素的不良影响。有关带补偿措施的串联液压缸同步回路,很多研究工作者对其进行了研究与改进。长沙大学汪大鹏做了开创性的工作,提出了几种单杆串联液压缸带补偿措施的新同步回路,采用单向阀、单向阀和顺序阀、在液压缸端盖和活塞上装单向阀来消除误差,但这几种同步回路只能在液压缸下行时消除误差,反向则不行。汪大鹏又提出了双杆串联液压缸的同步回路的补偿措施,采用单向阀、单向阀与顺序阀以及在活塞上装单向阀来消除误差。这几种补偿措施虽然可以消除双向误差,但需要在液压缸和活塞上另外加工油孔,不仅使液压缸加工工序和造价增加,而且由于油孔的存在,易产生应力集中,影响液压缸和活塞寿命,特别是活塞受其影响较大。另外由于使用多个单向阀,连接比较复杂。 本文提出了几种新的带补偿装置的双杆串联缸同步回路,可以免去加工油孔及其带来的不良影响,消除误差更准确、及时,而且价格也不贵。 2 现有的单杆串联缸同步回路 教材上提到一种带补偿装置的串联缸同步回路,如图1a所示,其工作原理简介如下。 图1 同步回路工作原理 2个串联的液压缸5和6,有效工作面积相等而使进出流量相等,理论上升降可同步,实际上产生的误差都可在每一个下行运动中消除。 例如,当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸5和6活塞同时下行,如果缸5活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3左位接人回路,压力油经换向阀3和液控单向阀4进入缸6上腔,进行补油,使其活塞继续下行到达行程端点,积累误差便可消除。 如果缸6活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3右位接人回路,由于缸6先到达行程端点,遇到阻力,缸5上腔油压升高,高压油便进人液控单向阀4的控制腔,打开阀4,缸5下腔便与油箱接通,使其活塞继续下行到达行程端点,从而消除积累误差。 已有的这种同步回路的缺点是只能在液压缸下行时消除误差,上行时则不行,作者针对这种回路进行了改进,使液压缸双向都可消除误差。 3 对单杆串联缸同步回路的改进 针对图1a我们进行了改进,图1b和图1c是改进后的新同步回路,它们不仅克服了图1a中回路上行不能消除积累误差的缺点,而且结构简单,连接方便。3.1 采用两三位四通电磁换向阀对称连接的同步回路(1)图1b是新的带补偿装置的两缸双杆串联缸同步回路,与图la相比,保持了原有的液控单向阀和换向阀,增加了两个行程开关3S、4s和一个三位四通电磁换向阀5,使换向阀4和5对称水平放置,其工作原理如下。 如当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸6和7活塞同时下行,如果缸6活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3左位接入回路,压力油便不再经过缸6,而是经换向阀3和液控单向阀5进入缸7上腔,进行补油,使其活塞继续下行到达行程端点。下行中积累误差即被消除。 如果缸7活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3右位接入回路,由于缸7先到达行程端点,遇到阻力,缸6上腔油压升高,高压油便进入液控单向阀5的控制腔,打开阀5,液压油便由缸6下腔,经过液控单向阀5流回油箱,下行中积累误差即被消除。 如果换向阀2换向,2Y通电,右位接人回路,液压缸6和7活塞同时上行,如果缸6活塞先到达行程端点,则挡块顶起行程开关3s,3s给换向阀4发信号,使电磁铁5Y得电,换向阀4右位接人回路,压力油液压英才网用心专注、服务专业

