表面等离激元共振法测液体折射率实验

表面等离激元共振法测液体折射率实验
表面等离激元共振法测液体折射率实验

表面等离激元共振法测液体折射率实验

实验目的:

1、了解全反射中倏逝波的概念

2、观察表面等离激元共振现象,研究其共振角随折射率的变化

3、进一步熟悉和了解分光计的调节和使用

4、了解和掌握共振角测量的方法,以及计算折射率的原理和方法

实验简介:

早在1902年Wood就在光学实验中首次发现了表面等离激元共振(Surface Plasmon Resonance,SPR)现象,1941年Fano根据金属和空气界面上电磁波的激发解释了这一SPR现象,随后就提出了体积等离子体子(激元)的概念,认为这是金属中体积电子密度的一种纵向波动。Ritchie注意到当高能电子通过金属薄片时,不仅在体积等离子体子频率处有能量损失峰,在更低频率处也有能量损失峰,并认为这与金属薄膜的界面有关。1959年Powell和Swan通过实验验证了Ritchie理论。1960年Stern和Farrell研究了此种模式产生共振的条件并首次提出了表面等离子体子(SP)的概念。1971年Kretschmann为SPR传感器结构技术奠定了基础,1983年Liedburg将SPR用于IgG与其抗原的反应测定,1987年Knoll等人开始了SPR成像的研究,1990年Biocare AB公司开发出首台商品化SPR仪器。表面等离激元共振技术终于在20世纪90年代成功发展起来,成为应用SPR原理检测生物传感芯片上配位体与分析物作用的一种新技术。

表面等离激元共振是一种能够适合探测金属表面的分子相互作用的量子光电现象。理论上,一个表面全内部反射的光诱发从表面延伸的倏逝波,平行于正常的波。这个倏逝场是由于光的波性质和强度随着表面距离增加而呈指数递增。在波导/金属表面相交处,从波导延伸的倏逝场能够以具体的入射角耦合到电磁表面波,这个角称为表面等离激元共振(SPR)角。在这个角,光能量能够转换到传导金属膜片,因为共振频率是一样的,因此创建了一个表面等离激元。因为能量被吸收了,光的反射强度显示了在表面等离激元共振(SPR)发生的角的地方下降。倏逝场起着表面的探测杆作用,因为表面等离激元共振(SPR)角对于折射率的变化相当敏感。表面等离激元共振(SPR)角的转换因此用于探测表面

的折射率(RI)的变化,这个折射率(RI)的变化直接与表面粘和的分析物的浓度成正比例。

SPR的共振角或共振波长与金属薄膜表面的性质密切相关,如果在金属薄膜表面附着被测物质(一般为溶液或者生物分子),会引起金属薄膜表面折射率的变化,从而SPR光学信号发生改变,根据这个信号,就可以获得被测物质的折射率或浓度等信息,达到生化检测的目的。

SPR传感技术是一项新兴的生物化学检测技术。自从Nylander和Liedberg 于1982年首次将SPR传感技术用于气体检测和生物传感器中,20年来,SPR传感技术在实现方式、仪器开发和应用领域扩展上都获得了飞速的发展。与传统的生化分析方法相比,SPR传感技术具有以下几个显著的优点:

(1)免标记检测。SPR传感技术对被测物质的折射率非常敏感,它与荧光分析或ELISA检测方法不同,省去了样品纯化和材料标记等样品准备

步骤,大大节省了额外的时间,并消除了标记物对反应造成干扰的可

能性;另外,它可以观察每个实验步骤对反应的影响,而不像其他实

验方法只能得到实验的最终结果。

(2)实时检测。采用SPR传感技术,反应的进展情况可以直接地显示在计算机屏幕上,这种对实验步骤地实时反馈,加快了实验开发和分析的

速度。最为吸引人的是,SPR传感技术可以对反应进行动力学参数分

析,这是其他分析方法所无法比拟的。

(3)无损伤检测。SPR传感技术是一种光学检测方法,光线在传感芯片表面被反射回来,并不与被测物接触;由于光线并不是穿透样品,甚至

是混浊或不透明的样品,也同样可以进行检测。

传统的分析方法局限于体外实验或使用离体器官进行,例如X射线光电子能谱(XPS)、俄歇电子能谱(AES)以及次级离子质谱(SIMS)等,不仅费用比较昂贵,设备庞大,灵敏度有限,而且都不能研究有关动力学过程。与传统技术相比,SPR技术的优点极为明显。SPR分析技术的出现,大大加快和优化了免疫测定过程,更为DNA和蛋白质之间的研究带来了重大突破。几十年来,DNA和蛋白质之间相互作用,特别是其反应动力学的测定一直没有简便快捷的方法,而SPR 技术解决了这一难题。

由于SPR 传感技术与其他传统分析方法相比,有着无可比拟的独特优点,它在药物筛选、环境监测、生物科技、毒品及食品检测等许多重要领域有着巨大的市场潜力,并且保持着快速的发展。

实验原理:

在电磁场的作用下,材料中的自由电子会在金属表面发生集体振荡,产生表面等离激元(Surface Plasmon );共振状态下电磁场的能量被有效转换为金属表面自由电子的集体振动能。

当入射光从折射率为n 1的光密介质照射到折射率为n 2的光疏介质发生全反射时,在 2 种介质的交界面处将同时发生折射和反射,当入射角θ大于临界角θc 时,将发生全反射,在全内反射(Total Internal Reflected, TIR )条件下,入射光的能量没有损失,但光的电场强度在界面处并不立即减小为零,而会渗入光疏介质中产生消失波,光波并不是绝对地在界面上被全反射回光密介质,而是渗入光疏介质大约一个波长的深度,并沿着界面流过波长量级距离重新返回光密介质,沿着反射光方向射出。这个沿着光疏介质表面流动的波称为倏逝波。对于倏逝波在金属内部的分布是随着与表面垂直距离z 的增大而呈指数衰减,即

()(0)exp(-)z I z I d

=

(1)

其中

d =

0λ是光在真空中的波长)是倏逝波渗入光疏介质的

有效深度(光波的电场衰减至表面强度的1/e 时的深度)。可见入射的有效深度d 不受入射光偏振化程度的影响,除θ→c θ,d →∞的特殊条件外(c θ为布儒斯特角),d 随着入射角的增加而减小,其大小是0λ的数量级甚至更小。因为倏逝波的存在,在界面处发生全内反射的光线,实际上在光疏介质中产生大小约为半个波长的位移后又返回光密介质。若光疏介质很纯净,不存在对倏逝波的吸收或散射,则内部的全反射光并不会衰减。反之,若光疏介质不纯净,全反射光的强度将会被衰减,这种现象称为衰减全内反射(反射率出现最小值)。表面等离激元共振(surface plasmon resonance, SPR )是倏逝波以衰减全反射的方式激发表面等离激元波(surface plasmon wave ,SPW ),当SPW 波矢与倏逝波的波矢大小相等、方向相同时,产生共振,导致入射光的反射光强降至最低。如果在两种介

