WC对弥散强化铜的性能的影响_彭北山

WC对弥散强化铜的性能的影响_彭北山
WC对弥散强化铜的性能的影响_彭北山

文章编号:1672-7010(2004)01-0011-02

WC 对弥散强化铜的性能的影响

彭北山

(武汉大学动力机械学院,湖北武汉 430072)

摘要:利用高能球磨冷压烧结的方法制备了Cu-WC 弥散强化铜合金,并对添加不同成分WC 的弥散强化铜试样进行了性能检测和显微结构分析.结果表明:WC 的含量多少对金属组织与性能的影响比较明显,随着WC 的增加,合金的硬度增高,导电率降低.当WC 的体积分数低于1%时,导电率接近纯铜,但硬度较低,当WC 的体积分数达到4%以上时,硬度变化不大,导电率下降明显.所以,弥散强化铜中WC 的成分应控制在体积分数1%到4%之间.

关键词:Cu-WC 铜合金;强化相;组织;性能中图分类号:TG146.1+1 文献标识码:A

Effect of WC on Properties of Dispersion-Strengthened Copper

PE NG Bei-shan

(Po wer and Machine College,Wuhan U niversity ,Wuhan,430072)

Abstract:The Cu-WC dispersion-strengthened copper alloy has been prepared by high-performance ball milling and cold pressing and sintering.The performance measurement and microstructure analysis of dispersion-strengthened copper had been measured for di fferent content of WC.The results show that the effect of the WC content on the microstructure and properties of the alloy was obvious,when the content of WC increased,the hardness of the alloy was increasing,and the electric conductivi ty was decreasing.When the volume fraction of WC was less than 1%,the electric conductivity of the alloy was near copper,but the hardness was lower.When the volume fraction of WC was higher than 4%,the change of handness was small,and the electric conductivity was obviously decreasing.The con ten t of WC in dispersion-s trengthened copper alloy must be controled in the area of 1%~4%for the volu me fraction.

Key words:Cu-WC alloy ;spike metallographic;microstructure;properties

收稿日期:2003-09-21

作者简介:彭北山(1967- ),男,湖南邵阳人,邵阳学院工程师,讲师,硕士研究生.

弥散强化铜由于其高强度、高导电性和抗高温软化性能而应用于集成电路引线框架、电阻焊电极、连铸机结晶器、电真空器件中的前相波放大器和空调管等高新技术领域[1,2].制备这种材料的方法之一,就是MA (mechanical alloying)法向纯铜的基体中引入第二相引起弥散强化.强化相通常是金属的氧、碳、氮化物,如Al 3O 2,WC,TiB 2等,本文用MA 法和冷压烧结的方法制备了几种WC 弥散强化铜,并着重对其力学性能及导电性进行了分析和讨论.

1 实验方法

本次试样制备的工艺流程是:配料 还原 压型 烧结 自由锻 机加工 检测.具体做法是:将纯Cu 粉(99.8%,小于76 m)和WC 粉(小于4.2 m)按体积分

数99%Cu+1%WC(1#试样)、98%Cu+2%WC(2#试样)、97%Cu+4%WC(3#试样)和96%Cu+6%WC(4#试样)配好,分别置于QM-ISP4行星式球磨机中球磨2h(氩气保护),然后在KSL-1A 管式电阻炉中还原(400 ,2h,氢气保护),再压型(470MPa min)和烧结(950 ,氢气保护),最后经自由锻造200 退火和机加工制成 6 62mm 的试样.用排水法测量其密度,用HW187.5型布洛维硬度计测量其硬度,用CSS-44100万能电子实验机测其力学性能,导电率测试在QJ19型双臂两用电桥上进行.用KYKY-2800扫描电镜进行断口分析,用NEOP HOT-21大型金相显微镜观察其金相组织.

第1卷 第1期邵阳学院学报(自然科学版)

Vol.1.No.12004年3月Journal of Shaoyang Universi ty (Natural Sciences)M ar.2004

图1 断口扫描照片

图2 铜合金电导率随WC

含量变化曲线

图3 硬度随WC 含量变化曲线

2 实验结果分析

图1分别为添加不同体积百分数的断口扫描照片.从图1可以看到当Cu 中加入体积百分含量为1%的WC 时,可以看到明显的第二相粒子,当加入2%的WC 时,第二相粒子更加明显,并且已完全强化固溶,形成了致密的弥散无氧铜.当加入3%的WC 时,出现了第二相的聚集,当加入4%的WC 时,第二相的聚集更加明显.

图2为WC 含量对铜合金导电性能的影响.

由于电导率(电阻率的倒数)是组织结构敏感的物理量,受到许多因素的影响,如颗粒大小及分布、点阵

畸变、两相界面等[3]

.WC 弥散强化铜合金中,由于WC 和Cu 热膨胀系数的差异造成的内应力,会导致晶格畸变,引起WC 颗粒周围的位错密度增加,同时由于WC 颗粒阻碍位错运动,造成位错增值,导致电子波散射,电阻率增加,所以WC 弥散强化铜合金电导率比纯铜差,WC 含量越大,电阻率越大.再者由于WC 在Cu 基体中分布不均匀,存在一定的空隙率,降低了基体的连续性,所以实际测定值比理论计算值电阻率大.随WC 含量增加,WC 颗粒的团聚现象也会越来越严重,实际测

定值与计算值的偏差越大.考虑弥散强化铜合金的电

导率,增强相的含量不宜太高.

