色度学的基本知识

色度学的基本知识
色度学的基本知识

色度学

色度学与物理光学等学科的基础不同, 物理光学可以认为是客观的科学, 是与人类无关的。而色度学却是一种主观的科学, 它以人类的平均感觉为基础, 因此它属于人类工程学范畴, 以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。

色度学确切的讲它是研究人眼对颜色感觉规律的一门科学。以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。辐射能量很大的波长很长的红光对人来说却没有辐射能量很小的黄光亮, 人们就认为黄光的强度比红光大。

在人们眼中所反映出的颜色,不单取决于物体本身的特性,而且还与照明光源的光谱成分有着直接的关系。所以说在人们眼中反映出的颜色是物体本身的自然属性与照明条件的综合效果。我们用色度学来评价的结论就是这种综合效果。

色度学是研究人的颜色视觉规律、颜色测量理论与技术的科学,它是一门本世纪发展起来的,以物理光学、视觉生理、视觉心理、心理物理等学科为基础的综合性科学。

每个人的视觉并不是完全一样的。在正常视觉的群体中间,也有一定的差别。目前在色度学上为国际所引用的数据,是由在许多正常视党人群中观测得来的数据而得出的平均结果。就技术应用理论上来说,已具备足够的代表性和可靠的准确性。

国际照明委员会(CIE)

国际照明委员会(Commission Internationale ed I'Eclairage-CIE)

主要研究照明的专业术语、光度学和色度学的国际学术研究机构。设在巴黎。早在1924年前就已从事标准色度学系统的研究,1931年根据莱特(W.D.Wright)在1928-1929年和吉尔德(J. Guild)在1931年研究三原色的角度观察效果,加以平均,规定了CIE 1931标准色度观察者光谱三刺激值,并据以绘制出偏马蹄形曲线的*色度图,称为“1931 CEL-RGB系统色度图”,后经修改被推荐为1931 CIE-XYZ系统,为国际通用色度学系统,称为“CIE标准色度学系统”,所作的图则称“CIE 1931色度图”。1964年又综合斯泰尔斯(W.S. Stiles)和伯奇(J.M.Bruch)以及斯伯林斯卡娅(N.I.Speranskaya)1959年发表的研究结果,制定了CIE1964补充色度学系统以及相应的色度图,为世界各国广泛采用,据以进行色度计算和色差计算。1964年又提出了“均匀颜色空间”的三维空间概念,1976年加以修订,并正式被采用。CIE为此还提出了确定的参照光源,称“CIE 标准光源”。

眼睛的剖视结构

▲虹膜(Iris):

位于形成眼压的房水(Aqueous Humor)后面(水晶体前面)决定眼睛的颜色白种人儿童虹膜色素少,为蓝色,年老色素增多成棕黑色)其肌键可控制瞳孔(Pupil)大小(约为2 - 8mm之变化)使得影像随外界明暗变化成像于视网膜上。

▲角膜(Cornea):

眼球壁的正前方,1mm厚,为一弹性的透明组织占眼球壁面积1/6,光线经角膜曲光折射进入眼内。

▲水晶体(Lens):

虹膜后透明双凸透镜,两曲面之曲率不同,厚4mm,9mm直径曲光率靠睫状肌(Ciliary Body)收缩而改变。

视觉原理

人眼基本上可以看成是一个包含在巩膜内的不透光暗室。它具有一个由角膜﹑前房水﹑水晶体和玻璃体组成的折射光学系统﹐它们将入射光线聚焦在眼球

后面的视网膜上形成一个倒像。

虹膜上的小孔叫瞳孔﹐瞳孔的大小可以改变﹐以便调节进入眼睛的光通量。在低亮度它完全打开时﹐直径可达8mm左右﹐而在高亮度环境中﹐其直径为

1.5mm左右﹐其有效孔径(光圈)从f/11到f/2﹐焦距约为16mm。

视网膜由一个感光细胞薄层组成﹐上面的细胞分为两种类型﹕一种是锥形

的﹐一种是杆形的﹐它们大约有一亿二千五百万个﹐不均匀地分布在视网膜上。这两类细胞的作用不同﹐杆形细胞作用相当于高灵敏度﹑粗颗粒的黑白底片﹐

它在很暗的光照下还能起作用﹐但不能区别颜色﹐的到的像轮廓不够清晰﹔锥

形细胞作用相当于灵敏度比较差﹑颗粒细的彩色底片﹐它在较强的光照下才能

起作用﹐能区别颜色﹐得到的像的细节较清晰。

进入眼睛的光线通过瞳孔后到达水晶体凸透镜﹐在周围睫状肌的作用下﹐

透镜可以适当地调节它的形状﹐使一定远近范围内(约从无穷远到15cm)的物体都能分别成像于视网膜上﹐两种感光细胞把像的讯号经过视神经信道传送到大脑。

水晶体是折射率不均匀的物体﹐其外层折射率为1.38﹐内层折射率接近

1.41﹐水晶体的焦距可以靠其表面曲率的变化来改变。

随着物体离眼睛距离的不同﹐水晶体焦距作相应的变化﹐因而在视网膜上可以得到物体清晰的像﹐这个过程称为调焦。

正常的眼睛处于没有调节的自然放松状态时﹐无穷远物体正好成像在视网膜上﹐即眼睛的像放焦点正好与视网膜重合﹐所以眼睛观察远处物体不容易疲劳﹐故目视仪器的调节应使像成于无限远处。

观察近距物体时﹐水晶体周围的睫状肌向内收缩﹐使水晶体曲率半径变小﹐这时眼睛的焦距缩短﹐像方焦点由网膜上向前移动﹐使有限距离处的物体成像在视网膜上。

视神经放大图片

进入眼睛的光线被视网膜(Retina)上的杆状(Rod)和锥状( Cone)细胞(见右图)所接受,并产生电子讯号刺激后方的神经细胞层在精于大脑整合产生视觉影像。

杆状(Rod)细胞主司明暗的判别,平均约有1亿两千万个细胞,可接受400~600nm波长的光线,不具色彩判别力。锥状( Cone)细胞,则集中在视网膜中央的部分,可接受400~700nm波长的光线,具辨别色彩的能力,但数量只有6百万个。这也说明了为什么人的眼睛对明暗对比的判定,要比色彩的变化来的敏感的原因。

视觉暂留现象

人眼之所以能够看清一个物体,乃是由于该物体在光的照射下,物体所反射或透射的光进入人眼,刺激了视神经,引起了视觉反应。当这个物体从眼前移开,对人眼的刺激作用消失时,该物体的形状和颜色不会随着物体移开而立即消失,它在人眼还可以作一个短暂停留,时间大约为1/10秒。物体形状及颜色在人眼中这个短暂时间的停留,就称为视觉暂留现象。正因为有了这种视觉暂留现象,人们才能欣赏到电影、电视的连续画面。视觉暂留现象是视错觉的一种表现。

眼睛的分辨能力

眼睛分辨物体细节的能力与视网膜的结构(主要是其上面的感光单元的分布)有关﹐不同部分亦很大的差别。在网膜中央靠近光轴的一个很小的区域(称为黄斑直径约为1.5mm)里﹐分辨能力最高。能分辨的最近两点对眼睛的张角﹐称为

最小分辨角。在白昼的照明条件下﹐黄斑内的最小分辨角接近1‘﹐趋向网膜边缘﹐分辨能力急剧下降。所以人的眼睛视场虽然很大﹐水平方向视场角约为160度﹐垂直方向约为130度﹐但其中只有中央视角6~7度的一个小范围内才能较清楚地看到物体的细节。

另外﹐眼睛的分辨能力与照明环境有很大的关系﹐在夜间照明条件比较差的时候﹐眼睛的分辨能力大大下降﹐最小分辨角可达1度以上。

人们大约可分辨出一百多种颜色。这种单波长的色光非常鲜艳, 人们称为纯色。实际看到的色光大多数是由许多种波长的光组成的。例如太阳光就是从红光到蓝光的连续光谱组成的。

颜色的视觉 (视网膜的颜色区)

对颜色的感觉是光的辐射能对视网膜上锥体细胞作用的结果﹐由于锥体细胞的分布不同﹐因而不同区域对颜色的感受能力也不同。

视网膜中央能分辨各种颜色﹐由中央向外围部分过渡﹐对颜色的分辨能力逐渐减弱﹐直到对颜色的感觉消失。

观察小视场和大视场的颜色会有不同结果。

眼感受到颜色﹐不只决定于客观的刺激﹐还取决于用眼的什么位置接受这个刺激。

(例﹕当比较两种颜色时﹐视场的角值不应超过1.5度)

颜色的视觉 (颜色辨认)

颜色是外来的光刺激作用于人的视觉器官而产生的主观感觉。因而物体的颜色不仅取决于物体本身,还与光源、周围环境的颜色,以及观察者的视觉系统有关系。

一般来说可见光谱上的各种颜色随光强度的增加而有所变化(向红色或蓝色变化)。这种颜色随光强度而变化的现象﹐叫做贝楚德-朴尔克效应。但在光谱上黄(527nm)﹑绿(503nm)﹑蓝(478nm)三点基本上不随光强而变。