质界面之间存在几十纳米的金属薄膜,那么全反射时产生的倏逝波(Evanescent Wave )的P 偏振分量(P 波)将会进入金属薄膜,与金属薄膜中的自由电子相互作用,激发出沿金属薄膜表面传播的表面等离子体波(Surface Plasmon Wave ,SPW )。当入射光的角度或波长到某一特定值时,入射光的大部分会转换成SPW 的能量,从而使全反射的反射光能量突然下降,在反射谱上出现共振吸收峰,此时入射光的角度或波长称为SPR 的共振角或共振波长。SPR 的共振角或共振波长与金属薄膜表面的性质密切相关,如果在金属薄膜表面附着被测物质(一般为溶液或者生物分子),会引起金属薄膜表面折射率的变化,从而SPR 光学信号发生改变,根据这个信号,就可以获得被测物质的折射率或浓度等信息,达到生化检测的目的。

表面等离激元(SP)是沿着金属和电介质之间的界面传播的电磁波所形成的。当P 偏振光以表面等离激元共振角入射到界面上,将发生衰减全反射:入射光被耦合到表面等离激元内,光能被大量吸收,在这个角度上由于发生了表面等离激元共振从而使得反射光显著减少。光在界面处发生全内反射时的倏逝波,可以引发金属表面的自由电子产生表面等离激元。在入射角或波长为适当值时,表面等离激元与倏逝波的频率相等,两者之间发生共振。入射光被吸收,使反射光能量急剧下降,在

反射光谱上出现共振吸收峰,这就是表面等离激元共振现象。在入射光波长固定的情况下,通过改变入射角,也可以实现角度指示型表面等离激元共振。

如图所示,当P 偏振光(振动方向在入射面内)通过柱面棱镜照射到金属表面时,入射光波矢k 在x 方向上的投影k x 为

01sin x p k k n θ= (2) 式中,00=2π/λk 是入射光在自由空间中的波矢,0λ是入射光在自由空间中的波长,p n 是柱面棱镜的折射率(折射率有实部、虚部,本实验所指折射率均指折射率的实部),1θ为入射角。

根据Maxwell 方程,可以推导出表面等离激元波的波矢k sp (如图的所示)的模为

sp k k = (3)

其中,m ε是金属的介电常数,n s 是待研究介质的折射率。

当k x =k sp 时,入射光波就会在金属表面形成表面等离激元共振。

01sin R e sp

p k k n k θ?

== ?

(4)

上式就是产生SPR 现象的条件。采用角度指示型检测方式,调节入射角θ1,反射光强最低时对应的共振角θsp 满足:

sin R e sp

p

n θ?=

?

(5)

由于所采用的金属介电常数的实部绝对值远大于虚部绝对值,则公式(5)可进一步简化为:

sin p sp n θ=

(6)

根据(6)式可知待测液体折射率和共振角之间的关系,实验中可利用该式测量不同液体的折射率。

仪器基本原理图如图二所示。结合分光计的精度和角度读数的方便性,能够精确的找到待测溶液所对应的共振角。

图三 基于分光计的SPR 传感器原理图

注意事项:

1.不应用手触摸光学元件的表面。

2.切记换药品时应用清水冲洗干净。

3.操作繁琐,应当认真。

数据处理:

实验中原始数据如下:纯净水:

1:1酒精:

无水乙醇:

将以上数据利用origin 作图得:

728088

300

600

900

B

A

图一:纯净水的接受光强与入射角曲线

60

70

80

90

0400

800

1200

B

A

图二:1:1乙醇接受光强与入射角曲线

60708090

300

600

900

B

A

图三:无水乙醇的接受光强与入射角曲线

由图可以得出,纯净水的θsp

为,5.70?无水乙醇的θ

sp

为,75?1:1乙醇的θ

sp

为,74?

sin p sp n θ=

带入数据=p n 1.516,以及纯净水的=s n 1.333,解得:Re (εm )=-13.679

所以可以计算得无水乙醇的=s n 1.364 1:1乙醇的=s n 1.356 误差分析

1、由于该实验于白天进行的,户外光对实验结果由一定影响。

2、实验中光源有一定宽度,在边缘地带有一部分会被阻挡,导致角度很大时光强下降。

3、光学仪器光学表面可能有污渍,导致光强减弱。

4、由于实验数据并不连续,导致最低点有误差。

5、液体中掺杂有杂质导致其折射率发生改变。

6、实验操作重复单调,导致操作过程中出现焦躁情绪,对实验结果有一定影响。 实验总结:

该实验让我们了解了全反射中倏逝波的概念,观察表面等离激元共振现象,研究其共振角随折射率的变化,使我们进一步熟悉和了解分光计的调节和使用,了解和掌握共振角测量的方法,以及计算折射率的原理和方法。

由此实验我们了解到,对于事物的某种特性可以采取多种不同的方法来研究它,可以让我们得到一些意想不到的收获。

超声光栅测液体中的声速 实验报告

实验设计说明书题目:利用超声光栅测液体中的声速 院部:理工科基础教学部 专业班级:物理学(创新实验班)1班 学生姓名:某某某 学号:41106XXX 实验日期: 2013年5月21日