图3为硬度随WC 含量变化曲线.

由图3可知,随WC 含量增加,硬度提高.从图中看出,WC 含量较低时(<1%vol)硬化提高的较快,当WC 含量越高,相对硬化效果降低.由于电解铜粉为树枝状,而WC 分布趋于宏观均匀,后续工艺过程中由于WC 与Cu 基体热膨胀系数的差异造成较大的内应力,导致晶格畸变,位错密度增大,同时由于WC 颗粒阻碍位错运动,加之WC 本身具有的高硬度,所以WC 弥散强化铜合金的硬度随WC 体积分数的增加线性提高[4].显然,WC 含量越高分布越均匀,合金的硬度会越高.

当WC 含量增加相对硬化的效果反而会降低,主要的原因可能有两个:其一,随WC 含量的增加,WC 颗粒的团聚现象会越来越严重,使得实际有效WC 颗粒半径增大;另一方面WC 含量高的时候烧结过程不能充分进行,烧结体的密度会降低.

3 结论

弥散强化铜的导电性随弥散相WC 含量的提高而降低,当WC 体积百分数大于4%时,电导率的下降明显增快.

弥散强化铜的硬度随弥散相WC 含量的提高而提高,当WC 体积百分数大于1%时,硬度提高的速度明显放慢.

弥散相WC 在弥散强化铜中的添加范围应该在1%到4%之间.

参考文献:

[1] 王涛,王碧云.新型铜合金材料及其加工技术[J].有色

金属加工2002.31(4):15-22.

[2] Joanna.Groza.Heat-resistant dispersion-strengthened cop -per alloys [J ].Journal of Materials Engineering and perfor -mance,1992.1(1):113-121.

[3] 陈树川.金属物理性能[M ].上海:上海交通大学出版

社,1988.201-280.

[4] 卢光熙,侯增寿.金属学教程[M ].上海:上海科学技术

出版社,1985.198-311.

12 邵阳学院学报(自然科学版)第1卷

Cu-2.7%Al2 O3弥散强化铜合金的微观组织和力学性能研究

Cu?2.7%Al2O3弥散强化铜合金的微观组织和力学性能研究 ① 向紫琪,雷一前,肖一柱,庞一咏 (中南大学材料科学与工程学院,湖南长沙410083)摘一要:研究了Cu?2.7%Al2O3弥散强化铜(ADSC)合金的微观组织和力学性能三研究表明,纳米级的Al2O3弥散分布在铜基体中,多数为近球形,在晶界处有部分粗大的Al2O3粒子存在三Al2O3粒子与位错的交互作用以及霍尔?佩奇机制的贡献占其室温屈服强度的90%,高温下合金的强度主要与Al2O3粒子对位错的强烈钉扎以及对晶界和亚晶界滑动的阻碍作用有关三该合金的室温抗拉强度超过了560MPa,700?下的强度几乎与纯铜在室温下的强度相当三不同温度下的拉伸断口分析表明,弥散强化铜(ADSC)合金的塑性随温度升高逐渐降低三该合金的可加工性能优良,旋锻加工后,垂直于加工方向的晶粒进一步细化,平行于加工方向的纤维组织进一步拉长,横向和纵向硬度值均在160?5Hv范围内三 关键词:Cu-Al2O3弥散铜合金;微观组织;力学性能;强化机制 中图分类号:TG146.1文献标识码:Adoi:10.3969/j.issn.0253-6099.2014.06.032 文章编号:0253-6099(2014)06-0132-05InvestigationontheMicrostructureandMechanicalPropertiesofCu?2.7%Al2O3DispersionStrengthenedCopperAlloyXIANGZi?qi,LEIQian,XIAOZhu,PANGYong(SchoolofMaterialScienceandEngineering,CentralSouthUniversity,Changsha410083,Hunan,China)Abstract:ThemicrostructureandmechanicalpropertiesofCu?2.7%Al2O3dispersionstrengthenedcopper(ADSC)alloywereinvestigated.Theresultsindicatedthatnano?Al2O3particles,mostofwhicharenearlyspherical,dispersivelydistributedinthematrixcopper,withsomecoarseonesdistributedatthegrainboundaries.ThestrengthcontributedbytheinteractionofdislocationswithAl2O3particlesandHall?Petchmechanismaccountedfor90%oftheyieldstrengthofthealloyatroomtemperature.Thehigh?temperaturestrengthofthealloywasattributedtothestrongpinningeffectofthealuminaparticlesondislocationsandtheimpedimenttotheslidingofgrainandsub?grainboundaries.Thetensilestrengthofthealloywasover560MPaatroomtemperature,andthestrengthwasalmostequivalenttothatofpurecopperat700?.AnalysisoftensilefractureatdifferenttemperaturesindicatedthattheplasticityofADSCalloydecreasedwiththeincreasingoftestingtemperature.TheADSCalloyobtainedexcellentworkability.Afterrotaryswagingoperation,thegrainsperpendiculartothemachiningdirectionwerefurtherrefined,whilethefibroustissueparalleltothemachiningdirectionwasfurtherelongated,resultinginthehorizontalandverticalhardnessvalueswithin160?5Hv.Keywords:Cu?Al2O3dispersionstrengthenedcopperalloy(ADSC);microstructures;mechanicalproperty;strengtheningmechanism 一一Cu?Al2O3弥散强化铜(ADSC)合金因具有高强度 和优良的抗高温蠕变性能而引起广泛关注三Al2O3粒 子强化相弥散地分布在铜基体中,具有高温稳定性,即 使在铜的熔点附近也不发生熔化或粗化,能够有效钉 扎位错运动和阻碍晶界滑移,从而扩大了铜合金的应 用领域[1-2]三目前,在国外,Cu?Al2O3弥散强化铜主要 用来代替银基触头材料以及用作导电弹性材料,在集 成电路引线框架材料二微波管结构材料二导电剂点焊电极材料等领域也有广泛应用[3-4]三在国内,基于高强度二高导电性二高软化温度和高导热性的特点[5-6],其应用范围主要涉及连铸钢结晶器二高强度电力线二电阻焊电极等方面三迄今,对Cu?Al2O3弥散强化铜合金的制备方法和再结晶行为都有了深入的研究[7-10]三Tian等人[11]通①收稿日期:2014-06-27基金项目:国家自然科学基金(51271203) 作者简介:向紫琪(1988-),男,湖南娄底人,硕士研究生,主要研究弥散强化铜合金三第34卷第6期2014年12月矿一冶一工一程MININGANDMETALLURGICALENGINEERINGVol.34?6December2014