人眼对波长变化引起的颜色变化的辨认能力(颜色辨认的灵敏阈)﹐在光谱中的不同位置是不同的。人眼刚能辨认的颜色变化就称为颜色辨认的灵敏阈。

最灵敏处为480nm(青)及600nm(橙黄)附近﹔最不灵敏处为540nm(绿)及光谱两端。灵敏处只要波长改变1nm﹐人眼就能感受到颜色的变化﹐而多数要改变1~~2nm才行。

颜色的视觉 (颜色的分类)

颜色可分为彩色和非彩色。

非彩色指白色﹑黑色和各种不同深浅的灰色。

彩色就是指黑白系列以外的各种颜色。

对于理想的完全反射的物体﹐其反射率为100%﹐称它为纯白﹔而对于理想的完全吸收的物体﹐其反射率为零﹐称它为纯黑。

白色﹑黑色﹑和灰色物体对光谱各波段的反射和吸收是没有选择性的﹐称它们为中性色。

对光来说﹐非彩色的黑白变化相当于白光的亮度变化﹐即当白光的亮度非常高时﹐人眼就感觉到是白色的﹔当光的亮度很低时﹐就感觉到发暗或发灰﹐无光时是黑色的。

颜色的视觉 (非彩色的特性)

1)非彩色的特性

可用明度表示﹕明度是指人眼对物体的明亮感觉。

影响的因素:辐射的强度大小(亮度的大小)

一般亮度越大﹐我们感觉物体越明亮﹔但当亮度变化很小﹐人眼不能分辨明度的变化﹐可以说明度没变﹐但不能说亮度没变。因为亮度是有标准的物理单位﹐而明度是人眼的感觉。

人的经验

在同样的亮度情况下﹐我们可能认为暗环境高反射率(例如在较暗环境中的白色书页)明度比亮环境较低反射率(例如在光亮环境中的黑墨)的物体明度高。

彩色的三个特性 (明度)

彩色有三种特性﹕明度﹑色调和饱和度。色调和饱和度又总称为色品(色度)。

明度

是指色彩的明暗程度。每一种颜色在不同强弱的照明光线下都会产生明暗差别,我们知道,物体的各种颜色,必须在光线的照射下,才能显示出来。这是因为物体所呈现的颜色,取决于物体表面对光线中各种色光的吸收和反射性能。前面提到的红布之所以呈现红色,是由于它只反射红光,吸收了红光之外的其余色光。白色的纸之所以呈现白光,是由于它将照射在它表面上的光的全部成分完全反射出来。如果物体表面将光线中各色光等量的吸收或全部吸收,物体的表现将呈现出灰色或黑色。同一物体由于照射在它表面的光的能量不同,反射出的能量也不相同,因此就产生了同一颜色的物体在不同能量光线的照射下呈现出明暗的差别。

白颜料属于高反射率物质,无什么颜色掺入白颜料,可以提高自身的明度。黑颜料属于反射率极低的物质,因此在各种颜色的同一颜色中(黑除外)掺黑越多明度越低。

在摄影中,正确处理色彩的明度很重要,如果只有色别而没有明度的变化,就没有纵深感和节奏感,也就是我们常说的没层次。

彩色的三个特性 (色调)

色调

就是指不同颜色之间质的差别,它们是可见光谱中不同波长的电磁波在视觉上的特有标志。

色彩所具有的最显着特征就是色调,也称色相。它是指各种颜色之间的差别。从表面现象来讲,例如一束平行的白光透过一个三棱镜时,这束白光因折射而被分散成一条彩色的光带,形成这条光带的红、橙、黄、绿、青、蓝、紫等颜色,就是不同的色调。从物理光学的角度上来讲,各种色调是由射入人眼中光线的光谱成分所决定的,色调即色相的形成取决于该光谱成分的波长。

物体的色调由照射光源的光谱和物体本身反射特性或者透射特性决定。例如蓝布在日光照射下,只反射蓝光而吸收其它成分。如果分别在红光,黄光或绿光的照射下,它会呈现黑色。红玻璃在日光照射下,只透射红光,所以是红色。

光源的色调取决于辐射的光谱组成和光谱能量分布及人眼所产生的感觉。

彩色的三个特性 (饱和度)

饱和度

是指构成颜色的纯度也就是彩色的纯洁性﹐色调深浅的程度。它表示颜色中所含彩色成分的比例。彩色比例越大,该色彩的饱和度越高,反之则饱和度越低。从实质上讲,饱和度的程度就是颜色与相同明度有消色的相差程度,所包含消色成分越多,颜色越不饱和。色彩饱和度与被摄物体的表面结构和光线照射情况有着直接的关系。同一颜色的物体,表面光滑的物体比表面粗糙的物体饱和度大;强光下比阴暗的光线下饱和度高。

可见光谱的各种单色光是最饱和的彩色。当光谱色(即单色光)掺入白光成份时﹐其彩色变浅﹐或者说饱和度下降。当掺入的白光成份多到一定限度时﹐在眼睛看来﹐它就不再是一种彩色光而成为白光了﹐或者说饱和度接近于零,白光的饱和度等于零。物体彩色的饱和度决定于其反射率(或透过率)对谱线的选择性﹐选择性越高﹐其饱和度就越高。也就是说物体色调的饱和度决定于该物体表面反射光谱辐射的选择性程度,物体对光谱某一较窄波段的反射率很高,而对其它波长的反射率很低或不反射,表明它有很高的光谱选择性,物体这一颜色的饱和度就高。

不同的色别在视觉上也有不同的饱和度,红色的饱和度最高,绿色的饱和度最低,其余的颜色饱和度适中。在照片中,高饱和度的色彩能使人产生强烈、艳丽亲切的感觉;饱和度低的色彩则易使人感到淡雅中包含着丰富。

颜色的视觉 (颜色的特性)

亮度或明度是光作用于人眼时所引起的明亮程度的感觉,是指色彩明暗深浅的程度,也可称为色阶。亮度有两种特性:同一物体因受光不同会产生明度上的变化;强度相同的不同色光,亮度感不同。

饱和度指色彩纯粹的程度。淡色的饱和度比浓色要低一些;饱和度还和亮度有关,同一色调越亮或越暗越不纯。

色光的基色或原色为红(R)、绿(G)、蓝(B)三色, 也称为光的三基色。三原色以不同的比例相混合,可成为各种色光,但原色却不能由其它色光混合而成。色光的混合是光量的增加,所以三原色相混合而成白光,而两种色光相混合而成白光,这两种色光互为补色。

光的物理性质由它的波长和能量来决定。波长决定了光的颜色,能量决定了光的强度。光映射到我们的眼睛时,波长不同决定了光的色相不同。波长相同能量不同,则决定了色彩明暗的不同。

色调与饱和度合称为色度(Chromaticity),它既说明彩色光的颜色类别,又说明颜色的深浅程度。色度再加上亮度,就能对颜色作完整的说明。

格拉斯曼颜色混合定律

1)人的视觉只能分辨颜色的三种变化﹕

明度﹑色调和饱和度

2)在由两个成份组成的混色中﹐如果一个成份连续变化﹐混合色的外貌也连续变化。由此可导出﹕

补色律

如果两种彩色以适当的比率混合后可以产生白色或灰色﹐称该两种彩色互为补色。如果两者按其它比例混合﹐则产生近似于比重较大的彩色成份的非饱和色。每一种彩色都有一种相应的补色。

中间色律

任何两种非补色相混和﹐便产生中间色﹐其色调决定于两彩色在色调顺序上的远近。

3)外貌相同的光﹐不管它们的光谱组成是否一样﹐( 在视觉效果上相同的光﹐可以是由不同光谱组成的﹐这就是所谓的同色异谱现象 )在颜色混合中具有相同的效果。也就是说﹐凡是视觉上相同的颜色﹐在颜色混合中都是等效的。由此又可导出﹕

颜色代替律如果颜色A=颜色B﹐颜色C=颜色D﹐(式中的“=”表示视觉上的相同)﹐那么就有颜色A+颜色C颜色B=颜色B +颜色D。(式中的“+”表示相加混合) 例如﹕如果 C=A+B 且 B=X+Y 那么就有 C=A+(X+Y) .

4)亮度相加律混合色的总亮度等于组成混合色的各种颜色的亮度的总和。

上述的颜色混合定律不适合用于染料或涂料的混合。

颜色匹配

把两种颜色调节到视觉上相同或相等的方法﹐称为颜色的匹配。通过颜色相加的混合方法﹐改变颜色的明度﹑色调和饱和度三特性。

其中两个相互匹配的颜色,尽管处在不同条件下,两个颜色仍始终保持匹配,即不管颜色周围环境的变化,或者人眼已经对其它颜色光适应后再来观察,视场中两种颜色始终保持匹配。称为颜色匹配恒常律。在一个给定的光源条件下,一对具有不同光波的物体可以产生相同的颜色,这一现象叫做条件配色,这一对物体称为条件配色对.

