水泥化学Cement Chemistry

水泥化学Cement Chemistry
水泥化学Cement Chemistry

Cement Chemistry

Cements:- used since historical times (Pyramids ≈3000 BC; Colosseum). Ancient cements of varying types. Two main classes of constructional cements are defined: non-hydraulic cements - do not set under water (see box), and hydraulic cement.

Non-hydraulic cements were amongst the Array most common of the ancient cements.

The relatively high solubilities of

portlandite (Ca(OH)2) and gypsum means

that they deteriorate rapidly in moist or

wet environments. The early Romans

made good use of lime based cements and mortars (cement + sand) by ramming the wet

pastes to form a high density surface layer which carbonates in contact with air to produce

a low permeability surface skin of calcite. This protected the underlying Ca(OH)2and

examples of Roman lime mortars can still be seen in Hadrians Wall. Lime mortars were still used in domestic construction until relatively recently. Raw (natural) materials required temperature treatment. Partial dehydration of natural gypsum (≈200o C), and calcination of calcite (≈850o C). Hydraulic cements - more durable. Hydration products are very insoluble - cements set under water. Earliest systematic development of these, probably Roman - use of limestones containing silica and alumina and also use of volcanic earths as an additive to limestone prior to calcination. Forerunner of modern Portland cements.

Portland cement - patented by Joseph Aspdin in mid-1800’s. Made from finely ground

limestone and finely divided clay to give a burned product containing 65-70% CaO, 18-

24% SiO2, 3-8% Fe2O3, 3-8% Al2O3 plus smaller proportions of minor oxides (e.g. Na2O,

K2O, MgO, etc.). Modern plants permit much more efficient processing and in addition,

proportion raw mix compositions to produce a cement from which a range of strength

development and durability properties can be expected.

Efficient grinding and blending of raw

materials is essential. Firing of blends (raw meal ) takes place in a rotary kiln following drying and dehydration in cyclone preheaters and pre-calciners . Materials undergo solid state reaction and partial melting (clinkering) at temperatures of up to 1500

C (in the hot zone of the kiln). Cement clinker is recovered on the cooling grate and sent for grinding and blending with gypsum. Cement clinker composition : - main clinker minerals are alite, belite, aluminate and

ferrite. Proportions vary depending on raw meal composition and firing and contribute to defining the hydration and strength development properties of the cement product. Alite - C 3S, 3CaO.SiO 2 (idealised): Minor - Al 2O 3, MgO, P 2O 5, Fe 2O 3, Na 2O, K 2O Belite - C 2S, 2CaO.SiO 2 (idealised): Minor - Al 2O 3, MgO, P 2O 5, Fe 2O 3, Na 2O, K 2O Aluminate - C 3A, 3CaO.Al 2O 3 (idealised): Minor - Fe 2O 3, SiO 2, MgO, Na 2O, K 2O Ferrite - C 4AF, 4CaO.Al 2O 3.Fe 2O 3 (idealised): Minor - SiO 2, MgO, TiO 2, Mn 2O 3.

Chemistry of clinker formation: - information on raw meal composition and required kiln conditions may be obtained from equilibrium phase diagrams . Minor components have a small influence on equilibria but approximations can be made using the CaO-Al 2O 3-SiO 2-Fe 2O 3 diagram although it is perhaps preferable to restrict initial considerations to phase relations in the CaO-SiO 2 and the CaO-Al 2O 3-SiO 2 systems.

The CaO-SiO 2 and CaO-Al 2O 3-SiO 2 systems are binary and ternary systems respectively. The ternary system shows the temperature and compositional information of the binary system (CaO-SiO 2) but with the third component (Al 2O 3) also, viewed from above. The curved lines represent temperature ‘valleys’ as on a map. Compositional information at a fixed temperature can be derived from an isothermal section . The 1500o C section of the CaO-Al 2O 3-SiO 2 system allows some consideration of phase equilibria in cement making.

Approximate bulk composition of raw meal is represented by C which means that C 2S and C

3S will be in equilibrium with a liquid phase of composition L c (which contains CaO, Al 2O 3 and SiO 2). It would expected from this diagram that the liquid would cool to crystallise C 3A. In practice, the final phase assemblage includes C 12A 7, a phase relevant to a lower temperature diagram. This arises

due to the non-equilibrium effect of fractionation; as cooling occurs, slow reactions can cause high temperature assemblages to be frozen in). The final properties of the cement strongly depend on its mineral composition so that raw meal composition and firing conditions are adjusted depending on the type of cement to be produced (see later notes on Cement Type). The cement manufacturer expresses the product composition both as an oxide analyses (chemical) or mineral composition. The latter is calculated using the Bogue calculation .

HYDRATION - the term used to describe a range of reactions between cement and water to produce a hardened product. A cement clinker particle is a multiphase solid having

massive calcium silicate grains (50 - 100 μm) in a matrix of interstitial aluminate and

(see box) to produce a range of

hydration products which intermesh

and interleave to produce a dense and

strength developing solid. The rates

of reaction are important. The C3A

reaction is fastest and also generates

most heat (cement hydration is

exothermic) but little contribution to

ultimate strength is derived from this

phase alone although it contributes

significantly to early strength. The

principal contributers to longer term strength are the calcium silicates. C3S is most reactive, giving early strength but C2S has a better longer term contribution. The C-S-H produced is the principal binding phase in Portland cements and is quantitatively the most significant hydration product. The ferrite reactions are intermediate in rate between the C3S and C2S reactions but have an important long term contribution to strength and durability.

Properties of Cement Hydration Products

Ca(OH)2- crystalline, isostructural with the

natural mineral Portlandite. Solubility at 25o C

of around 1g.l-1.

C-S-H - poorly crystalline product of variable composition. Considered to be based on a crumpled layer structure (analogous to a distorted clay sequence) which traps regions of porosity - pore size distribution from nm to μm. Simplified composition given by: Ca x H6-2x Si2O7.zCa(OH)2.nH2O where CaO/SiO2 = (x+z)/2 (Glasser et al, J.Am. Ceram. Soc., 70, 481-5, (1987)). Variable CaO/SiO2ratio (approx. 0.8 to 1.8) and variable H2O:SiO2 ratio (see CaO-SiO2-H2O phase diagram below). Variable composition means variable solubility properties. Solution compositions above C-S-H and the presence of other phases defines the C-S-H composition (see lectures) so that cements containing siliceous blending agents will have compositionally quite different C-S-H to that found in OPC pastes.

Distribution of hydration products in Portland

cement pastes Rates of hydration of individual clinker phases

AF t - or ettringite, or aluminoferrite trisulphate (C 6AS 3H 32). Crystalline - trigonal. Forms columnar type structure consisting of (Al,Fe)(OH)6 octahedra alternating with triangular groups of edge sharing CaO 8 polyhedra with which they share OH - ions. Inter-column regions contain loosely bound SO 42- groups which are exchangable. Responsible for retardation of C 3A hydration (due to coating of C 3A).