弥散强化

弥散强化 各种热力机械(燃气轮机、喷气发动机、火箭)、宇航工业、原子能工业对耐热材料的要求很高。现在,飞机喷气发动机使用的耐热金属材料主要是镍基和钴基超合金,其主要强化机构是通过热处理析出第二相,但使用温度还是有一定限度的。钼基台金、铌等高熔点金属及其合金的高温强度是优越的,但抗氧化性差。弥散强化合金作为这二者中间的耐热材料有所希望得到应用。 金属化合物或氧化物用作高强度合金的第二相,比基体金属硬得多。在基体中渗入第二相的方法有好几种,最常见的是利用固溶体的脱溶沉淀,进行时效热处理,这就是沉淀强化;以后又发展了内氧化法、粉末冶金法,称为弥散强化。所谓弥散强化,就是使金属基体(金属或固溶体)中含有高度分散的第二相质点而达到提高强度的目的。虽然加入第二相的方法不同,但强化的机理却有共性,沉淀强化的情况更复杂。 一、弥散强化的机理 弥散强化机构的代表理论是位错理论。在弥散强化材料中,弥散相是位错线运动的障碍,位错线需要较大的应力才能克服障碍向前移动,所以弥散强化材料的强度高。位错理论有多种模型用以讨论屈服强度、硬化和蠕变。下面分析几种主要的位错理论模型。 1.屈服强度问题 (1)奥罗万机构 奥罗万机构的示意图如图7—23所示。 按照这个机构,位错线不能直接超过第二相粒子,但在外力下位错线可以环绕第二相粒子发生弯曲,最后在第二相粒子周围留下一个位错环而让位错通过。位错线的弯曲将会增加位错影响区的晶格畸变能,这就增加了位错线运动的阻力,使滑移抗力增大。 在切应力τ作用下,位错线和一系列障碍相遇将弯曲成圆弧形,圆弧的半径取决于位错所受作用力和线张力的平衡。在障碍处位错弯过角度θ(见图7-24),障碍对具有柏氏矢量b 的位错的作用力F 将与位错的线张力T 保持平衡 θsin 2T F = 作为位错运动的障碍,第二相粒子显然比单个镕质原子要强,因此c θ(临界值)要大些。当2πθ=时,位错线成半圆形,作用于位错的力F 最大。 如果用线张力的近似值221Gb (G 是切变模量),临界切应力b F c λτmax =(λ是位错线