颜色的混合

颜色的相互混合称为混色。混色分加法混色和减法混色。将几种颜色光同时或快速先后刺激人的视觉器官,便产生不同于原来颜色的新的颜色感觉,这就是颜色相加混合的方法,称为加法混色。

格拉斯曼定律认为,在由两个成分组成的混和色中,如果一个成分连续地变化,混和色的外貌也连续变化。根据颜色的代替律可知,只要在感觉上颜色是相同的,便可以相互代替,所得的视觉效果是相同的,因而可以利用颜色混合的方法来产生或代替所需要的颜色。染料的混合称为减色混合。红、绿、蓝三种颜色染料等量混合之后的颜色为黑色。

Kubelka-Munk的色料混合理论认为:当几种色料混合时,总的吸收与散射为各色料的吸收与散射之和。如果各色料之间不起化学作用,则混合物的吸收系数和散射系数为各色料的吸收系数和散射系数之和。因颜料的吸收作用使光能下降,所以透明颜料的混合遵循减色混合原理。

混色规律

不同颜色混合在一起,能产生新的颜色,这种方法称为混色法。混色分为相加混色和相减混色。相加混色是各分色的光谱成分相加,彩色电视就是利用红、绿、蓝三基色相加产生各种不同的彩色。相减混色中存在光谱成分的相减,在彩色印刷、绘画和电影中就是利用相减混色。它们采用了颜色料,白光照射在颜色料上后,光谱的某些部分使被吸收,而其它部分被反向或透射,从而表现出某种颜色。混合颜料时,每增加一种颜料,都要从白光中减去更多的光谱成分,因此,颜料混合过程称为相减混色。

相加混色的实现方法

为了实现相加混色,除了将三种不同的基色,同时投射到某一全反射面产生相加混色外,还可以利用人眼的某些视觉特性实现相加混色。

1. 时间混色法:将三种不同的基色以足够快的速度轮流投射到某一平面,因为人眼的视觉惰性,分辨不出三种基色,而只能看到它们的混合色。时间混色法是顺序制彩色电视的基础。

2.空间混色法:将三种基色分别投射到同一表面上相邻的三点,只要这些点足够的近,由于人眼分辨力的有限性,不能分辨出这三种基色,而只能感觉到它们的混合色。空间事法是同时制彩色电视的基础。

3.生理混色法:当两只眼睛同时分别观看不同的颜色,也会产生混色效应。例如,两只眼睛分别戴上红、绿滤波眼镜,当两眼分别单独观看时,只能看到红光或绿光;当两眼同时观看时,正好是黄色,这就是生理混色法。

颜色匹配 (转盘匹配)

利用转盘进行颜色混合﹐实现颜色匹配。如右图(a)所示﹐假定所选定的三原色为红(R)﹑绿(G)﹑蓝(B),它们各自的量以扇形面积表示﹐被匹配的颜色(C)放在转盘的中心﹐当转盘转动时﹐R﹑G﹑B先后刺激人眼产生混合色的效果。改变R﹑G﹑B的比例﹐直到与C匹配为止。黑色扇形(图中加阴影部分)的加入﹐是用以调节混合色的明度﹐使其与C的明度一致。以便获得匹配的最好效果。当C

很饱和时﹐用图(a)的办法有可能不能实现匹配﹐此时可将三原色之一(例如B)加在被匹配的颜色C上﹐如图(b)所示。

(a)图可以看做是相加混色法中的时间混色法﹐利用人眼的视觉暂留现象﹐在足够快的旋转中﹐使人眼分辨不出三种基色,而只能看到它们的混合色。

遥为匹配某一特定颜色所需三原色的数量称为三刺激值。

颜色匹配 (白色屏幕匹配)

用三原色光照明白色屏幕的同一位置﹐光线经过屏幕的反射而达到混合。改变三色光的比例﹐即可实现匹配。如右图所示﹐被匹配的颜色C加在屏幕的另一侧。匹配后﹐视场中S及F两部分的视觉外貌相同。

颜色匹配 (视觉邻近匹配)

颜色匹配 (视觉邻近匹配)

不同的颜色刺激同时作用到视网膜非常邻近的部位﹐也可产生颜色混合现象。这就要求三色光在物面上要靠的足够近。彩色显象管就是基于此原理而实现颜色混合的。

在上述的三种颜色匹配方法中﹐第二种白色屏幕匹配的颜色混合是在外界发生的﹐而其它两种﹐颜色的混合是通过视觉器官实现的。

总结前面提到的颜色匹配的方法﹕

1)颜色的混合是在外界发生的。

2)颜色的混合是通过视觉器官实现的。

色对比和色适应

在视场中,相邻区域的不同颜色的相互影响叫做色对比。它包括有明度对比、色调对比、彩度对比。一般的颜色对比是这三种对比的综合结果。对比的结果是增强了相邻颜色间的差异。人眼对某一色光适应后,观察另一物体的颜色时,不能立即获得客观的颜色印象,而带有原适应色光的补色成份,需经过一段时间适应后才获得客观的颜色感觉,这个过程称作色适应的过程,这种现象称作色适应。

黑体

任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。

通常的光源如太阳,日光灯,白炽灯等发出的光统称为白光.但由于发光物质不一样,光谱成份相差也很大.如何区别各种光源因光谱成份不同而出现的差别呢?为此物理学中用一个称为黑体的辐射源作为标准,这个黑体是一种理想的热辐射体,它的辐射程度只与它的温度有关.

所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。

基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。

色温

当用其它光源和黑体辐射作比较时,察看它的辐射与黑体何种温度时的辐射特性相当(即它们的光谱成份相同),就以黑体此时的温度(绝对温度)称为某光源的色温.在实际使用中,这常是用光源中的蓝色光谱成份和红色光谱成份的比例来区别,光源色温的高低一般是蓝色成份高时色温较高;红色成份高时色温较低.

色温:光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。

相关色温:当光源的光谱只能与黑体某一温度下的光谱相近似,而不能精确等效时,则称这一温度为光源的相关色温。

由于黑体这个温度与颜色有关,故名色温注意,光源的色温与光源本身的温度是两回事,通常两者是不相同的。例如白炽灯光源本身温度为2800K,但其色温是2845K。

维恩(Wien)位移定律指出:当绝对黑体的温度增高时,最大的发射本领向短波方向移动(见图2.1-1),所以色温较高的光源,其发出的辐射能较多地分布在波长较短的绿光和蓝光之中;而色温较低的光源,其辐射能较多地分布在波长较长的红光中。因此,在标准白光中,色温较低者,偏红;色温较高时,偏蓝。

电磁波谱

在电磁波辐射范围内,只有波长380nm到780nm(1nm=10*-6mm)的辐射能引起人们的视感觉,这段光波叫做可见光。

颜色的波谱

光色波长λ(nm) 代表波长

红(Red) 780~630 700

橙(Orange) 630~600 620

黄(Yellow) 600~570 580

绿(Green) 570~500 550

青(Cyan) 500~470 500

蓝(Blue) 470~420 470

紫(Violet) 420~380 420

标准照明体

1) 标准照明体A 代表绝对温度大约为2856K完全辐射体(黑体)的光。

2) 标准照明体B 代表相关色温大约为4874K的直射日光﹐它的光色相当于中午阳光。

3) 标准照明体C 代表相关色温大约为6774K的平均日光﹐它的光色近似阴天天空的日光。

4) 标准照明体D65 代表相关色温大约为6504K的日光。

5)其它D照明体代表标准照明体D65 以外的其它日光﹐如D55﹑D75。D55代表相关色温为5503K的典型日光﹐常用于摄影。 D75代表相关色温为7504K的典型日光﹐用于高色温光源下进行精细辨色的场合。

上述照明体﹐B和C不理想﹐因而用照明体D代表日光。在应用中﹐推荐A 和D65作为普遍应用的标准照明体。

标准光源

为了较为准确和规范地描述色调,CIE(国际照明委员会)制定了4种标准光源,以统一色调值。这4种标准光源的名称见下表,在这4种标准光源中,常用的C光源和D65光源,我国以D65为标准光源。

1) 标准光源A 色温2856K的充气钨丝灯。

2) 标准光源B A光源加一组特定的戴维斯-吉伯逊液体滤光器﹐以产生相关色温4874K的辐射。

3) 标准光源C A光源加另一组特定的戴维斯-吉伯逊液体滤光器﹐以产生相关色温6774K的辐射。

标准照明体D ﹐CIE尚未推荐出相应的标准光源。

我国以D65为标准光源。

关于颜色视觉理论

现代颜色视觉理论主要有两大类:一是杨-赫姆霍尔兹的三色学说,二是赫林的“对立”颜色学说。前者从颜色混合的物理规律出发,后者从视学现象出发,两者都能解释大量现象,但是各有欠缺之处。例如:三色学说是最大优越性是能充分说明各种颜色的混合现象,但最大的因难是不能满意地解释色盲现象。对立学说对于色盲现象能够得到满意的解释,但是最大的困难是对三基色能产生所有颜色这一现象没有充分的说明,而这一物理现象正是近代色度学的基础,一直有效地指导着电视技术的发展,彩色电视技术的发展,彩色电视技术中是依靠三色学说作为理论基础的。