AF m - or monosulphate. Crystalline - layer

structure derived from that of Ca(OH)2 by the

ordered replacement of one Ca 2+ ion in three

with Al 3+ or Fe 3+. These layers alternate with

ones containing anions which balance the

charge (e.g. SO 42-, OH -, etc.) and H 2O.

Composition is [Ca 2(Al,Fe)(OH)6].X.x H 2O,

where X represents the interlayer anion. Hydrogarnet - nominally C 3AH 6, but in

practice contains Fe and Si. Related to the

mineral grossular or garnet (Ca 3Al 2Si 3O 12)

which has a cubic structure. Not normally a

product of modern OPC hydration although

present in blended cements and older Portland cements. Aqueous phase and pore structure - pore

fluid permeates the microstructure of the hardened cement paste via the pore system. It is highly alkaline (pH > 13) due to rapid and almost quantitative dissolution of Na and K salts from the cement clinker. The porosity of the paste comprises of interconnected and isolated pores, the pore sizes of which are important to the strength and dimensional stability of cement products.

The CaO-SiO 2-H 2O system

Crystal structure of ettringite

Cement Types and Standards : provides some quality restrictions to cement compositions and performance. Different types of cement are used to meet different performance criteria. Properties can be estimated from compositions and fineness. Try to

estimate which cement types will be rapid hardening, low heat ouput or sulphate resistant Portland cements. Blended Cements The use of cements in concrete which have not been blended with some form of reactive additive will become less likely in the future. There are now a range of additives commonly used to enhance the properties of concretes and, in some cases, result in reduced materials costs. This is mainly because they are industrial by-products. The most common of these are: pulverised fly ash (PFA)- a coal combustion product; blastfurnace slag (BFS), from iron making, and; condensed silica fume (CSF) from the ferrosilicon industry. The suitability

of such materials depends on: their

reactivity, their cost (availability) and

their influence on the properties of the

resulting concrete. All influence the

internal chemistry of the cement

system, i.e. pH, mineral balances, and

their generally slower reaction leads

to a longer equilibration time as

reaction products of the additive re-

equilibrate with cement hydration

products. Reactivity , in all cases,

depends on glass content, particle

size, composition (nature of

impurities) and external influences

such as temperature, humidity and

hydrating liquid composition. Silica fume: quartz reduced in an electric arc furnace - some SiO volatilisation and oxidation produces largely glassy SiO 2 particles of ≈100 nm diameter. Low density material with 86-95% reactive SiO 2.

PFA : arises as a dust in chimney stacks above coal-burning power station furnaces. Have widely variable compositions depending on furnace operating conditions and coal source. Particle sizes may be low, with 50% < 10 μm or coarse with 50% < 40 μm. Particles are generally spherical (formed by rapid cooling from a melt) and may be hollow Composition (wt%) and Properties of

Relative compositions of common blending agents for Portland cements

(cenospheres) with or without spheres inside (plerospheres). Largely glassy (85 - 90%) with small crystallites of mullite (A3S2) and quartz.

BFS: produced in the iron blastfurnace. Fluxes impurity oxides and sulphides. Composition is monitored (defines iron quality). Best for iron maker when ∑(CaO+MgO)/∑(SiO2+Al2O3) is maximised. Mainly glassy (>95%) and has its own CaO

content (approx. 40%).

Hydration characteristics Silica

fume reacts relatively fast in the

cement system. Pastes require a

higher water content than silica

fume-free ones unless a

superplasticiser is added. The silica

is consumed in reaction with

Ca(OH)2and lime-rich C-S-H

resulting in a paste with lower (or

no) Ca(OH)2and a C-S-H of low Influence of pfa addition on Ca(OH)2 content

CaO:SiO2ratio (maybe as low as 1.2). The nature of the CSF-cement reaction process leads to efficient pore-filling and consequent enhancement of mechanical performance (low porosity pastes are stronger than high porosity ones). Silica fume-OPC blends are therefore used in the production of High Strength Concrete (HSC) with compressive strengths routinely in excess of 100 MPa. PFA displays the same pozzolanic action as CSF (see plot above) but is generally much slower in reactivity due to the coarser particle size. Also, the alumina (around 30%) and iron (around 10%) content contribute to the formation of products other than C-S-H but even so, general C/S ratios can be significantly lower in PFA-OPC blends than in neat OPC. (Note that in all blended cements, compositional gradients are common.) Other products include hydrogarnet, e.g. C12A3FS4H16 was reported within a PFA cenosphere found in an aged paste (Rogers and Groves, Adv. Cements Research, 1, 841, (1988)). BFS has different hydration characteristics to CSF and PFA. Having a CaO content of its own, it is not a pozzolan as such (i.e. it does not depend on external sources of CaO to activate it - although its reactivity is accelerated by activators such as Ca(OH)2, Na2CO3, NaOH, etc). Typically, BFS exhibits an initial burst of activity in OPC-BFS blends. This is followed by a relatively dormant period which may last six months or more, depending on temperature, particle size and aqueous phase composition, before continued hydration consumes remaining glassy grains. Hydrotalcite (a magnesium aluminate hydroxide hydrate) and gehlenite hydrate (C2ASH8) are commonly found in BFS-OPC pastes along with ettringite, monosulphate and C-S-H but again, Ca(OH)2contents are substantially reduced and C-S-H has lower Ca/Si ratios with respect to neat OPC. A unique characteristic of BFS is its electrochemically reducing characteristics. E h values of < -500 mV vs SHE (standard hydrogen electrode) have been measured in pore fluids extracted from blends of 85% BFS - 15% OPC cured for 28 days. This compares with around +100 mV measured for equivalent OPC pastes. This feature has important implications for the use of BFS blends in waste immobilisation and for passivation mechanisms for steel.

Effects of Blending Agents on Paste Microstructures. The durability of cement pastes is strongly influenced by: (i) internal chemistry, and (ii) paste microstructure. The industrial by-product additives above all influence the development of paste microstructures. In neat OPC pastes, two types of porosity contribute to the total pore volume. Isolated pores are completely enclosed by hydration products so that material transport into and out of the pore is limited. Connected porosity is that through which a continuous pathway between

regions of the microstructure

exists. Continuous or

interconnected porosity often

(although not always) links the

interior of the paste to the outside

world so that aggressive chemical

species can penetrate and degrade

the paste internally having

consequences for paste durability.

The effect of the blending agents

identified above on microstructure

is to cause a reduction in the

degree of interconnected porosity.

This is especially true in the case

of BFS-containing pastes.