基于PLC控制的液压控制系统

基于PLC 控制的液压控制系统 [ 摘要] 采用可编程控制器(PLC)代替继电器控制器,对机械手的液压驱动系统进行控制,通过输入输出接口 建立与机械手液压系统开关量和模拟量的联系,实现机械手搬运工件的顺序动作和自动控制,达到准确度高、控 制方便、可靠性好的目标,大大提高了生产率和自动化程度,减少了系统故障,具有很强的实用性。 [ 关键词] PLC;液压控制;机械手 1、前言( Introduction) 目前PLC 在工业生产过程控制自动化和传统产业技术改造等方面得到了广泛应用, 与传统的继电器控制相比, PLC 具有控制系统构成简单、可靠性高、通用性强、抗干扰能力强、易于编程、体积小、可在线修改、设计与调试周期短、便于安装和维修等突出优点, 而且一般不需要采取什么特殊措施, 就能直接在工业环境中使用, 更加适合工业现场的要求, 使用PLC 控制液压控制系统能提高系统的整体性能,具有较明显的优越性。本文介绍基于PLC 控制的某液压机械手的典型液压控制回路及其PLC 控制方法。 2、控制要求分析(Analys is of control demands ) 在生产现场工作开始后, 机械手在一个工作循环中需要依次完成以下顺序动作: 下降、夹紧、上升、左移、下降、松开、上升、右移( 共8个顺序动作) , 这是一个典型的顺序控制问题。采用PLC 实现机械手的自动循环控制, 需要在某些动作位置设置位移传感器或行程开关来检测动作是否到位, 并确定从一个动作转入到下一个动作的条件。根据机械手的动作要求, 选用3 个液压缸来完成该8 个顺序动作: 升降缸1 在工件两个位置( 原位与目标位置) 上方的下降和上升运动, 移动缸2 的左移和右移运动, 夹紧缸3 的夹紧和松开动作。缸1 下降或上升到位时应停止运动, 缸2 左移或右移到位时也应停止运动, 故需分别设置一行程开关S1、S2、S3、S4。根据机械手的动作过程和要求, 绘制出系统的控制功能流程图, 如图1 所示。

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 作者:李毅民王英洁 2010-10-15 来源:屹立散料机械在线https://www.360docs.net/doc/c815428563.html,/ 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。 双油缸运行不同步的原因: 1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。 2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。 3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。 4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。 5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。 6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。 双油缸运行不同步的解决办法: 1、机械刚性同步与机械传动同步 机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。 2、回路中使用节流阀 采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优点是比较简单。缺点是同步效果不佳。调整后同步的偏差仍然比较大。 图1 在油缸进出油口加节流阀 3、在液压回路中使用分流阀与集流阀或者调速阀

同步油缸

高精度同步液压缸JZP 系列 同步运行 JZP 同步缸是由若干个结构尺寸相同的液压缸串联而成的,由于它每节腔体结构尺寸相同,所以各腔的出口流量相同。同时,JZP 同步缸内部采用了德国最先进的密封,可以在具有不同负载的情况下获得较高的同步精度,这种功能是调速阀、同步阀或同步马达不能够实现的。JZP 同步缸是线性运动与同步马达的旋转运动不同。 同步精度 JZP 同步缸同步精度的决定性因素与分流马达基本相同。想获得高水准的同步精度,就必须减小负载的不均衡程度、降低系统的压力等级、因为压力越高,泄漏量越大。在理想的状态下,即各腔负载相同的情况下,它能获得非常高的同步精度。同时,同步误差还受到加工精度的影响,因此它不可能达到100%的同步,必定会存在同步误差。根据实验,我们得出同步液压缸JZP 在不同压差下的同步精度大致成线性关系。 性能特点 y JZP 同步缸可以使用各种矿物油工作介质,特殊JZP 同步缸可以使用水乙二醇、磷酸酯以及乳化液等工作介质。 y JZP 同步缸可以承受-35℃~+80℃的工作温度,高温JZP 同步缸可以承受-35℃~+220℃的工作温度。 y 介质油清洁度应达到NAS1638-9级或ISO4406-19/15 级以上。

y JZP同步缸单腔最小流量可以达到0.1 L/min,最低启动压力小于0.3Mpa,内部压力损失小,仅为7 bar。 y JZP同步缸工作速度最大为0.5 m/s,高速缸可以达到2 m/s。 y JZP同步缸,同步精度高、运行过程中噪声小,可以应用在剧场的舞台升降、印刷行业、建筑行业中的重型机械、倾卸车等行业。 同步缸的用途 y JZP同步缸除了能够等容积分配流量外,其胜公司还可以提供非等容积同步缸,当您需要非等容积同步缸时请联系其胜公司。 y同步油缸也可以做“增压器”使用,使系统的出口压力高于进口压力,但要注意增压腔的出口压力不可以超过同步缸的工作压力。(具体使用方法参考同步马达“增压器”的使用) 同步缸典型应用回路液压原理图