铜及铜合金的分类讲解

铜及铜合金的分类 第二章铜及铜合金的分类铜是人类最早使用的金属,自然界有自然铜存在,与 其他金属不同,铜在自然界中既以矿石的形式存在,也同时以纯金属的形式存 在,其应用以纯铜为主,同时其合合金也在工业等多个领域中广泛应用,工业上 常将铜和铜合金分为四类,分别是:纯铜、黄铜、青铜和白铜。 1. 铜与铜合金的分类 1.1 按生产应用的方式(可分为二大类)形变铜与铜合金、铸造铜与铜 合金对于压力加工专业来说,主要是和形变铜与铜合金打交道,因此,重点学 习形变铜与铜合金。 1.2 铜与铜合金的名称:根据历史上形成的习惯,起的是 某一种颜色的名称,它们是:紫铜——纯铜Cu 黄铜——Cu-Zn 合金青铜——锡青铜:Cu-Sn 合金铝青铜:Cu-Al 合金铍青铜:Cu-Be 合金钛青铜:Cu-Ti 合金白铜—— Cu-Ni 合金( 有的铜合金叫做青铜,但合金的颜色并不真就是青 色的。) 2. 纯铜纯铜的新鲜表面是玫瑰红色的,当表面氧化形成氧化亚铜Cu2O 膜后就呈紫色,所以纯铜就常被称为紫铜。紫铜具有好的导电、导热、耐蚀和 可焊等性能,并可冷、热压力加工成各种半成品,工业上广泛用于制作导电、导 热和耐蚀等器材。 2.1纯铜的成份、组织与性能 2.2.1.其结构、组织:在金属 学中学过,纯Cu的晶体[结构]是面心立方晶格(f、c、c),滑移系多,易塑性变形,塑性好。其组织由单一的铜晶粒组成。 2.2.2.在成分方面:100%纯的金属是没有的,非100%纯。Cu 的最高纯度可达99.999%(三个9)工业纯Cu 的纯度约为99.90~99.96%杂质的存在相当于使纯铜的成份改变,这自然会引起一些 性能的变化。虽纯Cu 有一些性能几乎不受杂质的影响但导电率、机械性能却 受杂质或晶 4 体缺陷的影响较大现在先综合看看工业纯Cu 的性能—— 2.2 工业纯铜的性能 2.2.1 纯铜的性能优点:从纯铜的各种性能中我们可以总结出几 条性能优点,从而可以明白为什么铜会以纯金属的形式得到这么广泛的应用。①优良的导电、导热性;∴Cu 广泛用于:导电器(如:电线、电缆、电器开关) 导热器(如:冷凝管、散热管、热交换器)②良好的耐蚀性;Cu具有极好的耐蚀性,且反应后表面有保护膜(铜绿)在普通的温度下,铜不太会与干燥空 气中的氧气O2反应,但Cu能与CO2、SO2、醋发生作用,生成铜绿――碱式碳酸铜、碱式硫酸铜CuSO4·3(OH)2 (深绿色)、碱式醋酸铜,这样铜的表面上 就慢慢生成了一层保护膜。③有良好的塑性退火工业纯铜的拉伸延伸率δ ≈50%,纯Cu 易加工成材例:加工出来的细铜丝可细于头发丝(8 丝)达4~5 丝 2.2.2 纯铜的机械性能与工艺性能我们通过结合纯铜的生产、加工过程来了解、认识(1) 纯Cu 的加工过程(几乎全部纯铜都是经过加工成材供应用户的, 我们在工厂中可以观察到,其生产过程一般为:(2) 纯铜的机械性能——①铸态铜的性能很低;②经加工后,软态铜、硬态铜的性能,见上面数据;③铜经过强烈冷加工(形变率ε≥80% )后,强度δ b将急剧升高,但塑 5 性强烈变坏,加工硬化很厉害,对纯铜来说,其机械性能是由其晶粒度和位借密度所决定 的。(3) 纯铜的热加工工艺性能我们知道,热加工应选择在塑性高的温度范围

耐热金属材料机械性能影响因素

耐热金属材料机械性能影响因素 摘要:本文主要根据实践经验进行研究分析,对金属材料的机械性能所产生的影响一般具有几方面的重要因素,例如,蠕变极限、焊接工艺、在金属材料当中所产生的化学成分等,所以通过对这些因素的分析,提出了相应的解决措施。 关键词:耐热金属材料;机械性能;蠕变极限;化学成分 引言 在很多企业中譬如说航空、电力、冶金、化工、石油等,这些行业中材料都是在比较高的温度背景下运行,所以必须利用耐高温的金属原料。在耐高温的金属原料的运行背景下,耐高温的金属原料必须具备以下两个方面的性能,金属原料在高温下具有稳定的化学性和高温强度。必须要仔细研习解析耐高温原料的影响元素,才能根据原因运用适当的方法以便提升耐高温金属原料的机械能力。 一、探讨耐热金属材料机械性能影响原因的意义 如果从耐热金属材料所使用的环境观察,其性能主要包括在两个方面,也就是它的高温强度以及它的化学稳定性能。但是,如果要是针对耐热金属材料,就必须要认真的分析研究它主要的影响因素,再根据具体原因采用相应的解决措施,从而提高金属材料的性能。耐热材料指的是具有蠕变变形小、断裂强度高等特点,同时在正常的使用过程中必须要具有一定的稳定性。然而在使用耐热材料的一些设备时,其设计概念却产生了一定的变化,曾经把坚决不破坏的设计思想是作为一个安全寿命进行设计的,从思想上主要是以安全设计以及允许损伤设计进行转变的。所谓运行安全设计指的是当局部材料出现破损时,其余下的部分仍然可以承受起破损部位的应力,而不会导致全部的零件出现破损情况,而设计允许损伤时主要是通过假设情况下出现裂纹,而当裂纹在扩展期间内的设备则仍然可以继续使用,对此,基于这种思想变化,对于开发者在设计考虑方法时就必须要做相应的转变,也就是要从一种材料的耐高温度以及对它蠕变的强度极限选择材料,找对方向。 二、耐热金属材料的性能特点 一般耐热的金属材料通常是与能源相关的条件下相互作用的,主要可以分成两种,(1)在静止状态下所应用的部件,例如有喷钼、材料电池电解质、透平叶片、人造卫星使用的热防护板等,但是如果根据卡诺循环基理观察,如果是有关能源的使用材料其温度越高,它的使用效率也会越高,当应用棱聚变能的状态时,如果所使用的温度过高时,其要求也会越高。(2)有动作机械部件,也就是透平喷气发动机可以对其使用离心力的部件。它的具体要求就是必须要具有蠕变性能以及抗氧化的性能。此外,如果要更好的使用自然能源,在各方面的要求上也会更为严格,如果要使用复合材料,也就是这种耐热结构的材料。通常情况下,如果金属材料在一定的室温下,其变形以及塑性主要是根据位错运动实现的,一般晶界的强调会很高,所以当位错运动时它就会具有很大阻力,因此,在室温下的