Although the overall porosity, as

determined by neutron scatterring Microstructure in BFS-OPC blends

is still significant, the interconnected porosity as measured by intrusion methods (e.g. MIP) is low. DURABILITY- the ability of the product to resist changes imposed by its service environment. Durability includes influences of mechanical damage, e.g. abrasion, thermal expansion, but is more commonly associated with chemical effects, e.g. sulphate attack, chloride-induced or general corrosion of steel reinforcement, alkali-aggregate reaction, etc.

Sulphate attack: - expansion arising from the reaction between monosulphate (4CaO.Al2O3.SO3.12H2O) and SO42- in the presence of aqueous Ca2+ to give ettringite. The conversion from the high density phase to the low density one can cause expansion and cracking. The cracking opens up new connected porosity which accelerates the transport of sulphate into the cement paste and the deterioration of the paste. (Try writing out the equations for the monosulphate-ettringite conversion).

Delayed Ettringite Formation: - a fairly recently discovered problem relating to degradation in steam-cured products. A number of mechanisms for this have been proposed (and at least one major legal conflict has arisen based on assigning liability for failed concrete products). It is proposed that the temperature cycle used in steam-curing produces a non-crystalline ettringite precursor which, on cooling and after some extended time period, crystallises having absorbed the required amount of moisture. Carbonation: - lowering of matrix pH due to the reaction between dissolved CO2 and the calcerous phases in the paste. Found at surfaces, a zone of carbonated product penetrates towards the interior to a distance which is defined by the porosity of the paste.

Carbonation can ultimately consume Ca(OH)2and C-S-H, the degradation of C-S-H leading to a progressive decalcification to very low Ca/Si ratios and ultimately, silica gel. Degradation of the principal binding phase therefore can lead to strength loss. A more immediate concern is the loss of high pH in the vicinity of steel reinforcement. A pH of greater than about 10.5 is thought to preserve a passive film on the steel, protecting it from corrosion. Loss of pH therefore increases the corrosion risk. Engineers specify a minimum ‘cover depth’ to attempt to deal with this problem but again, the depth of penetration is porosity dependent.

Effect of Chloride: - used to be a common additive to cements to accelerate setting but this use is now banned in structural concretes (Why do you think CaCl2would accelerated cement setting?). Chloride interactions with set concrete are however common, e.g. de-icing salts, salt spray, etc. Penetration is via connected porosity so that cover concrete may quickly become heavily loaded with soluble chloride. Steel passivation films are rapidly de-stabilised by chloride locally giving rise to pitting corrosion and rapid deterioration of the steel (the corrosion is focused in series of a small areas). There are competing influences of alkalinity and chloride effects so that a useful parameter to monitor is the [Cl]/[OH] ratio.

Steel Reinforcement Corrosion: The oxidation of Fe(m) to Fe2+. In addition, further oxidation and cathodic reactions lead to production of oxides and oxyhydroxides of Fe (III) which produces a low permeability ‘passive’ film which slows the corrosion rate down considerably. Where corrosion can continue (by depassivation), expansion of corrosion products at the cement-steel interface and the subsequent spalling of cover concrete can occur. Many examples of this can be seen in concrete structures. Spalling leads to exposure of previously internal concrete as a fresh site for environmental damage.

Alkali -Aggregate Reaction (AAR): Certain rocks contain silica in a mildly reactive form. Generally, flints, opals, cherts and strained quartz have a high degree of reactivity in concretes. The reaction is driven by the high pH pore fluid and the reactive silica and gives rise to a sodium silicate gel product which contains only a small amount of calcium. The gel imbibes water causing swelling and this gives rise to expansion cracks in affected concretes. The degree of expansion is important with respect to the servicability of affected structures. A recent study on a water inlet tower of a dam in Tasmania, Australia, showed that AAR expansion had increased the diameter of the tower sufficiently so that the inlet valves were unable to stem the flow of water when they were in the closed position.

Glass-fibre Reinforcement Corrosion: Unlike steel reinforcement, glass fibres are introduced in random orientation and throughout the paste. Typically, as filament bundles (of around 50 filaments) the fibres will be of variable length (up to 2 cm typically). As in the AAR, the highly alkaline cement pore fluid attacks the siliceous glass to produce a gel which imbibes water. The result is loss of effective fibre diameter as the gel continues to form. Occasionally, Ca(OH)2 crystals attach themselves to the fibre and degrade the fibre locally (notching) but the more general attack occurs even when pozzolans are added to minimise notching. This degrading reaction prohibits the use of glass reinforced concrete (GRC) as sole reinforcement in structural concrete.

水泥全分析初级测试题

考生单位:姓名:准考证号: 水泥全分析初级工理论知识试卷(C卷) 一、单项选择(第1题~第80题。选择一个正确的答案,将相应的字母填入题内的括号中。 每题1分,满分80分。) 1. 以酸碱中和反应为基础的分析方法叫( A )。 A、酸碱滴定法 B、氧化还原滴定法 C、络合滴定法 D、沉淀滴定法 2. 一等品复合硅酸盐水泥要求3天抗压强度不小于( B )MPa。 A、 B、19.0 C、 D、 3. 在2g溶液中含有2×10-6g溶质,用ppm浓度表示,即为( A )。 A、1ppm B、2ppm C、4ppm D、6ppm 4. 无水碳酸钠的熔点是( D )。 A、700℃ B、750℃ C、800℃ D、850℃ 5. 熟料中氧化铝含量与氧化铁含量的重量比是表示( B )。 A、熟料KH B、熟料IM C、熟料SM D、熟料LSF 6. 用乙二醇法快速测定游离氧化钙时,滴定至终点的颜色是( D )。 A、红色 B、紫色 C、蓝色 D、红色消失 7. 下列哪一种矿物早期强度高、后期强度也好( A )。 A、C3S B、C2S C、C3A D、C4AF 8. 下列哪一项不符合标准规定属于普通硅酸盐水泥废品( B )。 A、细读 B、初凝时间 C、终凝时间 D、烧失量 9. 200ml氢氧化钾溶液中含的氢氧化钾,此溶液的物质的量浓度是( D )。 A、L B、1mol/L C、2mol/L D、L 10. 用火焰光度计测定水泥中氧化钾和氧化钠的操作中,下列哪一种酸不使用( D )。 A、氢氟酸 B、硫酸 C、盐酸 D、磷酸 11. 已知某溶液的浓度为2ppm,则在1g溶液中所含溶质的质量为( A )。 A、2×10-6g B、2×10-5g C、2×10-4g D、2×10-3g 12. 天平室的湿度要求保持在( B )之间。 A、50~60% B、55~75% C、60~80% D、75~85% 13. 测定煤的挥发分,如果要重复性测定,( B )在同一次进行。 A、可以 B、不能 14. 有一乙醇溶液的浓度是95%(V / V),则200ml这种溶液中含乙醇( B )。 A、95ml B、190ml C、 D、200ml 15. 测定煤的挥发分应严格控制温度,并且总加热时间也要严格控制在( B )。 A、5min B、7min C、8min D、10min 16. 测定煤的水分时,试样的烘干时间要按规定严格控制,不得长时间烘样,否则煤样容易氧化增重使测定结果( A )。 A、偏低 B、偏高 C、不变 D、偏高偏低不一定 17. 测定石膏结晶水时,如果测定温度过高,将导致测定结果( A )。 A、偏高 B、偏低 C、不变 D、变化很小 18. 重量分析方法是最基本最直接的分析方法,,该方法准确度高,相对误差一般在( A )。 A、%~% B、%~% C、%~% D、%~% 19. 测定水泥中三氧化二铁的操作,滴定至终点时溶液显示( C )。 A、绿色 B、红色 C、亮黄色 D、紫色 20. 下列哪种氧化物对熟料KH值影响最大( B )。 A、CaO B、SiO2 C、Al2O3 D、Fe2O3 21. 水泥化学分析室内的温度应保持在( D )。 A、20℃ B、20±3℃ C、20±1℃ D、20±2℃ 22. 化学分析测定水泥中三氧化二铝(EDTA-铜盐法)的方法属于( B )。 A、直接滴定法 B、回滴定法 C、间接滴定法 D、置换滴定法 23. 水泥如有重大质量事故发生,必须查明事故原因,并在( C )内写出书面报告,报省、地市主管部门和水泥质检机构。 A、三日 B、五日 C、七日 D、十日 24. 水泥化学分析对样品的细度要求是试样应全部通过(A )方孔筛。 A、0.080mm B、0.2mm C、0.045mm D、0.9mm 25. 优等品普通硅酸盐水泥要求终凝时间不大于( B )。 A、6h B、 C、8h D、10h 26. 使用银坩埚时,使用温度不得超过( D )。 A、550℃ B、600℃ C、650℃ D、750℃ 27. 常用化学试剂的规格,属于分析纯试剂的标签标识颜色是( B )。 A、绿色 B、红色 C、蓝色 D、棕色 28. 烧失量的测定结果通常是将试样在( C )温度下灼烧至恒温得到的。 A、800~900℃ B、900~950℃ C、950~1000℃ D、1000~1050℃ 29. 以单位体积的溶液中所含溶质的质量表示的浓度叫( C )。