液压控制系统(王春行版)修改版

第二章 思考题 1、为什么把液压控制阀称为液压放大元件? 答:因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2、什么是理想滑阀?什么是实际滑阀? 答: 理想滑阀是指径向间隙为零,工作边锐利的滑阀。 实际滑阀是指有径向间隙,同时阀口工作边也不可避免地存在小圆角的滑阀。 4、什么叫阀的工作点?零位工作点的条件是什么? 答:阀的工作点是指压力-流量曲线上的点,即稳态情况下,负载压力为p L ,阀位移x V 时,阀的负载流量为q L 的位置。 零位工作点的条件是 q =p =x =0L L V 。 5、在计算系统稳定性、响应特性和稳态误差时,应如何选定阀的系数?为什么? 答:流量增益q q = x L V K ??,为放大倍数,直接影响系统的开环增益。 流量-压力系数c q =- p L L K ??,直接影响阀控执行元件的阻尼比和速度刚度。 压力增益p p = x L V K ??,表示阀控执行元件组合启动大惯量或大摩擦力负载的能力 当各系数增大时对系统的影响如下表所示。 7、径向间隙对零开口滑阀的静态特性有什么影响?为什么要研究实际零开口滑阀的泄漏特性? 答:理想零开口滑阀c0=0K ,p0=K ∞,而实际零开口滑阀由于径向间隙的影响,存在泄漏流量2c c0r =32W K πμ , p0c K ,两者相差很大。 理想零开口滑阀实际零开口滑阀因有径向间隙和工作边的小圆角,存在泄漏,泄漏特性决定了阀的性能,用泄漏流量曲线可以度量阀芯在中位时的液压功率损失大小,用中位泄漏流量曲线来判断阀的加工配合质量。 9、什么是稳态液动力?什么是瞬态液动力? 答:稳态液动力是指,在阀口开度一定的稳定流动情况下,液流对阀芯的反作用力。