超声光栅测液体中的声速 人耳能听到的声波,其频率在16Hz 到20kHz 范围内。超过20Hz 的机械波称为超声波。光通过受超声波扰动的介质时会发生衍射现象,这种现象称为声光效应。利用声光效应测量超声波在液体中传播速度是声光学领域具有代表性的实验。 一、实验目的 (1)学习声光学实验的设计思想及其基本的观测方法。 (2)测定超声波在液体中的传播速度。 (3)了解超声波的产生方法。 二、 仪器用具 分光计,超声光栅盒,高频振荡器,数字频率计,纳米灯。 三、 实验原理 将某些材料(如石英、铌酸锂或锆钛酸铅陶瓷等)的晶体沿一定方向切割成晶片,在其表面上加以交流电压,在交变电场作用下,晶片会产生与外加电压频率相同的机械振动,这种特性称为晶体的反压电效应。把具有反压电效应的晶片置于液体介质中,当晶片上加的交变电压频率等于晶片的固有频率时,晶片的振动会向周围介质传播出去,就得到了最强的超声波。 正文: 光声效应的发现无疑是物理学两大分支的又一次融合,利用超声光栅测量液体中的声速就是这一物理现象的应用。此次实验的仪器包括超声光栅池、超声仪、分光计、测微目镜以及光源。 由于声波是纵波,所以当超声波在液体(本实验用的是水)传播时,声波的振动会引起液体密度空间分布的周期性变化(如右图),进而导致液体的折射率亦呈周期性分布(如右图)。如果在某一时间t 0,液体密度的空间函数为: ()0s 02sin x t x π ρρρωλ??=+?- ? ?? ? ① 其中,0ρ是液体的静态密度,ρ?是密度的变化幅度,s ω是超声波的角频率,λ是超声波长,x 是超声波的传播方向,也是密度变化的空间方向;此时,折射率 的空间函数为:()0s 02sin n x n n t x πωλ? ?=+?-? ?? ?②,其中0n 为液体的静态折射率

伏安法测电阻实验报告(学生)

伏安法测电阻实验报告 姓名 得分 实验名称: 伏安法测量定值电阻的阻值 一、实验目的:会用伏安法(即用电压表和电流表)测量定值电阻的阻值 二、实验原理: 三、实验器材:电源、 、 、 、待测定值电阻、开关各一个、导线若干 四、实验电路图: 五、实验步骤: 1) 开关,按照电路图连接电路; 2)接入电路的滑动变阻器阻值调到 ; 3)检查无误后,再闭合开关S ,改变滑动变阻器的阻值三次,分别读出对应 的电流表、电压表的示数,并填入下面的表格中; 4)断开开关,计算定值电阻R 阻值 ,并算出三次阻值的平均值填入表格; 5)先拆除... 电源两极导线,再拆除其它部分实验线路,整理好实验器材。 实验注意事项: ①连接电路时开关要处于断开位置; ②滑动变阻器的滑片要放在最大电阻值的位置; ③电压表选用0-3V 量程,电流表选用0-0.6A ; ④注意认清电压表、电流表的“+”、“-”接线柱,使电流“+”进“-‘”出; ⑤ 可以先连“主电路”即由电阻R 、电流表、电压表、滑动变阻器、单刀开关、电源组 成的串联电路,检查无误后再接电压表; ⑥注意分度值,正确读出电流表、电压表上的数值. 六、实验数据记录与处理: 电压(V ) 电流(A ) 电阻(Ω) 电阻平均值(Ω) 1 2 3 思考:1.图像斜率表示什么?? 2.斜率越大,表示什么? 3.斜率会随着电压增大而增大吗?说明什么问题? 4.如果将未知电阻换成小灯泡?计算电阻的大小还 能用多测几次取平均值的做法吗? 实验总结: 回顾自己在实验中的表现和收获,对于实验中存在的问题,要作为以后的教训. 物 理 量 序 号 =++=3321R R R R

利用牛顿环测液体折射率实验报告[1]

利用牛顿环测液体的折射率 实验者:姜晨彬 同组实验者:朱欣 指导教师:夏老师 (A09港航 090304134 655162) 【摘要】本文结合牛顿环干涉原理测量空气折射率的方法,阐述了测量液体折射率的实验原理,并研究出了具体的测量方法,最后对水的折射率进行了测量,并得出了较为准确的测量结果。 【关键词】牛顿环 空气 蒸馏水 干涉 折射率 一、引言 牛顿环是一种典型的等厚薄膜干涉现象,能充分显示光的波动性。本文通过研究对比空气和水在牛顿环里发生的干涉现象,更新了液体折射率的测试方法,使牛顿环的应用更加丰富,开拓了物理实验的新视野。 二、设计原理 当以波长为x 的钠黄光垂直照射到平凸透镜上时,由液体膜上,下表面反射光的光程差以及干涉相消。 即暗纹条件: )1......)(2,1,0(2/)12(2/2=+=+=n n ne λλδ 式中e 为某一暗纹中心,所在处的液体膜厚度,k 为干涉级次。 利用图中的几何关系,可得:R r e 2/2 = (r 为条纹半径),代入(1)式,有 ......)2,1,0(2/)12(2//2=+=+=n n R nr λλδ (2) 则暗纹半径......)2,1,0(/==n k nR r k λ (3) 若取暗纹观察,则第m ,k 级对应的暗环半径的平方 n mR r m /2 λ= (4) k nR r n /2 λ= (5) 两式相减得平凸透镜的曲率半径)/()(2 2n m n r r R n m --= (6) 观察牛顿环时我们也将会发现牛顿环中心由于形变,灰尘,水等的影响,中心不是一点,而是一个不甚清晰的暗或亮的圆斑。目因而圆心不易确定。故常取暗环的直径替换。进而有 λ)(4/)(2 2n m n D D R n m --= (7) 同理对于空气膜。则有λ)(4/2 '2'n m D D R n m --= (8) 式(7)与式(8)相比,可得:)/()(2 22'2'n m n m D D D D n --= (9) 由(9)式可知,只要测出同一装置(相同的平凸透镜和平面的玻璃板)下的空气膜和液体膜的条纹直径,即可求出液体的折射率。

伏安法测电阻实验报告

科学探究的主要步骤 ※一、提出问题 ※二、猜想与假设 ※三、设计实验 (一) 实验原理 (二) 实验装置图 (三)实验器材和规格 (三)实验步骤 (四)记录数据和现象的表格 四、进行试验 ※五、分析与论证 ※六、评估 七、交流与合作 ※最后:总结实验注意事项 第一方面:电学主要实验

滑动变阻器复习提纲 1、原理——通过改变接入电路中电阻丝的长度,来改变电路中的电阻, 从而改变电路中的电流。 2、构造和铭牌意义——200Ω:滑动变阻器的最大阻值 1.5A:滑动变阻器允许通过的最大电流 3、结构示意图和电路符号——

4、变阻特点——能够连续改变接入电路中的电阻值。 5、接线方法—— 6、使用方法——与被调节电路(用电器)串联

7、作用——1、保护电路 2、改变所在电路中的电压分配或电流大小 8、注意事项——电流不能超过允许通过的最大电流值 9、在日常生活中的应用——可调亮度的电灯、可调热度的电锅、 收音机的音量调节旋钮?…… 实验题目:导体的电阻一定时,通过导体的电流和导体两端电压的关系(研究欧姆定 律实验新教材方案) 一、提出问题: 通过前面的学习,同学们已经定性的知道:加在导体两端的电压越高,通过导体的电流就会越大;导体的电阻越大,通过导体的电流越小。现在我们共同来探究:如果知道了一个导体的电阻值和它两端的电压值,能不能计算出通过它的电流呢?即通过导体的电流与导体两端的电压和导体的电阻有什么定量关系? 二、猜想与假设: 1、电阻不变,电压越大,电流越。(填“大”或“小”)