在1971年后阶段学说逐渐的取而代之,其认为有三种色彩的接收器,在接受到光线刺激时,将来自不同波长的刺激透过神经细胞传送电子讯号给大脑。而大脑的则将送进来的讯号依对立色彩学说的原则进行处理而反应成你所认知的色彩。也就是说眼睛视网膜底部的色彩接受端会对三原色的波长(R.G.B)产生反应,并且产生神经电子讯号送往大脑进行判读。而大脑会将所得到的讯号转换为红,绿,黄,蓝四色(C.M.Y.K.)并组合成影像。

光和色的基本知识

【课题】 第一章 光和色的基本知识 第一节 光的基本性质 第二节 色度学的基本知识 新授课 【教学目标】 1.知识目标:了解光的特性,明确可见光的概念,了解五种主要标准光源;理解彩色三要素和三基色原理,掌握亮度方程。 2.能力目标:能运用所学知识解答与彩电相关的光学问题,为以后学习彩电原理打下理论基础。 3.情感目标:激发学生浓厚的学习兴趣,培养学生严谨的科学态度。 【教学重点】三基色原理、亮度方程。 【教学难点】对三基色原理的理解。 【教学方法】读书指导法、分析法、演示法、练习法。 【课时安排】2课时(90分钟)。 【教学过程】 〖导入〗(1分钟) 在彩电技术中涉及到许多光学知识,如可见光的颜色、配色实验、三基色原理以及亮度方程等,当我们学好这些光学知识后,就为以后学习彩电原理与维修技术打下了一定的理论基础。 〖新课〗 第一节 光的特性与光源 一、光的特性 光是一种客观存在的物质,兼有波动性和粒子性,并以电磁波的形式传播。电磁波谱如图所示。其中只有人们眼睛可看到的那一小部分叫做光、准确的叫可见光。 二、可见光谱与白光源 不同波长的光波所呈现的颜色各不相同,随着波长的缩短和频率的升高,依次为:红、橙、黄、绿、青、蓝、紫。 只含有单一波长成分的光称为单色光或谱色光。 读书指导法、分析法、演示。

包含有两种或两种以上波长的光称为复合光。 1.白光的分解 白光可以被分解为单色光,称为白光的分解。 在实验室中也可以进行白光的分解(作三棱镜分光演示实验,引导学生观察分解出的红、橙、黄、绿、青、蓝、紫七种不同波长的彩色光,如图所示。)。 在这中间还有许多中间色。 2.标准光源 按国际规定选用如下五种主要标准光源(即标准白光),它们的光谱分布如图所示。 (1)A光源 它相当于钨丝灯在2 800 K时发出的光。其波谱能量分布如图中曲线A所示,它的灯光常带橙红色,不如太阳光白,A光源的相关色温为2 854 K。 (2)B光源 它接近于中午直射的阳光,相关色温为4 800 K,可以用特制的滤色镜从A光源获得。 (3)C光源 它相当于白天的自然光,相关色温为6 800 K,也可以用特制的滤色镜从A光源获得。由图中的曲线C可以看出,其波谱能量在400 ~500 nm处较大,所含蓝光成分多。 (4)D65光源 它相当于白天的平均照明光,相关色温为6 500 K,被作为彩色电视中的标准白光,可以由彩色显像管荧光屏上的三种荧光粉发出的光适当配合而获得,相应光谱分布如图中的虚线D6500所示,它与C光源很接近。 (5)E光源 E),光谱分布为一条直线,即所有波长的光都具有相等它是一种假想的等能白光( 白 辐射功率时所形成的白光,这实际上是不可能的。采用它纯粹是为了进行理论研究和简化色度学的计算。 第二节色度学的基本知识 一、彩色三要素

光学基础之色度——三原色及CIE标准色度系统知识介绍

1.5 色度 色度学中所应用的方法和工具,都是以目视颜色匹配定律和国际上一致采用的标准为基础的。国际照明委员会(CIE ),通过其色度学委员会,推荐了色度学方法和基本的标准。 1.5.2 三原色 三原色:(红R 、绿G 、兰B )或(品红、绿、兰) 三原色不能由其他色混合得到,三原色的波长如下: 红:700nm ,绿:546.1nm ,兰:435.8nm 由RGB 构成白光,得亮度比为L R =L G :L B =1:4.5907:0.0601 Lm/(s r ·m 2 ) 色度坐标和色品坐标 三原色坐标:R ,G ,B ,是三维色度坐标。 色品坐标(归一化坐标):r=R R+G+B , g= G R+G+B ,b= B R+G+B , 并有 r+g+b=1 光谱三刺激值(色匹配函数) )(λr ,)(λg ,)(λb 代表匹配一种颜色,需要R 、G 、B 的比例。即取 )(λc = B b G g R r )()()(λλλ++, 就可以匹配出所要求的)(λc 颜色.并且)(λr ,)(λg ,)(λb 是有表可查的,其规律可参见图1.5-1。 图1.5-1 色匹配函数

(6)色度图及色品图 三原色坐标见图1.5-2a,色品坐标见图1.5-2b,实际色谱的色品则示于图1.5-2c 中。由图1.5-2c 可见,三原色系统的色品图中有很大部分出现负值,使用很不方便,为此,国际照明委员会建立了CIE 标准色度系统,解决了这一问题。 图1.5-2 色度及色品图 1.5.4 CIE 标准色度系统 设立标准光源和标准观察者,建立假想色度坐标 ),,(Z Y X ,归一化坐标),,(z y x 和色匹配函数),,(z y x ,以此来建立CIE 标准色度系统。 1) CIE1931标准色度系统 这一色度系统是在观测视场为2°的情况下制订出来的。 (1)标准色度坐标的变换 CIE1931标准色度系统的变换关系为: []???? ????????????????=????????????????????=??????????B G R B G R Z Y X 5943.50565.000601.05907.40002.11302.17517.17689.299.001.000106.08124.01770.02.03100.04900.06508.5 及

CIE基本色度学分析与计算

高工LED技术中心发布时间:2009-08-04 16:07:39设置字体:大中小 色度学是门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。彩色视觉是人眼的种明视觉。彩色光的基本参数有:明亮度、色调和饱和度。明亮度是光作用于人眼时引起的明亮程度的感觉。一般来说,彩色光能量大则显得亮,反之则暗。色调反映颜色的类别,如红色、绿色、蓝色等。彩色物体的色调决定于在光照明下所反射光的光谱成分。例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占有优势,而其它成分被吸收掉了。对于透射光,其色调则由透射光的波长分布或光谱所决定。饱和度是指彩色光所呈现颜色的深浅或纯洁程度。对于同一色调的彩色光,其饱和度越高,颜色就越深,或越纯;而饱和度越小,颜色就越浅,或纯度越低。高饱和度的彩色光可因掺入白光而降低纯度或变浅,变成低饱和度的色光。因而饱和度是色光纯度的反映。100%饱和度的色光就代表完全没有混入白光阴纯色光。色调与饱和度又合称为色度,它即说明彩色光的颜色类别,又说明颜色的深浅程度。 应强调指出,虽然不同波长的色光会引起不同的彩色感觉,但相同的彩色感觉却可来自不同的光谱成分组合。例如,适当比例的红光和绿光混合后,可产生与单色黄光相同的彩色视觉效果。事实上,自然界中所有彩色都可以由三种基本彩色混合而成,这就是三基色原理。 基于以上事实,有人提出了一种假设,认为视网膜上的视锥细胞有三种类型,即红视谁细胞、绿视锥细胞和蓝视锥细胞。黄光既能激励红视锥细胞,又能激励绿视锥细胞。由此可推论,当红光和绿光同时到达视网膜时,这两种视锥细胞同时受到激励,所造成的视觉效果与单色黄光没有区别。 三基色是这样的三种颜色,它们相互独立,其中任一色均不能由其它二色混合产生。它们又是完备的,即所有其它颜色都可以由三基色按不同的比例组合而得到。有两种基色系统,一种是加色系统,其基色是红、绿、蓝;另一种是减色系统,其三基色是黄、青、紫(或品红)。不同比例的三基色光相加得到彩色称为相加混色,其规律为: 红+绿=黄 红+蓝=紫 蓝+绿=青