水泥化学分析标准滴定溶液的配制与标定

目录 1、硫代硫酸钠标准滴定溶液浓度的标定 2、碘酸钾标准滴定溶液与硫代硫酸钠标准滴定溶液体积 比的标定 3、碳酸钙标准溶液 4、EDTA标准滴定溶液 5、硫酸铜标准滴定溶液 6、硝酸铋标准滴定溶液 7、氢氧化钠标准滴定溶液 8、氢氧化钠标准滴定溶液 9、盐酸标准滴定溶液 10、苯甲酸-无水乙醇标准滴定溶液 11、氢氧化钠标准滴定溶液 12、盐酸标准滴定溶液

水泥化学分析标准滴定溶液的配制与标定 1、硫代硫酸钠标准滴定溶液浓度的标定 取15.00ml重铬酸钾基准溶液(0.03mol/L)放入带有磨口塞的200ml锥形瓶中加入3g碘化钾(KI)及50ml水,溶解后加入10ml硫酸(1+2),盖上磨口塞,于暗处放置15min—20min。用少量水冲洗瓶壁及瓶塞,以硫代硫酸钠标准滴定溶液滴定至淡黄色,加入约2ml淀粉溶液(10g/L),再继续滴定至蓝色消失。 另以15ml水代替重铬酸钾基准溶液,按上述分析步骤进行空白试验。 硫代硫酸钠标准滴定溶液的浓度按下式计算: C(Na 2S 2 O 3 )= 0.03×15.00 V 2 -V 1 式中 c(Na 2S 3 O 3 )——硫代硫酸钠标准滴定溶液的浓度,mol/L; 0.03——重铬酸钾基准溶液的浓度,mol/L; V 1 ——空白试验时消耗硫代硫酸钠标准滴定溶液的体积,ml; V 2 ——滴定时消耗硫代硫酸钠标准滴定溶液的体积,ml; 15.00——加入重铬酸钾基准溶液的体积,ml。 2、碘酸钾标准滴定溶液与硫代硫酸钠标准滴定溶液体积比的标定 取15.0ml碘酸钾标准滴定溶液(0.03mol/L)放入200ml锥形瓶中,加25ml 水及10ml硫酸(1+2),在摇动下用硫代硫酸钠标准滴定溶液(0.03mol/L)滴定至淡黄色,加入约2ml淀粉溶液(10g/L),再继续滴定至蓝色消失。 碘酸钾标准滴定溶液与硫代硫酸钠标准滴定溶液的体积比按下式计算: K=15.00/V 式中 K——每毫升硫代硫酸钠标准滴定溶液相当于碘酸钾标准滴定溶液的毫升数; V——滴定时消耗硫代硫酸钠标准滴定溶液的体积,ml; 15.00——加入碘酸钾标准滴定溶液的体积,ml。 碘酸钾标准滴定溶液对三氧化硫及对硫的滴定度按下式计算: T SO3= c(Na 2 S 2 O 3 )×V×40.03 15.00 T S = c(Na 2 S 2 O 3 )×V×16.03 15.00 式中 T SO3 ——每毫升碘酸钾标准滴定溶液相当于三氧化硫的毫克数,mg/mL; T S ——每毫升碘酸钾标准滴定溶液相当于硫的毫克数,mg/mL;c(Na 2 S 2 O 3 ) ——硫代硫酸钠标准滴定溶液的浓度,mol/L; V——标准体积比K时消耗硫代硫酸钠标准滴定溶液的体积,ml; 40.03——(1/2SO 3 )的摩尔质量,g/mol; 16.03——(1/2S)的摩尔质量,g/mol;

化学分析实验室标准物质管理指南

1. 范围 本标准规定了化学分析实验室中管理标准物质的程序和要求。 本标准适用于天津市化学分析实验室的标准物质管理。 2. 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ?GB/T 15000 标准样品工作导则 ?GB/T 27025-2008 检测和校准实验室能力的通用要求 ?JJF 1342-2012 标准物质研制(生产)机构通用要求 ?JJF 1343-2012 标准物质定值的通用原则及统计学原理 3. 术语和定义 下列术语和定义适用于本文件。 3.1 标准物质 reference material;RM 具有足够均匀和稳定的特定特性的物质,其特性被证实适用于测量中或标称特性检查中的预期用途。 3.2 有证标准物质 certified reference material;CRM 附有由权威机构发布的文件,提供使用有效程序获得的具有不确定度和溯源性的一个或多个特性量值的标准物质。 3.3 标准溶液 standard solution 由用于制备该溶液的物质而准确知道某种元素、离子、化合物或基团浓度的溶液。 注:本文件中的“标准溶液”指CRM经溶解或稀释后配制而成的溶液。