2、电压不变,电阻越大,电流越。(填“大”或“小”) 3、电流用I表示,电压用U表示,电阻用R表示,则三者之间可能会有什么关系? 三、设计实验: (一) 实验器材:干电池3节,10 Ω和5 Ω电阻各一个,电压表、电流表,滑动变阻器、 开关各一只,导线若干。 (二)实验电路图: 1、从研究电流与电压的关系时,能否能否保证电压成整数倍的变化,鉴

阿贝折射仪测介质折射率

实验阿贝折射仪测介质折射率 折射率是透明材料的一个重要光学常数。测定透明材料折射率的方法很多,如全反射法和最小偏向角法,最小偏向角法具有测量精度高、被测折射率的大小不受限制、不需要已知折射率的标准试件而能直接测出被测材料的折射率等优点。但是,被测材料要制成棱镜,而且对棱镜的技术条件要求高,不便快速测量。全反射法具有测量方便快捷,对环境要求不高,不需要单色光源等特点。然而,因全反射法属于比较测量,故其测量准确度不高(大约Δn=3×10-4),被测材料的折射率的大小受到限制(约为1.3~1.7),且对固体材料还需制成试件。尽管如此,在一些精度要求不高的测量中,全反射法仍被广泛使用。 阿贝折射仪就是根据全反射原理制成的一种专门用于测量透明或半透明液体和固体折射率及色散率的仪器,它还可用来测量糖溶液的含糖浓度。它是石油化工、光学仪器、食品工业等有关工厂、科研机构及学校的常用仪器。 【实验目的】 1.加深对全反射原理的理解,掌握应用方法。 2.了解阿贝折射仪的结构和测量原理,熟悉其使用方法。 3.通过对葡萄糖溶液折射率的测定确定其浓度。 【实验仪器】 WAY阿贝折射仪、标准玻璃块一块,折射率液(溴代萘)一瓶,待测液(自来水,酒精,糖溶液)、滴管、脱脂棉及擦镜纸 【实验原理】 一、仪器描述 阿贝折射仪是测量物质折射率的专用仪器,它能快速而准确地测出透明、半透明液体或固体材料的折射率(测量范围一般为1.4-1.7),它还可以与恒温、测温装置连用,测定折射率与温度的变化关系。 阿贝折射仪的光学系统由望远系统和读数系统组成,如图1所示。 望远系统。光线进入进光棱镜1与折射棱镜2之间有一微小均匀的间隙,被测液体就放在此空隙内。当光线(自然光或白炽灯)射入进光棱镜1时便在磨砂面上

伏安法测电阻的实验报告

班级 姓名 座号 日期 一、实验题目:测量小灯泡的电阻 二、实验目的:用电压表、电流表测电灯工作时的电阻。 三、实验原理: 。 实验方法: 法 四、实验器材:学生电源、2.5V小 灯泡、开关、导线、测量灯泡两端 电压的 、测量通过灯泡 电流的 、改变灯泡两端电 压和通过其电流的 。 五、实验电路图: 六、实验步骤: (1)按电路图连接电路。 (注意:①开关应 。②注意电压表和电流表量程的选 择,“+”、“-”接线柱。③滑动变阻器采用“一上一下”接法,闭合开关前,滑片应位于 处。④爱护实验器材。) (2)检查无误后,闭合开关,移动滑动变阻器的滑片(注意:移动要慢),分别使灯泡暗红、微弱发光、正常发光(灯泡两端电压 2.5V),测出对应的电压值和电流值,填入下面的表格中。 (3)算出灯丝在不同亮度时的电阻。 七、实验数据记录表格:实验过程中,用手感受灯泡在不同亮度下的温度。随着灯泡亮度的增加,灯泡的温度 。 实验次数灯泡亮度电压U/V电流I/A电阻R/Ω1灯丝暗红1 2微弱发光 1.5 3正常发光 2.5

八、问题讨论:分析上表数据,你会发现:随着灯丝发光亮度的增加, 你测出的灯丝电阻 ,是什么原因使灯丝的电阻发生变化的 呢?答: 。 习题: 1、小组测量小灯泡的电阻,设计的电路图中有1处错误,请你将错误之处圈出来,并改正在原 图上。然后按照改正好的电路图,将没有完成的实物图连接好。 2、小刚同学测量2.5V小灯泡的电阻时,连接的电路如图: (1)检查电路,发现有一根导线连接错误,请你在连接错误的导线上 打“×”,若没有发现错误,闭合开关,会出现 现象.在图中补画出正确的连 线.闭合开关前,他应将滑动变阻器的滑片调到 端(填“A”或“B”); 实验次数123 电压U/V 2.0 2.5 2.8 电流I/A0.200.240.25 (2)小刚改正错误后,按正确的操作测得的数据如右表: 则第1次测得的小灯泡的电阻为 ;小灯泡正常发光时的 电阻为________Ω。 从表中计算出三次小灯泡的电阻不相等,你认为可能的原因是 . 3、下图是“伏安法测电阻”的实验电路图。 ⑴在图中的圆圈内填入电流表、电压表的符号; ⑵某同学规范操作,正确测量,测得3组实验数据分别是:U1 = 2.4V,I1 = 0.20A;U2 = 4.5V,I2 = 0.38A;U3 = 6.0V,I3 = 0.50A。请你在虚线框内为他设计一个表格,并把这些数据正确填写 在你设计的表格内。 P R0 R x S ⑶、根据表格中数据,请你算出待测电阻R x≈ 。 ⑷、分析表格中的数据,你能得出的一个结论是:

测液体折射率实验报告

实验题目:表面等离激元共振法测液体折射率实验 预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星,调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0o;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o位置处锁定,测量前准备调节完毕。

4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66o到88o,入射角没增加1o,记录功率计最大读数。 5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1:1的乙醇溶液。 实验数据: 1.纯净水 角度(°)666768697071 角度(°)72737475767778相对光强243273376480554581641653角度(°)7980818283848586相对光强700705713733741741758765角度(°)8788