色度学基础知识

---------------------------------------------------------------------------------------------------------------------------------------- 色度学基础知识 一、 概述 色度学是研究人的颜色视觉规律、颜色测量的理论与技术的科学, 是以物理光学、 视觉生理、视觉心理、心理物理等学科领域为基础的综合性科学。 在现代工业和科学技术发展中, 存在着大量有关色度学的问题, 颜色与人民生活 的衣食住行密切相关。颜色的测量和控制在一些工农业生产中极为重要, 在许多部门颜 色是评定产品质量的重要指标, 如染料、涂料、纺织印染、 塑料建材、医学试剂、食品 饮料、灯光信号、造纸印刷、电影电视、军事伪装等等, 这一切都是由于颜色科学的建 立, 才使色度工作者能以统一的标准, 对颜色作定量的描述和控制。 在纺织印染、染料和涂料等行业天天与颜色打交道, 过去全凭目测评定, 评定结 果无法记述, 储存。 并受观察者的身体状况、情绪、年龄等影响很大。 随着电子技术 和计算机技术的迅速发展, 测色仪器的测色准确性、重演性和自动化程度大大提高。现 在又有在线检测对提高产品质量, 减少不合格品率更为有用。 为此测色技术在各行各业 日益得到广泛应用。 色彩的感觉是一个错综复杂的过程, 单从物理观点来考虑, 色彩的产生有三个 主要因素: 光源,被照射的物体和观察者。 二.、 光和颜色 1、 光源 光由光源体发出, 太阳光是我们最主要的光源。光辐射是一种电磁辐射波, 包括 无线电波、紫外光、红外光、可见光、X 射线和γ射线等。 我们人类所能见到的光只是电磁波中极小的一部分,其波长范围是380--700nm (纳 米)称为可见光谱。 在可见光谱范围内, 不同波长的辐射引起人的不同颜色感觉: 700nm 为红色, 580nm 为黄色, 510nm 为绿色, 470nm 为蓝色。单一波长的光表现为一种颜色, 称为 单色光。 物体在不同光源照射下会呈现不同的颜色, 为此国际照明委员会(CIE )规定了如 下

颜色基础知识

颜色基础知识 随着涂料行业的发展以及人民生活的提高,颜色问题日益引起市场的重视。颜色感觉与听觉、闻觉、味觉等都是外界刺激人的感觉器官而产生的感觉。光照射物体经反射或透射后刺激人眼,人眼产生了此物体的光亮度和颜色的感觉信息,并将此信息传至大脑中枢,在大脑中将感觉信息进行处理、形成了色知觉。 外界光刺激-色知觉-色感觉是一个复杂的过程,它涉及光学、光化学、视觉生理、视觉心理等方面问题,从这个过程可以看出,颜色和光及人眼的观察生理,心理基础有着密切的联系,目前通过大量实验为基础已建立了一套定性、定量描述颜色的理论,称为色度学。 第一节、光与颜色 一、 可见光波与颜色 光是一种一定频率的电磁辐射。电磁辐射的范围从r射线到无线电波,电磁辐射中仅有一小段能够引起眼睛的兴奋而被感觉,这就是通常所说的可见光谱的范围,可见光谱的波长从380nm到 780nm,这一段波长人眼是可以看见的,不同的波长引起不同的颜色感觉。 光谱颜色波长及范围 颜色 波长(nm) 范围(nm) 红 700 640-780 橙 620 600-640 黄 580 550-600 绿 510 480-550

兰 470 450-480 紫 420 380-450 表中波长的范围只是粗略的,实际上从一种颜色过度到另一种颜色是一种渐变的,并且颜色随波长的变化也是不均匀的。 太阳光是一种强光,人们感觉太阳光是白色的,但事实上我们让一束太阳光通过三棱镜辐射到一幅白幕上,就会展现出一条具有各种颜色(红、橙、黄、绿、青、蓝、紫)的光带,通常进入我们的眼睛的光线很少是纯粹的单色光,只有在实验室中,利用单色仪才能观察到单色光,在日常生活中,一般是各种波长的光线一起进入我们的眼睛的,是一种混合光,混和光随着各种波长光能量的比例不同而呈现不同的颜色,短波的光能量较大时呈现蓝紫 色,长波的光能量较大时呈现红色等。 二、 自然界物体的颜色 1、自然界物体的颜色千变万化,我们所以能看见物体的颜色,是由于发光体的光线照射在物体上,光的辐射能量作用于视觉器官的结果。物体的颜色一般分为表面色和光源色,表面色即不发光物体的颜色。不发光物体的颜色只有受到光线的照射时才被呈现出来,物体的颜色是由光线在物体被反射和吸收的情况决定的,它受光源条件的影响。 绿色物体在日光下看是绿色,是由于将日光中绿色范围的波长反射出来,而光谱的其他成分则被它吸收了,当这个绿色的物体放在红光下看就变成黑色了,这是由于红光中无绿色的成分被它反射。

色度学知识大全

颜色 苹果是红的,柠檬是黄的,天是蓝的,这就是我们大家以日常用语对颜色的判断。我们用色调这一术语在色彩世界里把颜色区分为红、黄、蓝等类别。还有,虽然黄和红是两种截然不同的色调,但是把黄和红混合在一起就产生了橙色(有时称之为黄-红):混合黄和绿产生黄-绿;混合蓝和绿则产生蓝-绿,等等。把这些色调衔接排列,就形成如图1所示的色环。 当比较各种颜色的亮度(颜色的明亮程度如何)时,颜色就有明亮和深暗之分。例如,将柠檬的黄色和葡萄柚的黄色来说,毫无疑问,柠檬的黄色就比较明亮。把柠檬的黄色和欧洲甜樱桃的红色相比,显然,也是柠檬黄比较明亮。可见,颜色亮度的测量与色

调无关。现在,让我们来看一看图2。图2是图1沿A(绿)B(紫红)直线切开的剖面图。可以看出,亮度沿垂直方向变化,越往上去,色彩越明亮,越往下去,则越深暗。 再来说说黄色。柠檬的黄色和梨的黄色相比较又如何?你可能会说柠檬的黄色更明亮一些,但除此以外还有一个大的差别就是柠檬的黄色显得鲜艳,而梨的颜色则显得阴晦。这种差别称之为色饱和度或鲜艳度。从图2可以看出,紫红和绿两色的饱和度分别由中心向两侧随水平距离的增加而变化。离中心越近,色彩越阴晦;离中心越远,则越鲜艳。图3标出了一些常用的描述色彩亮度和色饱和度的形容词。至于这些形容词表达了什么,请再看一下图2。

能把色调、亮度、色饱和度的关系以直观的方式来表达得清清楚楚。

色彩和光的知识 测量仪器

如果我们测量苹果的颜色,我们得到下列结果:

过去已有好几个人想出多种方法,常常是通过复杂的公式用数量来表示颜色,其目的是使每个人能够更容易地和更准确地做色彩信息交流。这些方法试图提出一种用数字来表示颜色的方法,就好象我们表示长度和重量一样。例如在1905年,美国画家A.H.孟塞尔发明一种表示颜色的方法,这种方法利用大量按照颜色的色调(孟塞尔色调)、亮度(孟塞尔值)和色饱和度(孟塞尔饱和度)分类的色纸片,用来和样品色作目视比较。后来,经过许多进一步实验,该系统经过更新,创立了孟塞尔新表色系统,也就是现在在用的孟塞尔系统。在该系统中,任何给定的颜色按照它的色调(H),亮度值(V)和饱和度(C),表示为一个字母/数字组合(HV/C),并利用孟塞尔色卡作目视测定。其他用数字表示颜色的系统是由国际照明委员会(CIE)研究出来的。其中最为著名的两种系统为Yxy系统和L*a*b*系统。前者是于1931年根据CIE规定的三刺激值XYZ发明出来的,后者是由1976年发明的,以给出更为均匀的相对于视差的色差。这两种色空间*已在全世界用于色彩交流。 *色空间:这是一种用某种符号(例如数字)来表示某物体或某种光源颜色的方法。

色度学的基本知识

色度学的基本知识 色度学是研究人的颜色视觉规律,颜色测量理论与技术的科学,是物理光学,视觉生理,视觉心理等科学为基础的综合性科学。彩色电视技术中的色度学是研究自然界景物的颜色,如何在彩色电视系统中分解,传输,并在彩色电视机屏幕上正确的复显出来。名词解释: 同色异谱:也就是说一定的光谱分布表现为一定的颜色,但同一种颜色可以有不同的光谱分布合成。彩色电视机的颜色复显技术正是利用同色异谱概念,在颜色复显过程中,不是重复原来景物的光谱分布,而是利用几种规格化的光源进行配制。以求在色感上得到等效效果。如在彩电的复显中用的是R,G,B三基色光谱(因为R,G,B三基色可以混合出自然界中绝大多数颜色)的合成来复显原来景物的颜色。 绝对黑体:是指在辐射作用下既不反射也不透射,而能把落在它上面的辐射全部吸收的物体。当绝对黑体被加热时,就会发射一定的光谱,这些光谱表现为特定的颜色。 色温:当绝对黑体发射出与某一光源相同特性的光时,绝对黑体所必须保持的温度,便叫某光源的“色温”。 1931CIE-XYZ计色系统 现代色度学采用CIE(国际照明委员会)所规定的一套色测量原理,数据和计算方法,称为CIE标准色度学系统。 白色可分为好多种,有偏红的白色(暖白色),偏蓝的白色(冷白色)等。在彩色电视系统中,为了分解,重现彩色图象,通常也要选择一种白色作为分解,重现颜色的基准白。为了清楚的描述不同的白色,通常把1931CIE-XYZ图中把白色用色度坐标(x,y)来表示,也可以用相关色温和最小分辨的颜色差来表示。图中斜竖线称为布朗克轨迹等色温线,与其垂直的斜线称为最小可分辨的颜色差(Minimum Perceptible Colour Difference,简称MPCD),MPCD为零的斜竖线称为黑体(Black body)轨迹,又称布朗克轨迹。布朗克轨迹上各点呈现的白色代表了绝对黑体在不同绝对温度下呈现的白色