影响材料吸声性能的因素

离心玻璃棉的建筑声学特征及应用 离心玻璃棉内部纤维蓬松交错,存在大量微小的孔隙,就是典型的多孔性吸声材料,具有良好的吸声特性。离心玻璃棉可以制成墙板、天花板、空间吸声体等,可以大量吸收房间内的声能,降低混响时间,有利于提高语言清晰度,也有利于减少室内噪声。在轻体隔墙的空腔内填入离心玻璃棉,不但起到良好的保温作用,还可以较大幅度地提高墙体的隔声性能,有利于隔绝噪声,也有利于保证室内谈话的私密性。使用离心玻璃棉制成管道或风机罩的衬里可以起到消声作用,有利于降低管道中气流与机械振动产生的噪声,使空调系统更加安静。离心玻璃棉具有良好的弹性,可以作为楼板减振垫层的主要材料,显著地降低楼上的脚步、奔跑、拖动物品等撞击产生的噪声对楼下房间的影响。? 离心玻璃棉的声学特性不但与厚度与容重有关,也与罩面材料、结构构造等因素有关。在建筑应用中还需同时兼顾造价、美观、防火、防潮、粉尘、耐老化等多方面问题。本文将就离心玻璃棉 相关的建筑声学基本概念、建筑吸声应用、建筑隔声应用、建筑消声应用、国内外不同声学产品 对比,以及相关的国家规范标准等方面近可能详细地讨论离心玻璃棉的建筑声学特性及应用。 一、建筑声学的基本概念 1)声音???物体的振动产生“声”,振动的传播形成“音”。人们通过听觉器官感受声音,声音就是物理现象,不同的声音人们有不同的感受,相同声音的感受也会因人而异。美妙的音乐令人陶醉,清晰激昂的演讲令人鼓舞,但有时侯,邻居传来的音乐声使人难以入睡,她人之间的甜言蜜语也许令人烦恼。建筑声学不同于其她物理声学,主要研究目的在于如何使人们在建筑中获得良好的声音环境,涉及的问题不局限于声音本身,还包括心理感受、建筑学、结构学、材料学甚至群体行为学等多方面问题。? 人耳的听觉下限就是0db,低于15db的环境就是极为安静的环境,安静的会使人不知所措。乡村 的夜晚大多就是25-30db,除了细心才能够体会到的流水、风、小动物等自然声音以外,其她感觉 一片宁静,这也就是生活在喧嚣之中的城市人所追求的净土。城市的夜晚会因区域不同而有所不同。较为安静区域的室内一般在30-35db,如果您住在繁华的闹市区或就是交通干线附近,将不得不忍受40-50db(甚至更高)的噪声,如果碰巧邻居就是一位不通情达理的人,夜深人静时蹦蹦跳跳、高声喧哗,也许更要饱受煎熬了。人们正常讲话的声音大约就是60-70db,大声呼喊可达100db。 在中式餐馆中,往往由于缺乏吸声处理,人声鼎沸,声音将达到70-80db,有国外研究报道噪声中进餐会影响健康。人耳的听觉上限一般就是120db,超过120db的声音会造成听觉器官的损伤,140db的声音会使人失去听觉。高分贝喇叭、重型机械、喷气飞机引擎等都能够产生超过120db的声音。?人耳听觉非常敏感,正常人能够察觉1db的声音变化,3db的差异将感到明显不同。人耳存在掩蔽效应,当一个声音高于另一个声音10db时,较小的声音因掩蔽而难于被听到与理解,由于掩蔽效应,在90-100db的环境中,即使近距离讲话也会听不清。人耳有感知声音频率的能力,频率高的声音人们会有“高音”的感觉,频率低的声音人们会有“低音”的感觉,人耳正常的听觉频率范围就是20-20khz。人耳耳道类似一个2-3cm的小管,由于频率共振的原因,在2000-3000hz的范围内声音被增强,这一频率在语言中的辅音中占主导地位,有利于听清语言与交流,但人耳最先老化的频率也在这个范围内。一般认为,500hz以下为低频,500hz-2000hz为中频,2000hz以上为高频。语言的频率范围主要集中在中频。人耳听觉敏感性由于频率的不同有所不同,频率越低或越高时敏感度变差,也就就是说,同样大小的声音,中频听起来要比低频与高频的声音响。? 2)频率特性??声音可以分解为若干(甚至无限多)频率分量的合成。为了测量与描述声音频率特性,人们使用频谱。频率的表示方法常用倍频程与1/3倍频程。倍频程的中心频率就是31、5、63、125、250、500、1k、2k、4k、8k、16khz十个频率,后一个频率均为前一个频率的两倍,因此被称为倍频程,而且后一个频率的频率带宽也就是前一个频率的两倍。在有些更为精细的要求下,将频率更细地划分,形成1/3倍频程,也就就是把每个倍频程再划分成三个频带,中心频率就是20、31、5、40、50、63、80、100、125、160、200、250、315、400、500、630、800、1k、1、25k、1、6k、2k、2、5k、3、15k、4k、5k、6、3k、8k、10k、12、5k、16k、20khz等三十个频率,后一个频率均为前一个频率的21/3倍。在实际工程中更关心人耳敏感的部分,因此,除进行必要的科学研究以外,大多数情况下考虑的频率范围在100hz到5khz。如果将声音的频 率分量绘制成曲线就形成了频谱。 对于各种建筑声学材料来讲,不同频率条件下声学性能就是不同的。有的材料具有良好的高频吸