表面等离激元共振实验

表面等离激元共振法测液体折射率实验 实验目的: 1、了解全反射中倏逝波的概念 2、观察表面等离激元共振现象,研究其共振角随折射率的变化 3、进一步熟悉和了解分光计的调节和使用 4、了解和掌握共振角测量的方法,以及计算折射率的原理和方法 实验简介: 早在1902年Wood就在光学实验中首次发现了表面等离激元共振(Surface Plasmon Resonance,SPR)现象,1941年Fano根据金属和空气界面上电磁波的激发解释了这一SPR现象,随后就提出了体积等离子体子(激元)的概念,认为这是金属中体积电子密度的一种纵向波动。Ritchie注意到当高能电子通过金属薄片时,不仅在体积等离子体子频率处有能量损失峰,在更低频率处也有能量损失峰,并认为这与金属薄膜的界面有关。1959年Powell和Swan通过实验验证了Ritchie理论。1960年Stern和Farrell研究了此种模式产生共振的条件并首次提出了表面等离子体子(SP)的概念。1971年Kretschmann为SPR传感器结构技术奠定了基础,1983年Liedburg将SPR用于IgG与其抗原的反应测定,1987年Knoll等人开始了SPR成像的研究,1990年Biocare AB公司开发出首台商品化SPR仪器。表面等离激元共振技术终于在20世纪90年代成功发展起来,成为应用SPR原理检测生物传感芯片上配位体与分析物作用的一种新技术。 表面等离激元共振是一种能够适合探测金属表面的分子相互作用的量子光电现象。理论上,一个表面全内部反射的光诱发从表面延伸的倏逝波,平行于正常的波。这个倏逝场是由于光的波性质和强度随着表面距离增加而呈指数递增。在波导/金属表面相交处,从波导延伸的倏逝场能够以具体的入射角耦合到电磁表面波,这个角称为表面等离激元共振(SPR)角。在这个角,光能量能够转换到传导金属膜片,因为共振频率是一样的,因此创建了一个表面等离激元。因为能量被吸收了,光的反射强度显示了在表面等离激元共振(SPR)发生的角的地方下降。倏逝场起着表面的探测杆作用,因为表面等离激元共振(SPR)角对于折射率的变化相当敏感。表面等离激元共振(SPR)角的转换因此用于探测表面

伏安法测电阻实验报告

实验目的 ? 掌握伏安法测量电阻时,电流表内接和外接时的条件; ? 通过对二极管伏安特性的测试,了解非线性电阻,掌握二极管的非线性特点。 实验仪器 DH6102型伏安特性实验仪 本实验仪由直流稳压电源、可变电阻器、电流表、电压表及被测元件等五部分组成。 实验原理 一、概述 伏安法测电阻是电阻测量的基本方法之一。当一个元件两端加上电压时,元件内就有电流通过,电压和电流之间存在着一定的关系。该元件的电流随外加电压的变化曲线,称为伏安特性曲线。从伏安特性曲线所遵循的规律,可以得知该元件的导电特性。 二、线性电阻和非线性电阻 ? 线性电阻 非线性电阻 对线性电阻我们可以直接通过欧姆定律, 对非线性电阻我们不能应用欧姆定律但 确定出线性电阻阻值: 是可以考虑一小段特性曲线,确定出动态 R =U /I 电阻: R =△U /△I 三、实验线路的比较与选择 实验中使用的电路对电流表有内接和外接两种: 当电流表内阻为0,电压表内阻无穷大时,两种电路都不会带来附加测量误差。 被测电阻: 非理想状态(电流表内阻非0,电压表内阻非无穷大),如果用上述公式计算电阻值,无论采用哪一种联接都将产生接入(系统)误差。 1、内接法的接入误差和修正 采用这种方法测量,我们 得到的电阻实际是电流表 内阻和待测电阻之和,即: I U R x A x R R I U

需要对其进行修正,即: 当Rx >>RA ,采用电流表内接,接入误差较小。 2、外接法的接入误差和修正 当采用外接法时,我们得到的 实际上是电压表内阻和待测电阻 并联后的阻值,即: 需要对其进行修正,即: 当RV >>Rx ,采用电流表外接,接入误差较小。 四、二极管的伏安特性 二极管是一种具有单向导电的二端器件,具有按照外加电压的方向,使电流流动或不流动的性质。 对二极管施加正向电压时,则二极管中就有正向电流通过,随着电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(硅管为 0.7V 左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 当施加反向电压时,二极管处于截止状态,其反向电压增 加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二 极管使用中应竭力避免出现击穿观察,这很容易造成二极管的 永久性损坏。所以在做二极管反向特性时,应串入限流电阻, 以防因反向电流过大而损坏二极管,并注意不要超过二极管允 许的最大反向电压值。 二极管的应用 1、整流二极管:利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。 2、开关元件:二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅元件:二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V ,锗管为0.3V )。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、继流二极管:在开关电源的电感中和继电器等感性负载中起继流作用。 5、检波二极管:在收音机中起检波作用。 6、变容二极管:使用于电视机的高频头中。 7、显示元件:用于VCD 、 DVD 、计算器等显示器上。 8、稳压二极管:反向击穿电压恒定,且击穿后可恢复,利用这一特性可以实现稳压电路。 实验内容(一) 1.测定线性电阻的伏安特性 ⑴选被测电阻器的电阻为1K Ω,电流表量程为20mA ,电压表量程为20V 。 ⑵电流表内接测试: 将电流表内接,调节直流稳压电源,取合适的电压变化值(如从2.000V 变化到14.000V ,变化步长取为2.000V ),将相应的电流值记录列表 。 A x R I U R V x R R U I 11 V x R U I R 11

牛顿环测液体折射率实验报告

牛顿环测液体折射率实 验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

利用牛顿环测液体的折射率 【摘要】本文结合牛顿环干涉原理测量空气折射率的方法,阐述了测量液体折射率的实验原理,并研究出了具体的测量方法,最后对水的折射率进行了测量,并得出了较为准确的测量结果。 一、实验目的: 牛顿环是一种典型的等厚薄膜干涉现象,能充分显示光的波动性。本文通过研究对比空气和水在牛顿环里发生的干涉现象,更新了液体折射率的测试方法,使牛顿环的应用更加丰富,开拓了物理实验的新视野。 二、设计原理 当以波长为x 的钠黄光垂直照射到平凸透镜上时,由液体膜上,下表面反射光的光程差以及干涉相消。 即暗纹条件: 式中e 为某一暗纹中心,所在处的液体膜厚度,k 为干涉级次。 利用图中的几何关系,可得:R r e 2/2= (r 为条纹半径),代入(1)式,有 ......)2,1,0(2/)12(2//2=+=+=n n R nr λλδ (2) 则暗纹半径......)2,1,0(/==n k nR r k λ (3) 若取暗纹观察,则第m ,k 级对应的暗环半径的平方 n mR r m /2λ= (4) k nR r n /2λ= (5) 两式相减得平凸透镜的曲率半径)/()(22n m n r r R n m --= (6)