色度学原理基础

利用计算机模拟分色摄影浅析 作者:辽宁省辽阳市公安局刑侦支队岑鹏侯泽山 引言 新刑事诉讼法中明确了视听资料作为七种诉讼证据之一,其中可视性资料多是通过照片的形式表现出来的。这就意味着,刑事照相将作为重要的取证手段和举证方式,越来越多地运用在办案和诉讼活动中。 在刑事办案过程中,分色摄影是经常使用的一种技术方法。分色摄影是指利用滤色镜进行的可见光摄影,它是通过减弱或消除某种(些)色光来突出另一种(些)色光,进而达到增强或减弱反差的目的。主要应用于对尸体面部及其他部位尸斑的拍照,拍摄显现手印,拍摄涂抹、掩盖的字迹等。但是传统的分色摄影过程比较繁琐费时,比如滤色镜的选择、暴光量的补偿等。有时还需要试拍以确定分色效果。对于一些彩色录像资料和彩色图片再进行分色照相会更加困难。 计算机的运用为分色技术增添了新的活力,对于彩色图片的分色处理计算机更灵活更方便。只要用数字化相机拍摄一张彩色照片,然后将它输入计算机,应用有关图像处理软件如Photoshop、Photostyler等,就可以在计算机显示器上进行分色处理,而且能按办案需要迅速获得理想的分色效果。

1原理部分 1.1色度学原理基础 1.1.1色匹配法 彩色视觉的三色理论基础是任意一种颜色可以用三种适当数量的基色配得。在加色还原系统中,例如彩色电视,三基色是红、绿、蓝光。将这三种基色光投映到共同的空域中可以配得某种色光。减色还原系统是大多数彩色摄影和彩色印刷技术的基础。在这种系统中是让白光依次通过黄、品红和青滤光片,滤出某种色光。 1.2分色摄影及滤光片的工作原理 1.2.1分色摄影原理 分色摄影是通过选择和控制光的光谱成份来控制被摄体影像的亮度分布的一种摄影方法。通过选择色光,可以改变被摄物体的亮度分布,从而可以加强或减弱被摄物体颜色之间的差别,获得在白光下无法区别的影像细节及反差。 1.2.2滤色镜的工作原理 所谓滤光片,就是一种能按照规定的需要来改变入射光的光谱强度分布的光学器件。在大多数的滤光片里均伴随着衰减,滤光片本身就是造成这种衰减的主要物理因素。 滤光片在刑事摄影中的作用是:它对某些色光具有通过的能力和对某些色光具有阻止通过的能力。一般来说,滤光片是什么颜色,它就通过这种颜色组分的色光。从滤光片的通过和吸收情况来看,使用全色片拍摄时,滤光片的作用是减感和增感。“减感”就是加用某滤光片后,感光片感受色光的范围变窄了。而“增感”就是加用滤光片后某些色光相对增加了。 1.3计算机分色的理论依据

色度学基本概念

色度學基本概念 5-1色覺的三種屬性(attribute) 光波進入人眼睛到達視網膜上時,引起的色覺具有三種屬性,即「色彩」、「飽和度」及「亮度」。 色彩(hue) 引起視覺的色光,可能是由數種波長的光波混合而成,但正常人眼均能感受出它最接近缸、橙、黃、綠、藍、紫等純光譜色中的那一種,這種屬性稱為「色彩」;而最接近的光譜色,一般也稱之為色光的「色彩」。太陽光譜中各色光的色彩,可以用其波長表示。因此單一波長的光,就稱為「單色光」。黑色與白色都沒有色彩,介於黑與白中間的灰色,也不具有色彩,或者說它們的色彩未定。 飽和度(saturation) 色彩與飽和度合稱為「色品」。「飽和度」指的是顏色偏離灰色、接近純光譜色的程度。黑、白、灰色的飽和度最低(0%),而純光譜色的飽和度最高(100%)。純光譜色與白光混合,可以產生各種混合色光,其中純光譜色所占的百分比,就是該色光的飽和度。 亮度(brightness) 「亮度」指的是光所產生的亮暗感覺。就白、黑、灰色而言,白色最亮,黑色則最不亮,灰色則居中。如果由明而暗,製作一系列代表不同等級亮度(稱為灰階)的灰色方塊(如下圖),則一有色方塊(下圖第二列為黃色)的亮度,可以在同一白光照射下,忽略其色彩與飽和度屬性,藉由視覺比較,找出亮暗感覺相近的灰色方塊,而以該灰色方塊的亮度為其亮度。 5-2色度學(colorimetry) (1)Luminous flux 光通量(與亮度對應) (2)Dominant wave length 主波長(與色彩對應) (3)Purity 純度(與飽和度對應)

(2)+(3)=chromaticity (色度) 一瓦特的任何色光,均可由任意選定的三種不同色彩(如紅、綠〃藍)的色光,以一定比例的光通量(R、G、B)混合,而引發相同的色覺: (R,G,B)3C V(λ)[lm/W/]=R+G+B R,G,B可能為負(負值表示是與待測定的色光混合)。以下為各單色光的R、G、B 值。

色度学的基本知识

色度学 色度学与物理光学等学科的基础不同, 物理光学可以认为是客观的科学, 是与人类无关的。而色度学却是一种主观的科学, 它以人类的平均感觉为基础, 因此它属于人类工程学范畴, 以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。 色度学确切的讲它是研究人眼对颜色感觉规律的一门科学。以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。辐射能量很大的波长很长的红光对人来说却没有辐射能量很小的黄光亮, 人们就认为黄光的强度比红光大。 在人们眼中所反映出的颜色,不单取决于物体本身的特性,而且还与照明光源的光谱成分有着直接的关系。所以说在人们眼中反映出的颜色是物体本身的自然属性与照明条件的综合效果。我们用色度学来评价的结论就是这种综合效果。 色度学是研究人的颜色视觉规律、颜色测量理论与技术的科学,它是一门本世纪发展起来的,以物理光学、视觉生理、视觉心理、心理物理等学科为基础的综合性科学。 每个人的视觉并不是完全一样的。在正常视觉的群体中间,也有一定的差别。目前在色度学上为国际所引用的数据,是由在许多正常视党人群中观测得来的数据而得出的平均结果。就技术应用理论上来说,已具备足够的代表性和可靠的准确性。 国际照明委员会(CIE) 国际照明委员会(Commission Internationale ed I'Eclairage-CIE) 主要研究照明的专业术语、光度学和色度学的国际学术研究机构。设在巴黎。早在1924年前就已从事标准色度学系统的研究,1931年根据莱特(W.D.Wright)在1928-1929年和吉尔德(J. Guild)在1931年研究三原色的角度观察效果,加以平均,规定了CIE 1931标准色度观察者光谱三刺激值,并据以绘制出偏马蹄形曲线的*色度图,称为“1931 CEL-RGB系统色度图”,后经修改被推荐为1931 CIE-XYZ系统,为国际通用色度学系统,称为“CIE标准色度学系统”,所作的图则称“CIE 1931色度图”。1964年又综合斯泰尔斯(W.S. Stiles)和伯奇(J.M.Bruch)以及斯伯林斯卡娅(N.I.Speranskaya)1959年发表的研究结果,制定了CIE1964补充色度学系统以及相应的色度图,为世界各国广泛采用,据以进行色度计算和色差计算。1964年又提出了“均匀颜色空间”的三维空间概念,1976年加以修订,并正式被采用。CIE为此还提出了确定的参照光源,称“CIE 标准光源”。 眼睛的剖视结构 ▲虹膜(Iris):