液压控制系统

第二章 1.为什么把液压控制阀称为液压放大元件?因为液压控制阀将输入的机械信号(位移)转换为液压信号(压力、流量)输出,并进行功率放大,移动阀芯所需要的信号功率很小,而系统的输出功率却可以很大。 2. 滑阀的零位开口形式与其流量增益特性的关系?阀的预开口型式对其性能,特别是零位附近特性有很大的影响。零开口阀具有线性流量增益,性能比较好。负开口阀由于流量增益具有死区,将引起稳态误差。正开口阀在开口区内的流量增益变化大,压力灵敏度低,零位泄露量大。 3. 什么是滑阀的静态特性?滑阀的静态特性即压力-流量特性,是指稳态情况下,阀的负载流量q L、负载压力PL和滑阀位移xv三者之间的关系,即qL=f(Pl,xv)。 4.在计算系统稳定性、响应特性和稳态误差时。应如何选定阀的系数?应该选择原点处的静态放大系数作为阀的性能参数。应为系统经常在原点附近工作,此处阀的流量增益最大,系统的开环增益也最高,阀的流量-压力系数最小,系统的阻尼比最低。一个系统在这一点能稳定工作,在其他点也能稳定工作。 第三章 5. 什么叫液压动力元件?有哪些控制方式?有几种基本组成类型?液压动力元件(或称为液压动力机构)是由液压放大元件(液压控制元件)和液压执行元件组成的。控制方式可以是液压控制阀,也可以是伺服变量泵。有四种基本形式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸和泵控液压马达。 6. 何为液压弹簧刚度?为什么将其理解为动态刚度?它是液压缸两腔完全封闭由于液体的压缩性所形成的液压弹簧的刚度。因为液压弹簧刚度是在液压缸两腔完全封闭的情况下推导出来的,实际上由于阀的开度和液压缸的泄露的影响,液压缸不可能完全封闭,因此在稳态下这个弹簧刚度是不存在的。但在动态时,在一定的频率范围内泄露来不及起作用,相当于一种封闭状态,因此液压弹簧刚度应理解为动态刚度。 7. 什么是液压固有频率?为什么液压动力元件可以得到较大的固有频率?液压固有频率是负载质量与液压缸工作腔中的油液压缩性所形成的液压弹簧相互作用的结果。由式子可知,增大固有频率的方法很多:1)可以通过增大液压缸的面积,2)减小总压缩比,3)减小折算到活塞上的总质量,和4)提高油液的有效体积弹性模量。 8.什么说液压阻尼比是一个“软量”?Kc随工作点不同会有很大的变化。其变化范围达20~30倍,所以是一个难以准确估计的软量。 9.为什么把kv称为速度放大系数?它的量纲是什么?由于传递函数中包含一个积分环节,所以在稳态时,液压缸活塞的输出速度与阀的输入位移成比例.比例系数即为速度放大系数(速度增益)。2)量纲为S-1。

液压多缸同步方法的选择

液压多缸同步方法的选择 This model paper was revised by the Standardization Office on December 10, 2020

1有关程控液压同步分流器 第一章概况 液压技术是实现现在传动与自动化控制的关键技术之一,液压技术以器特有的特性,可以实现体积小,高响频,易扩展,柔性传输,无缝无级变速,可操控性能好,易于实现直线运动等优点征服世界,从而世界各国都对液 压工业的发展给予了很大在重视,而液压同步技术,则是液压技术里的一 个很大的分支,有这举足轻重的地位,特别是在高精度,高响频率,大流量,长行程领域.然而,这个技术基本全部掌握在国外几家大公司受力,因此很多地方的运用都受到了这样那样的限制. 一目前运用的液压多缸同步优缺点分析 1: 同步阀同步: 同步阀是最老的技术之一,使用分流截流方式实现同步,有点的价格便宜,安装方便.流量范围大.缺点精度低,抗偏载能力差,需要反复调节, 只适用同步要求不高,没有同步危险的地方.属于低端产品,也比较成熟. 误差终点补偿.如果出现偏载严重或者油缸卡滞,同步效果随即失效. 正常同步精度5%-10% 1 无调节同步阀 2可调节同步阀 3 电控调节同步阀 2、同步缸同步:

同步缸是容积同步,同步精度高,抗偏载能力强,对油品抗污染能力强, 价格相应较高,属于被动同步, 缺点是体积大, 流量小, 补油困难, 安装受限, 体积不能做的很大, 否则会严重影响同步精度和安全, 油缸出现内泄补油困难.可以在合适的地方使用.液压油不循环,容易升温和污染,影响系统工作. 正常同步精度0.1%-5% 1 同步缸(流量小) 2 串联油缸(制作工艺要求高) 3 双出头油缸串联(压力损失大,加工精度要求高,维修困难) 4 同步缸是同步精度理论上的0,但是由于制造精度的原因,不能做 得很大,在流量,小行程时可以采用,大流量,大行程时,不适合. 3、同步马达(同步分流马达): 同步马达也是采用容积同步方式, 用同心轴连接,同步性能好,抗偏载能力强,抗污染能力强, 缺点体积大,价格高, 维修困难,使用有限制,必须在转速范围才可以, 目前是主流,使用范围广.也可用于增压. 同步精度1%-10% 1 柱塞同步马达(精度高)价格昂贵,维修困难. 2 齿轮同步马达(精度低)

相关文档
最新文档