观察牛顿环时我们也将会发现牛顿环中心由于形变,灰尘,水等的影响,中心不是一点,而是一个不甚清晰的暗或亮的圆斑。目因而圆心不易确定。故常取暗环的直径替 换。进而有λ)(4/)(22n m n D D R n m --= (7) 同理对于空气膜。则有λ)(4/2'2'n m D D R n m --= (8) 式(7)与式(8)相比,可得:)/()(222'2'n m n m D D D D n --= (9) 由(9)式可知,只要测出同一装置(相同的平凸透镜和平面的玻璃板)下的空气膜和液体膜的条纹直径,即可求出液体的折射率。 三、设计方案 1.调整实验装置 将牛顿环装置放在毛玻璃上。点燃钠光灯,调节显微镜前面的透光反射镜的角度,与水平面成045的角度,这样从目镜中看到明亮的光场旋转目镜旋钮,使分化板上的十字线位于目镜的交线上,即从目镜中看到清晰地十字线。缓慢转动手轮,使显微镜自下而上缓慢上移,直到从目镜中看到清晰地干涉图样,并使相与交叉丝无视差。略微移动牛顿环装置,使显微镜十字叉丝位于牛顿环中心。 2.实验操作 将牛顿环装置的凸透镜和平板玻璃拆开,用滴管在平板玻璃上滴一层待测液体,然后压上凸透镜。由于液体有表面张力,能够充满凸透镜和平板玻璃之间的空间。则现在凸透镜和平板玻璃之间形成了液体膜。将此装置放到显微镜的载物台上,调节手轮,使显微镜由低到高缓慢移动,直至在目镜中看到清晰地干涉条纹为止。由于液体膜压得不会很均匀。故在视场中的某个地方会出现一小块空气膜,其干涉花样如上面右图所示。 四、实验结果与分析 数据记录

伏安法测电阻实验报告

伏安法测电阻实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

科学探究的主要步骤※一、提出问题 ※二、猜想与假设 ※三、设计实验 (一) 实验原理 (二) 实验装置图 (三)实验器材和规格 (三)实验步骤 (四)记录数据和现象的表格 四、进行试验 ※五、分析与论证 ※六、评估 七、交流与合作 ※最后:总结实验注意事项 第一方面:电学主要实验 滑动变阻器复习提纲 1、原理——通过改变接入电路中电阻丝的长度,来改变电路中的电阻,从而改 变电路中的电流。 2、构造和铭牌意义——200Ω:滑动变阻器的最大阻值 :滑动变阻器允许通过的最大电流 3、结构示意图和电路符号—— 4、变阻特点——能够连续改变接入电路中

的电阻值。 5、接线方法—— 6、使用方法——与被调节电路(用电器)串联 7、作用——1、保护电路 2、改变所在电路中的电压分配或电流大小 8、注意事项——电流不能超过允许通过的最大电流值 9、在日常生活中的应用——可调亮度的电灯、可调热度的电锅、 收音机的音量调节旋钮…… 实验题目:导体的电阻一定时,通过导体的电流和导体两端电压的关系(研究欧姆定律实验新教材方案) 一、提出问题: 通过前面的学习,同学们已经定性的知道:加在导体两端的电压越高,通过导体的电流就会越大;导体的电阻越大,通过导体的电流越小。现在我们共同来探究:如果知道了一个导体的电阻值和它两端的电压值,能不能计算出通过它的电流呢即通过导体的电流与导体两端的电压和导体的电阻有什么定量关系 二、猜想与假设: 1、电阻不变,电压越大,电流越。(填“大”或“小”) 2、电压不变,电阻越大,电流越。(填“大”或“小”) 3、电流用I表示,电压用U表示,电阻用R表示,则三者之间可能会有什么关系 三、设计实验:

表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用 李智豪 1.表面等离子体共振的物理学原理 人们对金属介质中等离子体激元的研究, 已经有50多年的历史。1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。 1.1 基本原理[1] 光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。 等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。 金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场

《测定三棱镜折射率》物理实验报告标准范本

报告编号:LX-FS-A51476 《测定三棱镜折射率》物理实验报 告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

《测定三棱镜折射率》物理实验报 告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 【实验目的】 利用分光计测定玻璃三棱镜的折射率; 【实验仪器】 分光计,玻璃三棱镜,钠光灯。 【实验原理】 最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形ABC表示玻璃三棱镜的横截面,AB和AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。假设某一波长的光线LD入射到

棱镜的AB面上,经过两次折射后沿ER方向射出,则入射线LD与出射线ER的夹角称为偏向角。 【实验内容与步骤】 1.调节分光计 按实验24一1中的要求与步骤调整好分光计。 2.调整平行光管 (1)去掉双面反射镜,打开钠光灯光源。 (2)打开狭缝,松开狭缝锁紧螺丝3。从望远镜中观察,同时前后移动狭缝装置2,直至狭缝成像清晰为止。然后调整狭缝宽度为1毫米左右(用狭缝宽度调节手轮1调节)。 (3)调节平行光管的倾斜度。将狭缝转至水平,调节平行光管光轴仰角调节螺丝29,使狭缝像与望远镜分划板的中心横线重合。然后将狭缝转至竖直方向,使之与分划板十字刻度线的竖线重合,并无视

(完整word版)表面等离激元

表面等离子体共振波长 1.共振波长的基本求解思路 表面等离激元(SP)是指在金属和电介质界面处电磁波与金属中的自由电子藕合产生的振动效应。它以振动电磁波的形式沿金属和电介质的界面传播,并且在垂直离开界面的方向,其振幅呈现指数衰减。表面等离激元的频率与波矢可以通过色散关系联系起来。其垂至于金属和电解介质界面方向电磁场 可表达为: 式中表示离开界面的垂直距离,当时取+,时取一。式中为虚数,引起电场的指数衰减。波矢平行于方向,,其中为表面等离子体的共振波长。由表达式可见,当时,电磁场完全消失,并在时为最大值。 函数,以及电介质的介电常数来求解表面等离激元的的色散关系,由公式: ,可得到等离激元色散关系式为: ,如果假设和都为实数,且 ,则可获得一个较为复 杂的色散关系式 其中, (从实部可以计算SPPs 的波长 '2/x SPP K λπ=,SPPs 的传播距离SPP δ主要决定于虚部''2SPP SPPs k δ=