4. 管理要求 4.1 一般要求 4.1.1 化学分析实验室(以下简称“实验室”)应有标准物质管理人员。标准物质管理人员负责统筹管理标准物质的购买、验收、保存、使用、期间核查和报废等工作。 4.1.2 实验室应有运输、贮存和使用标准物质的相关程序,以防止污染或损坏。 4.1.3 实验室应有标准物质的管理记录。标准物质的管理记录应至少保存 3 年,或按相关规定的期限保存。 4.2 有证标准物质(CRM)的选择与购买 4.2.1 实验室选择和购买 CRM,应符合 GB/T 27025-2008 中 4.6 的要求。实验室应优先选择《中华人民共和国标准物质目录》中所列出的 CRM,如果目录中没有实验室需要的 CRM,也可选择国内有关行业部门或国外生产组织提供的 CRM。 4.2.2 实验室应确保所选购的 CRM 应满足下列要求: 1.有明确的溯源性和不确定度声明; 2.CRM 的制备、定值及认定符合 JJF 1342-2012、JJF 1343-2012 和 GB/T 15000 给出的 有效程序。 4.2.3 CRM 特性值的不确定度水平应与测量中的限度要求相匹配。 4.2.4 对出售 CRM 的供应商进行定期评价和资质核查。 4.2.5 属于危险化学品或易制毒化学品的 CRM,其购买应符合国家相关规定。 4.3 有证标准物质(CRM)的验收 4.3.1 收到 CRM 后,实验室应进行下列检查并填写验收记录: 1.运输条件是否符合要求; 2.包装、外观是否正常,标识是否清晰完整; 3.有无证书,是否在证书声明的有效期内。 4.3.2 如发现异常情况,应及时与供应商联系。验收合格后,标准物质管理人员应赋予 CRM 明确的标识。实验室完成 CRM 的验收后,应建立 CRM 档案,包括证书、验收记录等。

水泥化学分析报告

水泥化学分析报告 熟料矿物组成(%): 1.C3S(硅酸三钙) : 54.61% 作用:早期抗压、抗折强度都低,28天后期强度高,水泥的强度主要是指硅酸三钙的强度 2.C2S(硅酸二钙):21.06% 作用:增加后期强度,一、二年以后都在增长,C3S一、二年以后强度增长很小。 3.C3A(铝酸三钙):6.71% 作用:早期放热量最大,强度高,超量放热大收缩大会产生裂纹,天冷时可提高C3A的含量,如果C3A含量偏高,只有加石膏降低其温度,可改善初凝、终凝时间,掺量不能大于5%,掺量超标影响强度。(特重、重交通路面不宜>7%,中轻交通路面不宜>9%)。 4.C4AF(铁铝酸四钙);11.14% 作用;主要提高抗折强度,民航规定>15%(特重、重交通路面不宜<15%,中轻交通路面不宜<12%). 放热量大依次为:C3A、C4AF、C3S、C2S 二、其他成分: 游离氧化钙:特重、重交通路面不得>1%;中轻交通路面不得>1.5% 氧化镁:特重、重交通路面不得>5%;中轻交通路面不得>6% 三氧化硫:特重、重交通路面不得>3.5%;中轻交通路面不得>4% 碱含量:特重、重交通路面Na2O+0.658K2O≤0.6%; 中轻交通路面,怀疑有碱活性集料时≤0.6%;无碱活性集料时≤1% 混合材种类:特重、重交通路面:不得掺窑灰、煤矸石、火山灰和粘土,有抗

盐冻要求时不得掺石灰、石粉 中轻交通路面:不得掺窑灰、煤矸石、火山灰和粘土,有抗盐冻要求时不得掺石灰、石粉 标准稠度需水量:特重、重交通路面:不宜>28%;中轻交通路面:不宜>30%比表面积:特重、重交通路面:宜在300~450m2/Kg; 中轻交通路面:宜在300~450m2/Kg 初凝时间:特重、重交通路面:不早于1.5小时;中轻交通路面:不早于1.5小时 终凝时间:特重、重交通路面:不早于10小时;中轻交通路面:不早于10小时 温度:散装水泥的夏季出厂温度:南方不宜高于65℃,北方不宜高于55℃混凝土搅拌时的水泥温度:南方不宜高于60℃,北方不宜高于50℃,且不宜低于10℃

水泥的化学分析技巧及要领.

检测与监理广东建材2009年第3期 水泥的化学分析技巧及要领 廖映华 摘 (潮州市建筑工程质量检测站) 要:本文通过介绍水泥化学分析中几个强制性检测项目的分析技巧及要领,希望能帮助各检测 机构提高对这几个项目的检测能力。 关键词:水泥;烧失量;不溶物;三氧化硫;氧化镁 误差,也称测量误差,是测量结果减去被测量的真 值所得的差。测量结果是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员有关。所以在分析过程中,我们一定要严格按照 以防止水泥中挥发性物质(如碱、氯化物、硫化物等等)因急剧受热,猛烈排出而使水泥样飞溅,造成结果偏低。 同时一定要确保灼烧温度控制在950~1000℃之间。 ⑸灼烧完毕坩埚盖打开后应及时将样品放在干燥 标准中的程序进行操作,还要确保测量仪器的准确性,器中密封保存,防止样品吸收空气中的水分和二氧化碳测量环境的控制,及一些人为的误差。这样才能确保检使测试结果偏高。测的准确性,杜绝不合格品的使用从而确保建筑工程的⑹瓷坩埚的标识不能象我们标识玻璃器皿,用蜡质量;同时不致于把合格品检测成不合格品,造成生产厂家的损失。 检测机构对水泥化学分析的强制性检测项目,主要有烧失量、不溶物、三氧化硫、氧化镁等,下面就来谈一谈本人在检测这几个项目时所积累的一些经验和教训,以便大家减少检测误差并且对这几个项目的检测能力有所提高。 笔,因为蜡在高温下会熔化,所以我们要用能耐高温950~1000℃的物质。可用小刀在坩埚上划出数字再用三氯化铁来着色,其颜色经950~1000℃灼烧后能永久保留。 2不溶物(IR) 不溶物的测定是先以盐酸溶液处理,滤出的不溶残渣再以氢氧化钠处理,经盐酸中和、过滤后,残渣在高温950℃下灼烧至恒量,称量剩余物质的质量算出不溶物 它的测定结果与的质量百分数。不溶物不是化学成分, 试验条件密切相关,所以在测定过程应注意:

化学分析岗位工作标准

理化室岗位职责及素质要求 岗位名称:化学分析 1.职责 1.1根据公司生产实际需要制定个人的年度、季(或月)度工作计划,并实施。 1.2跟踪相关化学分析国内外最新动向,负责化学分析仪器的调研考查并提出综合建议,检验方法研究以及工艺完善、改进及编制。 1.3 负责监督化学分析人员的工作质量。 1.4 负责化学分析检测人员的理论及操作的培训,新工艺、新方法和仪器的推广应用。 1.5负责处理日常生产中的技术问题和仪器故障。 1.6完成领导交办的临时任务。 2. 权限 2.1根据生产实际,向相关领导提交化学分析的标准物质、标准块等消耗品以及仪器配件的采购建议。 2.2 有权向相关领导提出提高化学分析能力的建议和意见。并对仪器采购、维修提出建仪。 2.3 协助相关领导对本室人员的工作质量进行监督、检查,并提出相关意见。 3. 素质描述 3.1 文化程度:具有大专以上文化程度。 3.2 专业知识: A具有《普通化学》、《无机化学》、《分析化学》、《仪器分析》的基本原理和基本知识。 B 具有熟悉化学反应原理、化学计量换算、安全生产等基本理论知识。 C 掌握一般化学分析仪器工作原理,仪器结构、性能及适用范围。 D 掌握本公司产品及相关材料分析特点和方法原理,了解国内外金属材料分析现状和行业发展趋势。 3.3 业务能力 A 具有教强的分析问题和独立解决实际技术问题的能力。 B 具有教强的动手操作能力。 C 能熟悉计算机基本操作和常用软件应用,具有运用计算机处理实际工作问题的能力。 D 掌握一门外语,并有运用外语阅读本专业相关资料的能力。 3.4 工作经历:从事化学分析两年以上。 3.5 技术职称:初级以上职称。 3.6 其他要求:热爱本岗、身体健康、忠诚企业。

水泥化学分析方法

水泥化学分析方法 GB/T176--1996 1 范围 本标准规定了水泥化学分析方法的基准法和在一定条件下被认为能给出同等结果的代用法。在有争议时以基准法为准。本标准适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥以及制备上述水泥的熟料和适合本标准方法的其他水泥。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB12573─90水泥取样方法 3 试验的基本要求 3.1试验次数与要求 每项测定的试验次数规定为两次。用两次试验平均值表示测定结果。 在进行化学分析时除另有说明外必须同时做烧失量的测定;其他各项测定应同时进行空白试验并对所测结果加以校正。 3.2质量、体积、体积比、滴定度和结果的表示 用―克‖表示质量精确至0.0001g?。?滴定管体积用―毫升‖表示,?精确至0.05ml 滴定度单位用毫克/毫升(mg/ml)表示;溶液的体积比以三次测定平均值表示,滴定度和体积比经修约后保留有效数字四位。各项分析结果均以百分数计,表示至小数二位。 3.3 允许差 本标准所列允许差均为绝对偏差,用百分数表示。 同一试验室的允许差是指:同一分析试验室同一分析人员(或两个分析人员)采用本标准方法分析同一试样时,两次分析结果应符合允许差规定。如超出允许范围,应在短时间内进行第三次测定(或第三者的测定),测定结果与前两次或任一次分析结果之差值符合允许差规定时,则取其平均值,否则应查找探因,重新按上述规定进行分析。 不同试验室的允许差是指:两个试验室采用本标准方法对同一试样各自进行分析时,所得分析结果的平匀值之差应符合允许差规定。如有争议应商定另一单位按年标准进行仲裁分析。以仲裁单位报出的结果为准,与原分析结果比较,若两个分析结果之差值符合允许差规定,则认为原分析结果无误。 3.4灼烧 将滤纸和沉淀放入预先已灼烧并恒量的坩埚中,烘干。在氧化性气氛中慢慢灰化,不使有火焰产生,灰化至无黑色炭颗粒后,放入马弗炉中,在规定的温度下灼烧。在干燥器中冷却至室温,称量。 3.5恒量 经第一次灼烧、冷却积量后通过连续对每次15min的灼烧,然后冷却、称量的方法来检查恒定质量,当连续两次称量之差小于0.0005g时即达到恒量。 3.6检查Cl-离(硝酸银检验) 按规定洗涤沉淀数次后,用数滴水淋洗漏斗的下端,用灵敏毫升水洗涤滤纸和沉淀,将滤液收集在试管中,加几滴硝酸银溶液(见 4.14),?观察试管中溶液是否浑浊。如果浑浊继续洗涤并定期检查、直至用硝酸银检验不再浑浊为止。 4试剂和材料

化学分析工职业资格标准

化学分析工职业资格标准 This manuscript was revised on November 28, 2020

化学分析工国家职业标准 1.职业概况 职业名称:分析工 职业定义:按照分析检验规程或标准,使用化学试剂、分析仪器、计算工具,对原材料、中间体、成品等物件的技术指标进行测定,或进行定性测定,或对生产过程进行控制分析,为评定其质量和水平提供依据,或为试验研究提供分析测试数据的分析测试检验人员。 职业等级:本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 职业环境:室内(或室外),常温。 职业能力特征: 非常重要重要一般 学习能力 * 计算能力 * 表达能力 * 观察判断能力 * 视(色)觉 * 嗅觉 * 听觉 * 动作协调性 * 手指灵活性 * 基本文化程度:高中毕业(同等学历)。 培训要求 培训期限:全日制职业学校教育,根据其培训目标和教学计划确定。晋级培训期限:初级不少于260标准学时;中级不少于322标准学时;高级不少于340标准学时。 培训教师:培训初、中级的教师应具有本职业高级及其以上职业资格证书或本专业中级及其以上专业技术职称任职资格;培训高级的教师应具有本职业技师及其以上职业资格证书或本专业高级及其以上专业技术职称任职资格;培训技师的教师应具有本专业高级及其以上专业技术职称任职资格或本职业高级技师职业资格证书,并具有丰富的分析实践经验者;培训高级技师的教师应具有本专业高级及其以上专业技术职称任职资格或本职业高级技师职业资格证书5年以上,并具有丰富的本职业的组织管理和分析实践经验者。 培训场地和设备:标准教室,一般分析测试所需的实验室及其设施,容量分析、重量分析、气体分析和仪器分析所需的仪器设备和技能训练场所(详见附件:实验室及设备仪器要求)。 鉴定要求 适用对象:从事或准备从事本职业的人员。 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达到规定标准学时数,并取得毕(结)业证书。 (2)从事本职业学徒期满。

水泥组分分析方法

某某水泥有限公司 水泥组分的定量测定 Methods for determination of contents in cement production 需要软件计算的请邮箱联系 wenkxin@https://www.360docs.net/doc/c116413034.html, 2011-11-11实施