铜合金的分类及用途

铜合金的分类及用途 铜合金主要包括铍铜合金、银铜合金、镍铜合金、钨铜合金、磷铜合金。 、铍铜合金 铍铜合金是一种可锻和可铸合金,属时效析出强化的铜基合金,经淬火时效处理后具有高的强度、硬度、弹性极限,并且稳定性好,具有耐蚀、耐磨、耐疲劳、耐低温、无磁性、导电导热性好、冲击时不会产生火花等一系列优点。铍铜材基本上分为高强高弹性铍铜合金(含铍量为.%-.%)和高导电铜铍合金(含铍量为.%-.%)。 铍铜合金用途 铍铜合金常被用作高级精密的弹性元件,如插接件、换向开关、弹簧构件、电接触片、弹性波纹,还有耐磨零器材、模具及矿山和石油业用于冲击不产生火花的工具。现在铍铜材料已被广泛应用于航空航天、电器、大型电站、家电、通信、计算机、汽车、仪表、石油、矿山等行业,享有有色金属弹性王的美誉。 、银铜合金 银铜合金是通过将纯铜和纯银加入电熔炉进行熔炼,经铸造得到坯料,再加工成各种规格的成品。银铜合金的主要应用为电接触材料、焊接材料、银铜合金排及铜银合金接触线。 银铜合金种类 银铜合金:银和铜的二元合金,铜具有强化作用。 类型:有,,,和等合金。 用途:有良好的导电性、流动性和浸润性、较好的机械性能、硬度高,耐磨性和抗熔焊性。有偏析倾向。用真空中频炉熔炼,铸锭经均匀化退火后可冷加工成板材、片材和丝材。作空气断路器、电压控制器、电话继电器、接触器、起动器等器件的接点,导电环和定触片。真空钎料,整流子器,还可制造硬币、装饰品和餐具等。 、镍铜合金 镍铜合金通常被称为白铜。纯铜加镍能显著提高强度、耐蚀性、电阻和热电性,主要应用在海水淡化及海水热交换系统、汽车制造、船舶工业、硬币、电阻线、热电偶。工业用白铜根据性能特点和用途不同分为结构用白铜和电工用白铜两种,分别满足各种耐蚀和特殊的电、热性能。

碳化物氧化物弥散强化钨基合金的制备及性能研究

碳化物/氧化物弥散强化钨基合金的制备及性能研究聚变堆第一壁材料面临高热场、热应力场及强辐照场等严苛的服役环境,其综合服役性能的优劣关系到聚变装置能否安全运行。钨及钨基材料具有高熔点、高的溅射阈值和高热导率等优点,而被认为是最有希望的面向等离子体第一壁材料。 但是长期限制钨材料应用的主要问题在于:钨存在低温脆性(DBTT~400℃)、再结晶脆化以及辐照脆化、高温强度差等不足。为此,本文采用粉末冶金方法,结合了晶界净化与强化、纳米第二相氧化物/碳化物弥散强化和微合金化的基本原理,来制备高强/韧钨合金。 并发展了一条系统、创新的制备路径:从"由下而上"的小试样制备到"由上而下"发展可工程化应用的大块W合金。"由下而上"的制备工艺具有高效的特点,例如放电等离子烧结技术(SPS)由于升温速率快、烧结时间短,能在相对低温、短时间制备高致密的细晶钨材料,适合组分优化和强韧化机理研究。 我们利用SPS优化、制备了W-0.2wt.%Zr-1.0wt.%Y2O3(WZY)和 W-0.5wt.%ZrC(WZC)合金。发现,纳米尺寸的 Y203或ZrC颗粒能钉扎晶界抑制钨晶粒长大;微量Zr或ZrC的添加,能吸收钨中杂质O元素,生成ZrOx或Zr-C-O,从而减小杂质O的偏聚,净化和强化晶界,最终改善钨材料的强度和韧性。 基于组分优化和钨合金强韧化机理,继而发展"由上而下"制备工艺,实现了可工程化应用大块W合金的制备。"由上而下"工艺是将传统烧结法制备的大块WZY和WZC合金坯料进行高温塑性变形,如高温旋锻、轧制,实现动态再结晶调控,达到进一步致密化和细晶化的目的。 轧制6.5 mm厚W-0.2wt.%Zr-1.0wt.%Y203(R-WZY)合金板材具有良好的拉伸

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

提高弥散强化铜合金强度的主要方法

提高弥散强化铜合金强度的主要方法 彭北山宁爱林 (邵阳学院机械工程学院湖南邵阳422004) 摘要:总结了提高弥散强化铜合金强度的几种方法,并对其强化机理进行了分析。得出结论是:第二相强化的效果最好,是制备高强高电导率材料最理想的方法。弥散强化铜的强度主要和基体及弥散相的本性、含量、大小、分布、形态以及弥散相与基体的结合情况有关,也与成形工艺有关,而弥散相的选择是首要的。 The Major Channel of Heighten the Intension of the Dispersion-strengthened Copper Alloy PengBeishan NingAilin ( Mechanical Engineering School of Shaoyang Collegiate Shaoyang hunan 422004) Abstract:Have summarized some kinds of method of heighten the intension of the dispersion-strengthened copper alloy, and analysed its reinforced mechanism. Conclusion is: the effect of the dispersion reinforcement is the best. It is the most idea to prepare the the dispersion-strengthened copper alloy. the strength of dispersion-strengthened copper is concerning nature and form, content, size, distribution and the innate quality of dispersion appearance as well as the combination condition of dispersion appearance and matrix, it is also concerning shape technology, and the option of dispersion phase is chief. 1 引言 弥散强化铜因其优良的高温强度、高导电性和高导热性,已广泛地应用于电子信息、高速电气化铁路架空线、高速列车牵引电机、汽车和彩管等行业中的电阻焊电极、大推力火箭发动机内衬等高新技术领域[1]。弥散强化铜无论是用作电阻焊电极,还是用作大推力火箭发动机内衬,不但要求其具有高导电性和高导热性,还要求其具有较高的高温强度。本文对提高弥散强化铜合金强度的的主要方法和强化机理进行了讨论,并提出自己的看法。 2 弥散强化的机理和影响弥散强化材料强度的因素 2.1 弥散强化的机理 弥散强化机构的代表理论是位错理论。弥散强化材料中,弥散相是位错线运动的障碍,位错线需要较大的应力才能克服阻碍向前移动,所以弥散强化材料的强度高。下面是几种主要的位错理论模型用以讨论屈服强度及硬化[2] [3] [4]。 2.1.1 奥罗万结构(Orowan Mechanism) 奥罗万结构的示意图如图1所示。