2. 金属表面等离体子频率的求解 当波矢较大或者时,的值趋向于21P SP ωωε=+ 对于自由电子气,,是金属体电子密度,是电子有效质 量,是电子电荷。因此,随增大而减小。 (1) 具有理想平面的半无限金属 全空间内电势分布满足拉普拉斯方程:由于在方向上介质和金属都是均匀的,所以可令解的形式为得拉普拉斯方程的解 由以及边界条件: 可以得到介质与金属相对电容率之间的关系: ,假设介质的相对电容率为与

频率无关的常数,由金属相对电容率的表示式可知因此金属表面等离体子频率为当介质为真空时,得到金属表面等离体子频率为 (2)金属中存在着大量的价电子,它们可以在金属中自由地运动.由于价电子的自由移动性及电子间存在着库仑相互作用,所以在金属内部微观尺度上必然存在着电子密度的起伏.由于库仑作用的长程性,导致电子系统既存在集体激发(即等离体子振荡),也存在个别激发(即准电子).而在小波矢近似下只存在集体激发,故可以将电子密度的傅里叶分量作为集体坐标来描述这种关联,在k 一0的极限下,有式中为单位体积内的电子数.由此方程可以得到金属内等离体子振荡频率 从以上讨论及推导可以看出,金属等离体子振荡实际上是在库仑作用参与下的高粒子数密度系统中电子的集体运动,等离体子就是电子集体振荡的能量量子.由于库仑势场是纵场,因此等离体子是纵振动的量子.以上所讨论的情况没有考虑到金属边界的影响,即认为金属是无限大的,计算得到的频率为块状金属中的体相等离体子频率. 3.金属介电常数的求解 (1)另外,根据Drude 自由电子气模型,理想金属的介电方程可写为: 22()1p i ωεωωτω =-- ,p ω是等离子体振荡频率,,τ是散射速率描述电子运动遭遇散射而引起的损耗, 161311.210/, 1.4510p rad s s ωτ-=?=?对于银,。 (2)球状金属的SP 介电常数可由以下公式给出: 式中为金属周围环境的介电常数。从公式可以得到无限多的模式,在 时得到最低阶介电模式。由于光子通过这些介电模式藕合进入SP ,

伏安法测电阻实验报告单

黑虎中学《伏安法测电阻》实验报告 班次:____________组次:_____________ 姓名:时间: 一.测量定值电阻的阻值 (1)实验原理: (2)实验器材: (3)电路图:实物图: (4)实验步骤: 1、开关按照电路图连接电路,滑动变阻器滑片处于位置。 2、闭合开关,调节,读出值和值并记录;计算出 值。 4、继续调节重复上述实验,并记录和计算。 (5)实验数据: 实验序号电压U/V电流I/A电阻R X/Ω平均值R X/Ω1 2 3 (6)滑动变阻器的作用:

二.测量小灯泡的电阻: (1电路图: 实物图 : (2)实验数据: 实验序号 电压U/V 电流I/A 灯泡电阻R L /Ω 1 2 3 (3)灯泡正常发光时的电阻是:R L = (4)问题:计算灯泡电阻时能不能取平均值为什么 练习:1.某同学按下图所示电路连好实验器材后,闭合开关,灯泡正常发光,但电压表指针不动,这可能是 ( ) A .电流表烧坏,电路开路 B .电流表完好,与电流表相 连的导线断了 C .电压表接线柱处导线短路 D .电压表接线柱处导线断路 A V L R S

2一个20Ω的电阻,接在由4节干电池串联的电源上,要测这个电阻中的电流和两端的电压,电流表、电压表选的量程应为 ( ) A.0~,0~3V B.0~,0~15V C.0~3 A,0~3 V D.0~3 A,0~15 V 3.现有下列器材,电流表(0~ 0~3A)、电压表(0~3V 0~15V)、滑动变阻器(10Ω 2A)、4V电源、待测小灯泡的电阻(正常发光的电压为,电阻为6Ω左右)、开关一只、导线若干。要求用伏安法测定小灯泡正常发光时灯丝的电阻,测量时两表的指针要偏过表面刻度盘的中线。 (1)试画出电路图; (2)电流表的量程应为 __________ 电压表的量程为____________ ; (3)下列步骤的合理排列顺序为________________ 。 A . 闭合开关 B .将测出的数据填入表格中 C . 计算被测小灯泡的电阻 D .读出两表的示数 E .断开开关 F .将滑动变阻器的阻值调到最大位置 G .根据电路图连接电路 H .调节滑动变阻器使电压表示数为

大学物理实验设计性实验液体折射率测定

评分:大学物理实验设计性实验实验报告 实验题目:液体折射率测定 班级: 姓名:学号: 指导教师:

《液体的折射率测定》实验提要 实验课题及任务 《液体的折射率测定》实验课题任务方案一:光从一种介质进入另一种介质时会发生折射现象,当入射击角为某一极值(掠射)时,会产生一特殊的光学现象,能同时看到有折射光和无折射光的现象,就可以实现液体折射率的测量。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《液体的折射率测定》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解 仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶测量5组数据,。 ⑷应该用什么方法处理数据,说明原因。 ⑸实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 分光仪、钠光灯、毛玻璃与待测液体 实验提示 掠入射法测介质折射率的原理如图示3-1所示。将待测介质加工成三棱镜,用扩展光源(用钠光灯照光的大毛玻璃)照明该棱镜的折射面AB,用望远镜对棱镜的另一个折射面AC进行观测。在AB界面上图中光线a、b、c的入射角依次增大,而c光线 i。在棱镜中再也不可能有折射角为掠入线(入射角为 90),对应的折射角为临界角 c i的光线。在AC界面上,出射光a、b、c的出射角依次减小,以c光线的出射角大于 c 'i为最小。因此,用望远镜看到的视场是半明半暗的,中间有明显的明暗分界线。证