水泥组分的定量测定 1 范围 本方法采用化学分析法和现场实测法测定水泥各组分掺加量。在有争议时,以化学分析法为准。 2 规范性引用文件 下列文件中的条款通过本方法的引用而成为本方法的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本方法,然而,鼓励根据本方法达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本方法。 GB/T176 水泥化学分析方法 GB/T5484 石膏化学分析方法 GB/T5762 建材用石灰石化学分析方法 GB/T6682 分析实验室用水规格和试验方法 GB12573 水泥取样方法 JC/T850 水泥用铁质原料化学分析方法 JC/T874 水泥用硅质原料化学分析方法 3 术语和定义 3.1 特征化学成分characteristic chemical component 某组分中所含有的一种化学成分,该化学成分在其他组分中不含有或其含量可忽略不计。 3.2 特征组分characteristic constituent 含有特征化学成分(3.1)的组分。 4 试验的基本要求 4.1 结果的处理 各组分掺加量测定结果以质量计,数值以(%)表示至小数点后一位。 4.2 重复性极限 在短时间间隔内,在同一试验室由同一操作人员使用同一设备和相同的操作方法,对同一项目(材料)试验所得到的各独立测定结果之间的重复性极差,以质量分数的绝对值(%)表示。 4.3 再现性极限 不同试验室由不同操作人员使用不同设备和相同的操作方法,对同一项目(材料)试验所得到的各独立测定结果之间的再现性极差,以质量分数的绝对值(%)表示。 5 化学分析方法

化学检验工国家职业标准

化学检验工国家职业标准 发布者:chk-jyc 发布时间:2011-1-7 浏览次数:190次【字体:大中小】 化学检验工国家职业标准 1.职业概况 1.1职业名称 化学检验工。 1.2职业定义 以抽样检查的方式,使用化学分析仪器和理化仪器等设备,对试剂溶剂、日用化工品、化学肥料、化学农药、涂料染料颜料、煤炭焦化、水泥和气体等化工产品的成品、半成品、原材料及中间过程进行检验、检测、化验、监测和分析的人员。 l.3职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4职业环境 室内,常温。 1.5职业能力特征 有一定的观察、判断和计算能力,具有较强的颜色分辨能力。 l.6基本文化程度 高中毕业(或同等学力)。 l.7培训要求 1.7.1培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级、中级、高级不少于180标准学时;技师、高级技师不少于150标准学时。

1.7.2培训教师 培训中、高级化学检验工的教师应具有本职业技师以上职业资格证书或本专业中级以上专业技术职务任职资格;培训技师的教师应具有本职业高级技师职业资格证书或本专业高级专业技术职务任职资格;培训高级技师的教师应具有本职业高级技师职业资格证书2年以上或本专业高级专业技术职务任职资格。 1.7.3培训场地设备 标准教室及具备必要检验仪器设备的试验室。 1.8 鉴定要求 1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得毕(结)业证书. (2)在本职业连续见习工作2年以上。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作3年以上,经本职业中级正规培训达规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作4年以上。 (3)连续从事本职业工作5年以上。 (4)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等以上职业学校本职业(专业)毕业证书。 ——高级(具备以下条件之一者) (1)取得本职业中级职业资格证书后,连续从事本职业工作3年以上,经本职业高级正规培训达规定标准学时数,并取得毕(结)业证书。

水泥化学分析方法 培训试题(含答案)

《水泥化学分析方法》GB/T 176-2017培训试题 姓名:得分: 一、填空题(每空1分,共36 分) 1、重复性条件是在试验室,由操作者使用设备,按照相同的测定方法,并在短时间内从同一被测对象取得相互独立测试结果的条件。 2、重复性限是一个数值,在重复性条件下,两次测试结果的绝对差值不超过此数的概率为。 3、每一项测定的试验次数为两次、两次结果的在内,用两试验结果的平均值表示测定结果。 4、在进行化学分析时,建议同时进行的测定。 5、质量用表示,精确至,滴定管的体积用表示,精确至,滴定度用表示。 6、苯甲酸-无水乙醇标准滴定溶液对氧化钙的滴定度保留位有效数字,其他标准滴定溶液浓度、滴定度、和体积比保留位有效数字。 7、不加入,按照的测定步骤进行试验并使用的试剂,对得到的测定结果进行校正。 8、经第一次灼烧、冷却、称量后,通过连续对每次 min的灼烧,然后冷却、称量的方法来检查恒定质量,当连续两次称量之差小于时,即达到恒量。 9、除另有说明外,所用试剂应不低于,用于标定的试剂应为。所用水应不低于GB/T 6682中规定的的要求。 10、氧化镁(EDTA滴定法)的重复性限,≤2%时为,>2%时为。 11、烧失量试验,试样在℃的高温炉中灼烧,灼烧所失去的质量即是烧失量。 12、氧化镁测定-原子吸收分光光度法可以采用分解试样,熔融试样,熔融试样。 13、五氧化二磷的测定-磷钼蓝分光光度法采用 mm比色皿,于波长 nm处测定吸光度。 14、碱含量的测定可以采用的方法是和。 15、一氧化锰可以采用原子吸收分光光度法外,还可以采用。 16、三氧化硫的测定(基准法),用分解试样生成离子,在煮沸下用溶液沉淀。 二、单选题(每小题2分,共 40 分)

化学分析技术课程标准

xx职业技术学院课程标准 课程名称:《化学分析技术》 适用专业:工业分析技术 学时数:70学时 学分: 4分 20xx年02 月

《化学分析技术》课程标准 一、课程的性质 本课程是工业分析技术专业的职业能力核心课程之一。通过化学分析技术的学习,使学生熟练地掌握化学分析的基础知识和实验技术、技能。掌握定量分析操作技能和相关的理论知识,熟悉常用化学分析仪器的使用方法和适用范围,掌握正确的数据处理及质量控制方法,培养学生良好的实验习惯和实事求是的科学态度。具有分析化学检验常规技能和现代仪器检测新技能,具有创新意识和较强工作能力,能进行工业生产分析、产品质量检验、环保分析、食品分析、商品检验等分析检验工作,又具有化工产品质量管理技能,适用生产第一线需要的高素质技能型专门人才。本课程为职业能力课,后续课程有《仪器分析技术》、《化妆品和涂料分析》、《工业分析分析方法设计》。 二、设计思路 该课程是依据“工业分析技术专业工作任务与职业能力分析表”中的分析化验工作项目设置的。从化工技术类专业人才培养目标的需要出发,以基础知识必需、够用为度、强化学生职业能力培养为原则,构建了合理的教学体系。化学分析技术课程体系由化学分析理论课程、基本实验、综合实训三部分组成。其中理论课程54学时、基本实验16学时,综合实训两周。 分析化学课程体系的教学内容主要选取定量分析方法和相关实践技能训练。理论教学内容包括三大模块: 1.定量化学分析概论 2. 滴定分析法 3.重量分析法 实践教学内容分为三个层次: 1.课内实验 2.基本操作训练 3.综合实验技术实训(实训周另外安排) 课内实验是常用仪器使用练习,包括分析天平的使用、滴定分析基本操作。基础训练包括滴定分析仪器的校准、应用各种定量分析方法针对实际样品的测定;综合实验技术实训是以实际工作任务为载体,强化学生能力培养,内容包括:食用醋乙酸含量的测定、工业碳酸钠总碱度的测定、水总硬度的测定、水中化学耗氧量的测定(KMnO4法)、水中氯离子含量