色度学基础

第一节色度学基础 色度学与人类工程学 色度学与物理光学等学科的基础不同, 物理光学可以认为是客观的科学, 是与人类无关的。而色度学却是一种主观的科学, 它以人类的平均感觉为基础, 因此它属于人类工程学范畴, 以对光强的度量来说, 物理光学以光的辐射能量这个客观单位来度量, 而色度学却以色光对人眼的刺激强度来度量。辐射能量很大的波长很长的红光对人来说却没有辐射能量很小的黄光亮, 人们就认为黄光的强度比红光大。色度学既然是建立在人眼的反应基础上, 对于别的动物就不适用了。好在人类的不同人种之间对光的感受没有太大的区别, 因此色度学是和人种无关的。 绝对亮度( Lv) 的定义是: ( 坎德拉/ 平米) 其中θ 是发光表面法线与给定方向夹角的余弦。由于多数情况下是垂直于发光表面观察的, 所以亮度可理解为单位面积的发光强度( di 为微发光强度, ds 为微发光面元) 。 1 坎德拉的发光强度是频率为540×1012赫兹的光源在每球面度中强度为1/683 瓦的光辐射。由此可见, 亮度与电磁波的辐射强度这个物理量成正比。又由于人眼的感色性的关系, 又与光的波长密切相关。 由于人眼在不同的亮度环境下会自动调节瞳孔的大小, 使进入眼睛的光强总在一个亮度范围之内。因此除了在超出人眼调节范围之外的极暗或极亮的环境之外, 使用相对亮度来表述图像或图片更为方便。例如, 尽管电视屏幕的白场、灯光下的白纸和阳光下的白纸的亮度很不一样, 但都将其定义为100% 的相对亮度。考虑到在电子出版领域的应用, 后面使用亮度这个术语时, 都是表示相对亮度。 亮度和明度 物体的亮度在计算机内都要以整数的方式表示, 例如最亮的为100, 最暗的就是0, 中间还有许多过渡亮度。为了计算方便, 计算机内通常都以 2 的多少次方来表示一个亮度范围。例如0~31、0~63、0~127、0~255。现在最常用的是0~255, 即256 级亮度, 但其他几种方式也常使用; 例如有许多彩色显示卡的32K 色显示方式, 它的亮度等级就是0~31, 共32 级。 由于亮度成了不连续的过渡, 就很有可能使人查觉出亮度的跳跃。32 级亮度就很容易查觉出跳跃, 256 级亮度则很难查觉出跳跃。如果将32 级亮度的灰色块连续显示在屏幕上, 会发现较暗的部分跳跃比较厉害, 较亮的部分则显得连续得多。这个现象很早就被人们发现了。测试人员用一组深浅不同的灰卡, 让被测试者选一张介于最深和最浅之间的灰卡, 结果大多数人选出的灰卡亮度只有18%! 继续这种测试, 在黑色和中间灰之中、中间灰和白色之中……, 直到人们无法区分两种灰卡的深浅为止。将选出的灰卡按由深到浅的顺序排好, 再实测它们的亮度, 发现它的编号(L) 与亮度(Y) 的关系为: L=116( Y )1/3 -16 100 其中L=0~100, Y=0~100。此近似关系经CIE( 国际照明工程师协会) 组织规范化为以上的明度公式。明度是一种心理亮度的度量单位, 同样一幅照片, 如果用32 级等差明度来表示质量要比32 级等差亮度好得多。要达到同等表现质量, 用亮度表示要比用明度多用150% 以上的数据量, 即255 级亮度约只相当于100 级的明度, 在实际使用中, 如果用明

光与色的基本知识

引言 为了普及和加强整个染色部门理论培训,特编写本教材。 本教材内容包括染色部LAB—DIP 基本程序、纤维知识、光与色的知识、测色仪原理、活性染料染色理论、助剂、工艺、后整、常见中英文对照等。这些内容,从理论与实践两个方面,阐述了现用染料染色工艺,有较强的指导作用。 染色是一个历史悠久的行业,要求每个染色工作者必须具有较高的专业技能,希望各位同事能学习扎实理论知识,付之实践,不断完善。为我部,乃至整个公司,整个染整事业贡献自己的力量。 第一章 LAB—DIP 基本程序 1 .接样:接到客户来样后,了解客户要求、交样时间、样版总数,有困难及时向主管 反映。 2 .选择材料:根据“打样要求单”明确开纱样、布样,或其它种类的织物。 3 .选择光源:根据不同的客户选择不同的标准光源(见《对色光源表》) 4. 选择染料:根据色样选择染料组合时,考虑各方面因素的主次顺序是: 客户色牢度要求→车间生产的难易→同光异谱→价格 4.1 客户色牢度方面:要参照各染料单色的色牢度资料,选择染料,满足客户对日晒、 湿摩擦牢度、水洗牢度的要求。 4.2 同光异谱方面:对使用两个以上光源对色的客户,要选择同光异谱最小的组合, 若有问题要及时通知主管。 4.3 价格方面: 4.3.1若来样面积足够大即超过对色仪最小孔(直径6.6MM),可用电脑对色仪开配方, 参考配方的价格。 4.3.2 若来样面积不够大,要用化验室现有资料和单色色谱开配方,查找“YK

Dyestuffs Price and StockList”上的价格,确保价格经济原则。 4.3.3 以上两种方法开配方均以达到相近质量、价格经济为原则。 4.4 车间生产方面:选择染料参考车间染料组合生产情况,选择上染性能一致染料组合。对于车间工艺还不成熟的染料组合,先送车间技术组确认并从工艺上准备。 5. 开方 5.1 在客户样版上的色号上方做记号“√”表示已开配方。 5.2 填写配方卡: 5.2.1将通过DATACOLOR 或资料选定的配方,以及客户、纱支、布类、色号等资料分别填入“配方卡”。 5.2.2 填入元明粉(Na 2SO 4 )、纯碱(Na 2 CO 3 )用量(按照《化验室工艺文件》)。 5.2.3 配方卡上注明写清用布/纱的类型:正常布/纱或是复漂布/纱,对特殊布需另外注明 。 5.3 填入染色工艺:根据染料组合和染色织物材料,确定染色工艺。 5.3.1 纱样染色工艺: 1#:适用于SUMIFIX SUPRA染料和SUMIFIX/REMAZOL/EVERZOL染料升温工艺4#:适用于科来恩高温染料 5#:适用于SUMIFIX/REMAZOL和EVERCION染料(80o C) 11#:适用于SUMIFIX SUPRA染料和SUMIFIX/REMAZOL/SLS/MEGAFIX染料恒温工艺 (工艺流程曲线见技术文件《化验室小样工艺》)。 5.4 填写浴比:根据不同的染色材料选择浴比。一般纱样和布样的浴比均为1:10。有特 殊要求的需要注明 5.5 填写染色时间:根据所用染料总量的多少选择染色时间。 无论是布样或纱样,染料总量小于2%(OWF)时,均用30分钟。 无论是布样或纱样,染料总量大于2%(OWF)时,用60分钟。 其余纱样、布样均用60分钟染色(可省去不填)。 对于化纤、漂白纱样和布样需特殊注明。 5.6 填写后处理工艺:根据织物类型、颜色、浓度的不同选择不同的后处理工艺。 纱/布样后处理工艺:

CIE基本色度学分析

CIE基本色度学分析 字号: 小中大| 打印发布: 2008-10-02 11:04 作者: Salmin 来源: 照明工程师社区查看: 6253次 编者按:色度学是—门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。 色度学是—门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。彩色视觉是人眼的—种明视觉。彩色光的基本参数有:明亮度、色调和饱和度。明亮度是光作用于人眼时引起的明亮程度的感觉。一般来说,彩色光能量大则显得亮,反之则暗。色调反映颜色的类别,如红色、绿色、蓝色等。彩色物体的色调决定于在光照明下所反射光的光谱成分。例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占有优势,而其它成分被吸收掉了。对于透射光,其色调则由透射光的波长分布或光谱所决定。饱和度是指彩色光所呈现颜色的深浅或纯洁程度。对于同一色调的彩色光,其饱和度越高,颜色就越深,或越纯;而饱和度越小,颜色就越浅,或纯度越低。高饱和度的彩色光可因掺入白光而降低纯度或变浅,变成低饱和度的色光。因而饱和度是色光纯度的反映。100%饱和度的色光就代表完全没有混入白光阴纯色光。色调与饱和度又合称为色度,它即说明彩色光的颜色类别,又说明颜色的深浅程度。 应强调指出,虽然不同波长的色光会引起不同的彩色感觉,但相同的彩色感觉却可来自不同的光谱成分组合。例如,适当比例的红光和绿光混合后,可产生与单色黄光相同的彩色视觉效果。事实上,自然界中所有彩色都可以由三种基本彩色混合而成,这就是三基色原理。 基于以上事实,有人提出了一种假设,认为视网膜上的视锥细胞有三种类型,即红视谁细胞、绿视锥细胞和蓝视锥细胞。黄光既能激励红视锥细胞,又能激励绿视锥细胞。由此可推论,当红光和绿光同时到达视网膜时,这两种视锥细胞同时受到激励,所造成的视觉效果与单色黄光没有区别。 三基色是这样的三种颜色,它们相互独立,其中任一色均不能由其它二色混合产生。它们又是完备的,即所有其它颜色都可以由三基色按不同的比例组合而得到。有两种基色系统,一种是加色系统,其基色是红、绿、蓝;另一种是减色系统,其三基色是黄、青、紫(或品红)。不同比例的三基色光相加得到彩色称为相加混色,其规律为: 红+绿=黄 红+蓝=紫 蓝+绿=青 红+蓝+绿=白 彩色还可由混合各种比例的绘画颜料或染料来配出,这就是相减混色。因为颜料能吸收入射光光谱中的某些成分,未吸收的部分被反射,从而形成了该颜料特有的彩色。当不同比例的颜料混合在一起的时候,它们吸收光谱的成分也随之改变,从而得到不同的彩色。其规律为: 黄=白-蓝