基于局域表面等离激元共振的金属纳米结构折射率传感

基于局域表面等离激元共振的金属纳米结构折射率传感 高灵敏度的折射率传感结构在生物化学传感等领域有着很大的潜在应用价值。因为金属纳米结构在表面等离激元共振(SPR)产生时会有明显的电磁场增强,所以在高灵敏度传感应用上受到广泛关注。 有两种SPR被用于折射率传感应用:传播的SPR(PSPR)和局域的SPR (LSPR)。由于传播SPR传感需要非常光滑的金属表面,所以对加工精度要求高。 因此,本文这里主要讨论基于LSPR的折射率传感。金属纳米结构的尖端在LSPR产生时会有很强的局域电场,因此带有尖端的金属纳米结构传感灵敏度很高。 本文第一部分工作中我们研究了带有四个尖端的X形金属纳米孔阵列结构的LSPR传感。实验和数值模拟的结果均证实了该结构拥有高折射率传感灵敏度。 此外特异介质结构在磁响应共振产生时也会有很强的局域电场,因此他们可以应用于高灵敏度折射率传感。本文余下的工作就是制备用于传感的特异介质结构。 金属纳米环形圆盘结构有很大的局域电场和周围用于传感的电介质环境相 互叠加的空间。X形金属纳米颗粒结构有四个尖端,在LSPR产生时会有很强的局域电场。 所以上面提的这2种结构都有很高的传感灵敏度。基于此,我们制备了由金属纳米环形圆盘、电介质层和金属膜以及由X形金属纳米颗粒、电介质层和金属膜组成的环形圆盘和X形2种特异介质结构。 实验测试和数值模拟证实了这2种结构有着非常高的传感灵敏度。本文的主要工作分为如下几个方面:1.X形金属纳米孔阵列折射率传感带有尖端的金属纳

米结构在产生LSPR共振时有着很强的局域电场。 这一现象使得局域的电场与周围电介质环境的相互作用就很强,因此这种结构有着高传感灵敏度。基于此,我们制备了带有四个相对尖端的X形金属纳米孔阵列结构。 四个尖端的存在使得电场在LSPR产生时被很好的局域和增强了。透射光谱的实验测试结果表明了该结构的折射率传感灵敏度可以达到945nm RIU-1,高于其他诸如圆环形和月亮形这样的拥有高折射率传感灵敏度的金属纳米结构。 我们通过使用电介质支撑柱将X形金属孔阵列支撑起来远离玻璃衬底来增加局域电场与周围用于传感的电介质环境的叠加区域,然后减少尖端间距进一步增强局域电场。经过这两步之后,该结构在近红外区域传感灵敏度达到了非常高的1398nm RIU-1。 这一高传感灵敏度使得该结构在芯片集成高灵敏度生物医学传感和光学集成器件中有很大的潜在应用。2.环形圆盘特异介质折射率传感由于磁共振的产生导致特异介质结构周围有很强的局域电场。 这使得局域的电场与周围用于传感的电介质环境有强相互作用。因此特异介质有很高的传感灵敏度。 环形圆盘金属纳米结构在LSPR共振时比其他如圆盘和球形金属纳米结构有着更大的局域电场与周围用于传感的电介质环境相互叠加的区域,因此该结构有更高的传感灵敏度。基于上面提的这两点,我们制备了在金属膜上由电介质层支撑的金属环形圆盘构成的特异介质结构。 反射光谱的测量表明该结构的传感灵敏度可达到1304nm RIU-1.我们通过增加电介质层的厚度和环形圆盘内半径进一步的增加局域电场和电介质环境相互

实验报告测量玻璃折射率

实验报告:测量玻璃折射率 高二( )班 姓名: 座号: 【实验目的】 1、明确测定玻璃砖的折射原理 2、知道测定玻璃砖的折射率的操作步骤 3、会进行实验数据的处理和误差分析 【实验原理】 如图所示,要确定通过玻璃砖的折射光线,通过插针法找出跟入射光线AO 对应的出射光线O 1B ,就能求出折射光线OO 1和折射角θ2, 再根据折射定律就可算出玻璃的折射率n=2 1 sin sin θθ。 【实验器材】 平木板、 白纸、 玻璃砖1块、 大头针4枚、 图钉4个、 量角器(或三角板或直尺)、 铅笔 【实验步骤】 1、把白纸用图钉钉在木板上。 2、在白纸上画一条直线ad 作为玻璃砖的上界面,画一条线段AO 作为入射光线,并过O 点 画出界面ad 的法线NN 1。 3、把长方形的玻璃砖放在白纸上,使他的一个长边ad 跟严格对齐,并画出玻璃砖的另一个 长边bc.。 4、在AO 线段上竖直插上两枚大头针P 1P 2. 5、在玻璃砖的ad 一侧再插上大头针P 3,调整眼睛观察的视线,要使P 3 恰好能挡住P 1P 2在 玻璃中的虚像。 6、用同样的方法在玻璃砖的bc 一侧再插上大头针P 4,使P 4能同时挡住P 3本身和P 1P 2的虚 像。 7、记下P 3、P 4的位置,移去玻璃砖和大头针。过P 3、P 4引直线O 1B 与bc 交于O 1点,连接 OO 1,OO 1就是入射光线AO 在玻璃砖内的折射光线的方向。入射角θ1=∠AON ,折射角θ2=∠O 1ON 1 8、用量角器量出入射角θ1和折射角θ2。查出入射角和折射角的正弦值,记录在表格里。

9、改变入射角θ1,重复上述步骤。记录5组数据,求出几次实验中测得的 2 1 sin sin θθ的平均值,就是玻璃的折射率。 【注意事项】 1、用手拿玻璃砖时,手只能接触玻璃砖的毛面或棱,不能触摸光洁的光学面,严禁把玻璃砖 当尺子画玻璃砖的另一边bc 。 2、实验过程中,玻璃砖在纸上的位置不可移动. 3、玻璃砖要选用宽度较大的,宜在5厘米以上,若宽度过小,则测量折射角度值的相对误差 增大;用手拿玻璃砖时,只能接触玻璃毛面或棱,严禁用玻璃砖当尺子画界面; 4、入射角i 应在15°~75°范围内取值,若入射角α过大。则由大头针P 1、P 2射入玻璃中的光 线量减少,即反射光增强,折射光减弱,且色散较严重,由玻璃砖对面看大头针的虚像将暗淡,模糊并且变粗,不利于瞄准插大头针P 3、P 4。若入射角α过小,折射角将更小,测量误差更大,因此画入射光线AO 时要使入射角α适中。 5、上面所说大头针挡住大头针的像是指“沉浸”在玻璃砖里的那一截,不是看超过玻璃砖上方 的大头针针头部分,即顺P 3、P 4的方向看眼前的直线P 3、P 4和玻璃砖后的直线P 1、P 2的虚像是否成一直线,若看不出歪斜或侧移光路即可确定。 6、大头针P 2、P 3的位置应靠近玻璃砖,而P 1和P 2、P 3和P 4应尽可能远些,针要垂直纸面, 这样可以使确定的光路准确,减小入射角和折射角的测量误差。 【实验数据】 实验数据处理的其他方法:

相关文档
最新文档