铜及铜合金系列

C36000铅黄铜 C36000延展性好,深冲性能好。应用于钟表零件、汽车、拖拉机及一般机器零件。 铅黄铜切削加工性能优良,有高的减摩性能,用于钟表结构件及汽车拖拉机零件。 C36000化学成分: 锌(Zn)余量,铅(Pb)2.4~3.0,铝(Al)≤0.5,铁(Fe)≤0.10,锑(Sb)≤0.005,磷(P)≤0.01,铋(Bi)≤0.002,铜(Cu)62.0~65.0,杂质总和%≤0.75 ANK20无氧红铜 产品说明: 无氧红铜(Oxygen-free copper) 型号:ANK-20 Madel:ANK-20 标准:JIS-C1020P 制造工艺:冷拔/冷轧/热轧 产品特点:结构致密均匀,无气孔,砂眼,纯度高损耗小,导电导热延伸性能均佳,含氧量低于0.002%,性能优越,是精密模具放电加工的最佳之选. 产品应用:适用于各种高精密模具的放电加工材料或高压电气开关等电器配件 相关参数:硬度为HV86-102导电率大于等于59ms/m比重约8.9g/cm3 提供板材、棒材、异型件加工 ANK570钨铜合金 钨铜合金(Tungsten copper) 型号:ANK-5-70(ANK-是型号70表示钨含量约为70%) Model:ANK-5-70 产品特性:铜钨合金综合铜和钨的优点,高强度/高比重/耐高温/耐电弧烧蚀/导电电热性能好/加工性能好,ANK钨铜采用高质量钨粉及无氧铜粉,应用等静压成型(高温烧结账-渗铜, 保证产品纯度及准确配比,组织细密,性能优异.) 提供板材、棒材、触点材、焊轮、电子封装片、异型件 产品应用:应用于高硬度材料及溥片电极放电加工,电加工产品表面光洁度高,精度高,损耗低,有效节约材料。有钨60/钨70/钨85/钨90可供选择。 主要参数:密度G/cm3(13.9)抗拉强度Mpa(≥680 )硬度HV(≥186 )硬度软化温度℃(≥1000)导电率IACS(%)(≥42 )热导率W/mk(247 )库存板、棒材供客户选择 CuCrZr铬锆铜 铬锆铜(CuCrZr)化学成分(质量分数)%( Cr:0.25-0.65, Zr:0.08-0.20)硬度(HRB78-83)导电率 43ms/m 软化温度550℃ 特点:具有较高的强度和硬度,导电性和导热性,耐磨性和减磨性好,经时效处理后硬度、强度、导电性和导热性均显著提高,易于焊接。广泛用于电机整流子,点焊机,缝焊机,对焊机用电极,以及其他高温要求强度、硬度、导电性、导垫性的零件。用制作电火花电极能电蚀出比较理想的镜面,同时直立性能好,能完成打薄片等纯红铜难以达到的效果对钨钢等难加工材质表现良好,铬锆铜有良好的导电性,导热性,硬度高,耐磨抗爆,抗裂性以及软化温度高,焊接时电极损耗少,焊接速度快,焊接总成本

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

铜及铜合金的高温特性

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

Thesis Submitted By Ramkumar Kesharwani Roll No: 208ME208 In the partial fulfillment for the award of Degree of Master of Technology In Mechanical Engineering
Under the supervision of Prof. S. K. Sahoo
Department of Mechanical Engineering National Institute of Technology Rourkela-769008, Orissa, India. May 2010

National Institute of Technology Rourkela
CERTIFICATE
This is to certify that thesis entitled, “High Temperature behavior of Copper” submitted by Mr. “Ramkumar Kesharwani” in partial fulfillment of the requirements for the award of Master of Technology Degree in Mechanical Engineering with specialization in “Production Engineering” at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him under my supervision and guidance. To the best of my knowledge, the matter embodied in this thesis has not been submitted to any other university/ institute for award of any Degree or Diploma.
Date: Dept. of Mechanical Engineering
Prof. S.K. Sahoo National Institute of Technology Rourkela-769008