基本色度学RGB基本原理白光工程师你必须撑握的基本知识

基本色度学RGB基本原理白光工程师你必须撑握的基本知识! 色度学是—门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。彩色视觉是人眼的—种明视觉。彩色光的基本参数有:明亮度、色调和饱和度。明亮度是光作用于人眼时引起的明亮程度的感觉。一般来说,彩色光能量大则显得亮,反之则暗。色调反映颜色的类别,如红色、绿色、蓝色等。彩色物体的色调决定于在光照明下所反射光的光谱成分。例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占有优势,而其它成分被吸收掉了。对于透射光,其色调则由透射光的波长分布或光谱所决定。饱和度是指彩色光所呈现颜色的深浅或纯洁程度。对于同一色调的彩色光,其饱和度越高,颜色就越深,或越纯;而饱和度越小,颜色就越浅,或纯度越低。高饱和度的彩色光可因掺入白光而降低纯度或变浅,变成低饱和度的色光。因而饱和度是色光纯度的反映。100%饱和度的色光就代表完全没有混入白光阴纯色光。色调与饱和度又合称为色度,它即说明彩色光的颜色类别,又说明颜色的深浅程度。 应强调指出,虽然不同波长的色光会引起不同的彩色感觉,但相同的彩色感觉却可来自不同的光谱成分组合。例如,适当比例的红光和绿光混合后,可产生与单色黄光相同的彩色视觉效果。事实上,自然界中所有彩色都可以由三种基本彩色混合而成,这就是三基色原理。 基于以上事实,有人提出了一种假设,认为视网膜上的视锥细胞有三种类型,即红视谁细胞、绿视锥细胞和蓝视锥细胞。黄光既能激励红视锥细胞,又能激励绿视锥细胞。由此可推论,当红光和绿光同时到达视网膜时,这两种视锥细胞同时受到激励,所造成的视觉效果与单色黄光没有区别。 三基色是这样的三种颜色,它们相互独立,其中任一色均不能由其它二色混合产生。它们又是完备的,即所有其它颜色都可以由三基色按不同的比例组合而得到。有两种基色系统,一种是加色系统,其基色是红、绿、蓝;另一种是减色系统,其三基色是黄、青、紫(或品红)。不同比例的三基色光相加得到彩色称为相加混色,其规律为: 红+绿=黄 红+蓝=紫 蓝+绿=青 红+蓝+绿=白 彩色还可由混合各种比例的绘画颜料或染料来配出,这就是相减混色。因为颜料能吸收入射光光谱中的某些成分,未吸收的部分被反射,从而形成了该颜料特有的彩色。当不同比例的颜料混合在一起的时候,它们吸收光谱的成分也随之改变,从而得到不同的彩色。其规律为: 黄=白-蓝 紫=白-绿 青=白-红 黄+紫=白-蓝-绿=红 黄+青=白-蓝-红=绿 紫+青=白-绿-红=蓝 黄+紫+青=白-蓝-绿-红=黑

色度学及色彩学

1绪论: 我们生活在一个丰富多彩的世界,眼睛将为人们提供外界70%~80%的信息;11%是听觉;其它6%是嗅觉、味觉和触觉。色彩是视觉审美中重要因素之一,因此我们有必要研究一下色彩的科学。 1.1色彩学(chromatology [,kr?um?'t?l?d?i]):研究内容 研究色彩产生、接受及其应用规律的科学。它以光学为基础,并涉及心理物理学、生理学、心理学、美学与艺术理论等学科。 因形、色为物象与美术形象的两大要素,故色彩学为美术理论的首要的、基本的课题。 1.2色彩学的应用的研究 色彩应用史上,装饰功能先于再现功能而出现。 色彩学的研究在近代才开始,它以光学的发展为基础,牛顿的日光—棱镜折射实验和开普勒奠定的近代实验光学为色彩学提供了科学依据,而心理物理学解决了视觉机制对光的反映问题。印象主义出现后,色彩并置对比、互补色等问题,促使理论家、艺术家运用科学方法探讨色彩产生、接受及应用的规律。19世纪下半叶,出现了许多色彩学研究的专门著作。 2光学与物理学知识 色彩从根本上说是光的一种表现形式。 一般能引起视觉的电磁波,叫做“可见光”,它的波长范围400-700nm。2.1光与色 1666年,英国的科学家萨克·牛顿进行了著名的色彩实验。他把太阳光用三棱镜分解成红、橙、黄、绿、青、蓝、紫七色光束,同时,七色光束通过三棱镜还能还原成白光。这七色色带就是太阳光谱。 2.2光度学photometry [f?u't?mitri]、色度学colorimetry ['k?l?'rim?tri] 光度学是研究光度量的,而光度学中专门研究眼睛对颜色的响应程度的部分称为色度学,色度学是根据人眼的光谱特性进行研究的一门学科。人的大脑感知和理解颜色所遵循的过程是一种生理心理现象,这一现象还远未被完全了解,但是颜色的物理性质可以有实验和理论结果支持的基本形式来表示。 基本上,人类和其他动物接收的一个物体的颜色有物体的反射光的性质决定一个物体反射的光如果在所有波长范围内是平衡的,对观察者来说则显示白色。然而,若一个物体对有限的可见光谱范围反射,则物体呈现某种颜色,例如,绿色物体反射具有500-700nm范围的光,吸收其他波长光的多数能量。 2.3视觉的生理构造 人眼的形状像一个小球,通常称为眼球,眼球内具有特殊的折光系统,使进入眼内的可见光汇聚在视网膜上。视网膜上含有感光的视杆细胞和视锥细胞,这些感光细胞把接受到的色光信号传到神经节细胞,再由视神经传到大脑皮层枕叶视觉神经中枢,产生色感。 详细的说,当物象受光线照射后,其信息通过瞳孔进入视网膜,经过视神经细胞分析,转化为神经冲动,由视神经传达到大脑皮层的视觉中枢,才产生了色彩感觉。 ?锥体细胞 ?光线—瞳孔—视网膜杆体细胞视神经—大脑—色感

颜色基础知识

颜色基础知识 篇一:CIE 1931 色度图 从小到大,我们对色彩都要接触到三基色、三原色的概念,由此可以看出,色彩是一个三维函数,所以应该由三维空间表示。如图1就是传统色度学著作常用来表示颜色的纺锤体,图2是按人对颜色分辨能力构造的三维彩色立体。由于人类思维能力和表现能力的限制,三维的坐标系在实际应用中都暴露出了很大的局限性。 显示器的显示采用的是色光加色法,色光三原色是红、绿、蓝三种色光。国际标准照明委员会(CIE)1931年规定这三种色光的波长是: 红色光(R):700nm 绿色光(G): 蓝色光(B): 自然界中各种原色都能由这三种原色光按一定比例混合而成。 在以上定义的基础上,人们定义这样的一组公式: r=R/(R+G+B) g=G/(R+G+B) b=B/(R+G+B) 由于r+g+b=1, 所以只用给出 r和 g的值, 就能惟一地确定一种颜色。这样就可将光谱中的所有颜色表示在一个二维的平面内。由此便建立了1931 CIE-RGB表色系统

但是,在上面的表示方法中,r和g值会出现负数。由于实际上不存在负的光强,而且这种计算极不方便,不易理解,人们希望找出另外一组原色,用于代替CIE-RGB系统,因此,在1931年CIE组织建立了三种假想的标准原色X(红)、Y(绿)、Z(蓝),以便使我们能够得到的颜色匹配函数的三值都是正值,而x、y、z的表达方式仍类似上面的那组公式。由此衍生出的便是1931 CIE-XYZ系统(如图4),这个系统是色度学的实际应用工具,几乎关于颜色的一切测量、标准以及其他方面的延伸都以此为出发点,因而是颜色视觉研究的有力工具。 是一些典型设备在1931 CIE-XYZ系统中所能表现的色彩范围(色域)。其中,三角形框是显示器的色彩范围,灰色的多边形是彩色打印机的表现范围。 从色域图上可以看到,沿着x轴正方向红色越来越纯,绿色则沿y轴正方向变得更纯,最纯的蓝色位于靠近坐标原点的位置。所以,当显示器显示纯红色时,颜色值中的x值最大;类似地,显示绿色时y值最大;根据系统的定义,在显示蓝色时则是1-x-y的结果最大。值得一提的是,x、y值是小数,应该表示为的形式,但是,为了表达方便和节约空间,我们的文章中会省略掉“0.”,而使x、y值看起来像一组三位数。 CIE 目录 CIE(国际发光照明委员会):原文为Commission Internationale

相关文档
最新文档