颗粒增强复合材料的强度预测

复合材料的增强原理 在复合材料中,由于增强体的形态不同,其增强原理也有很大差别,以下简要介绍几种复合材料的增强原理。 (1)弥散强化原理 弥散增强复合材料是由弥散颗粒与基体复合而成。其增强机理与析出强化机理相似,可用Orowan 机理及位错绕过理论来解释,见图1。此时,载荷主要由基体承担,弥散微粒阻碍基体的位错运动。微粒阻碍基体位错运动的能力越大,增强的效果越大。在剪切应力的作用下,位错的曲率半径R 为 i m b G R τ2/= (1) 式中,G m 是基体的剪切模量,b 是柏氏矢量。 若微粒之间的距离为D f ,当剪切应力τi 大到使位错的曲率半径R=D f /2时,基体发生位错运动,复合材料产生塑性变形,此时剪切应力即为复合材料的屈服强度 f m c D b G /=τ (2) 假设基体的理论断裂应力为G m /30,基体屈服强度为G m /100,它们分别为发生位错运动所需剪应力的上、下限。代入式(2)中得出微粒间距的上、下限分别为0.3μm 和0.01μm 。当微粒间距在0.01~0.3μm 之间时,微粒具有增强作用。若微粒直径为d ,体积分数为V p 、微粒弥散且均匀分布,根据体视金相学,有如下关系: )1()/3 2(2/12p p p p V V d D -= (3) 代入式(2)即得: ?? ????-=)1()/32 (/2/12p p p m c V V d b G τ (4) 显然,微粒尺寸越小,体积分数越高,强化效果越好:一般V p =0.01%~0.15%,d=0.01~0.1μm 。 (2)颗粒增强原理 颗粒增强复合材料是由尺寸较大(>1μm )的坚硬颗粒与基体复合而成。其增强原理与弥散增强有区别,在颗粒增强复合材料中,虽然载荷主要由基体承担,但颗粒也承受载荷并与约束基体的变形、颗粒阻止基体位错运动的能力越大,增强效果越好。 在外载荷的作用下,基体内位错的滑移在基体-颗粒界面上受到阻滞,并在颗粒上产生应力集中,其值为:

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

影响材料力学性能测试的因素

影响材料力学性能测试的因素 1 拉伸实验强度和延性丈量的准确度和偏向取决于能否严厉恪守指定实验办法并受设备和材料要素、试样制备和实验、丈量误差的影响。 2 关于相同材料的复验协商分歧取决于材料的平均性、试样制备的反复性、实验条件和拉伸实验参数的测定。 3 可影响实验结果的设备要素包括:拉伸实验机的刚性、减震才能、固有的频率和运动部件重量;力的指针准确度和实验机不同范围内力的运用;恰当的加力速度、用适宜的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(经过夹具、引伸计或辅助安装)等等。 4 能影响实验结果的材料要素包括:实验材料的代表性和平均性、试样型式、试样制备(外表光亮度,尺寸准确度,标距端部过渡圆弧,标距内锥度,弯曲试样,螺纹质量等等)。 a、有些材料对试样外表光亮度十分敏感(见注8) 必需研磨至理想光亮度,或者抛光至得到正确结果。 b、关于铸造的、轧制的、锻造的或其他非加工外表状态的试样,实验结果可能受外表特性影响(见注14)。 c、取自部件或构件隶属部位的试样,像外延局部或冒口,或者独立消费的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的实验结果。 d、试样尺寸可能影响实验结果。关于圆柱形的或矩形的试样,改动试样尺寸普通对屈从强度和抗拉强度影响很小,但假如呈现改动,则可影响上屈从强度、伸长率和断面收缩率。用下式比拟不同试样测定的伸长率值: L0/(A0)1 / 2 ( 1) 其中: L0 = 试样的原始标距 A0 = 试样的原始横截面积 1 具有较小的L0/(A0)1 / 2 比值的试样普通会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,状况即如此。 2 坚持L0/(A0)1 / 2r比值固定最小值,但影响不大。由于增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和实验条件。 e、标距内有一个允许的1 %的锥度可招致伸长率值降低。1 %的锥度会使伸长率降低15 % 。

铜和铜合金的基础知识

铜和铜合金的基础知识 铜合金(copper alloy )以纯铜为基体加入一种或几种其他元素所构成的合金。纯铜呈紫红色﹐又称紫铜。纯铜密度为8.96﹐熔点为1083℃﹐具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。常用的铜合金分为黄铜﹑青铜﹑白铜3大类。 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 青铜原指铜锡合金﹐后除黄铜﹑白铜以外的铜合金均称青铜﹐并常在青铜名字前冠以第一主要添加元素的名。锡青铜的铸造性能﹑减摩性能好和机械性能好﹐适合於制造轴承﹑蜗轮﹑齿轮等。铅青铜是现代发动机和磨床广泛使用的轴承材料。铝青铜强度高﹐耐磨性和耐蚀性好﹐用於铸造高载荷的齿轮﹑轴套﹑船用螺旋桨等。铍青铜和磷青铜的弹性极限高﹐导电性好﹐适於制造精密弹簧和电接触元件﹐铍青铜还用来制造煤矿﹑油库等使用的无火花工具。 白铜以镍为主要添加元素的铜合金。铜镍二元合金称普通白铜﹔加有锰﹑铁﹑锌﹑铝等元素的白铜合金称复杂白铜。工业用白铜分为结构白铜和电工白铜两大类。结构白铜的特点是机械性能和耐蚀性好﹐色泽美观。这种白铜广泛用於制造精密机械﹑化工机械和船舶构件。电工白铜一般有良好的热电性能。锰铜﹑康铜﹑考铜是含锰量不同的锰白铜﹐是制造精密电工仪器﹑变阻器﹑精密电阻﹑应变片﹑热电偶等用的材料。 [编辑本段] 铜合金的分类 铜合金的分类方法有三种: ①按合金系划分

相关文档
最新文档