水泥全分析实验过程

水泥熟料的测定 1烧失量的测定----灼烧差减法 称取1克试样,精确至0.0001克——以灼烧恒量的瓷坩埚——将改斜于坩埚上——放入高温炉内——(950+25)度灼烧15-20分钟——取出至于干燥器中——冷却至室温——称量 2二氧化硅的测定----氟硅酸钾容量法 吸取50.00毫升试样——300毫升塑料烧杯中——加入10-15毫升硝酸,搅拌,冷却至室温——加氯化钾至有析出——多加2克氯化钾+10毫升氟化钾(150克/升)至析出——放置15-20分钟(搅拌2次)——中速滤纸过滤——氯化钾(50克?升)洗涤3次——取下滤纸放入原烧杯——沿烧杯加10毫升氯化钾-乙醇溶液+1毫升酚酞——展开滤纸,氢氧化钠标液(0.15摩尔?升)中和至红色——加200毫升沸水——用氢氧化钠标液滴定至红色 3三氧化二铁的测定 吸取25毫升试样——300毫升烧杯——加水稀释至100毫升——加10滴磺基水杨酸钠——加氨水(1+1)调至红棕色或黄色——加盐酸(1+1)调至紫红色,再多加6滴——加热至70度——用EDTA标液滴定至亮黄色 4三氧化二铝的测定 测铁之后的溶液加入EDTA标液10-15毫升——加水稀释至150-200毫升——加热至70-80度——搅拌下加氨水(1+1)调节PH值至3.0-3.5——加15毫升PH4.3的缓冲溶液——加热煮沸1-2分钟——加5滴PAN——硫酸铜标液滴定至亮紫色或红色 5氧化钙的测定 吸取25毫升的试样——300毫升烧杯——加水稀释至200毫升——加5毫升三乙醇胺(1+2)+适量CMP——搅拌下加氢氧化钾(200克?升)至出现绿色荧光——再过量5-8毫升——用EDTA标液滴定至绿色荧光消失并出现红色 6氧化镁的测定 吸取25毫升试样——300毫升烧杯——加水稀释至200毫升——加1毫升酒石酸钾钠——搅拌——加5毫升三乙醇胺(1+2)——搅拌——加25毫升PH10氯化铵缓冲溶液+适量KB指示剂——用DETA标液滴定至纯蓝色

水泥化学分析习题及答案

水泥化学分析习题 一、填空题(每空1分) 1、矿物和岩石中的水分,一般以附着水和化合水两种形态存在。 2、附着水不是物质的固有组成部分,其含量与其细度以及周围空气的湿度有关。 3、化合水有结晶水和结构水两种形式。 4、结晶水是以H20分子状态存在于物质的晶格中(如二水石膏CaS04·2H2O),通常在 400℃以下加热便可完全除去;结构水是以化合状态的氢或氢氧基的形式存在于物质的晶格中,一般需加热到高温才能分解并放出水分。 5、附着水分通常在105~110℃下就能除掉,在测定矿物岩石中的附着水分时,可把试 样在105~110℃下烘干至恒量。 6、天然二水石膏由于其失去结晶水的温度较低,在80~90℃时即开始变成半水石膏, 故测定其附着水通常是在45~60℃的温度下进行。 7、水泥在吸水后,矿物即发生水化,水以化合水形态存在,在105~110℃不可能将其 烘出。 8、一般规定,试样在950~1000℃下灼烧后的减少的质量百分数即为烧失量(个别试样 的测定温度则另作规定)。 9、烧失量实际上是样品中各种化学反应在质量上的增加和减少的代数和。 10、烧失量的大小与灼烧温度、灼烧时间及灼烧方式等有关。 11、正确的灼烧方法应是在马弗炉中(不应使用硅碳棒炉)由低温升起达到规定温度 并保温半小时以上。 12、不溶物是指在一定浓度的酸和碱溶液中对水泥(或熟料)进行处理后得到的残渣。 13、不溶物的测定方法是一个规范性很强的经验方法。结果正确与否同试剂浓度、 试剂温度、处理时间等密切相关。 14、为了测定二氧化硅,首先要把样品中的二氧化硅转化成可溶性的硅酸盐。试样 通过分解制得溶液。溶液中硅酸含量的测定,通常采用重量法(盐酸蒸干法,氯化铵法等)和氟硅酸钾容量法。对硅酸含量低的样品,也可采用比色法。对某些硅酸含量特高,而其中碱金属和碱土金属元素含量又很低的样品,也可直接用氢氟酸-硫酸处理,按差减法求得二氧化硅的含量,但目前在水泥分析中已很少采用,它已被氟硅

化学分析工职业资格标准

化学分析工国家职业标准 1.职业概况 职业名称:分析工 职业定义:按照分析检验规程或标准,使用化学试剂、分析仪器、计算工具,对原材料、中间体、成品等物件的技术指标进行测定,或进行定性测定,或对生产过程进行控制分析,为评定其质量和水平提供依据,或为试验研究提供分析测试数据的分析测试检验人员。 职业等级:本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 职业环境:室内(或室外),常温。 职业能力特征: 非常重要重要一般 学习能力* 计算能力* 表达能力* 观察判断能力* 视(色)觉* 嗅觉* 听觉* 动作协调性* 手指灵活性* 基本文化程度:高中毕业(同等学历)。 培训要求 培训期限:全日制职业学校教育,根据其培训目标和教学计划确定。晋级培训期限:初级不少于260标准学时;中级不少于322标准学时;高级不少于340标准学时。 培训教师:培训初、中级的教师应具有本职业高级及其以上职业资格证书或本专业中级及其以上专业技术职称任职资格;培训高级的教师应具有本职业技师及其以上职业资格证书或本专业高级及其以上专业技术职称任职资格;培训技师的教师应具有本专业高级及其以上专业技术职称任职资格或本职业高级技师职业资格证书,并具有丰富的分析实践经验者;培训高级技师的教师应具有本专业高级及其以上专业技术职称任职资格或本职业高级技师职业资格证书5年以上,并具有丰富的本职业的组织管理和分析实践经验者。 培训场地和设备:标准教室,一般分析测试所需的实验室及其设施,容量分析、重量分析、气体分析和仪器分析所需的仪器设备和技能训练场所(详见附件:实验室及设备仪器要求)。 鉴定要求 适用对象:从事或准备从事本职业的人员。 申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达到规定标准学时数,并取得毕(结)业证书。 (2)从事本职业学徒期满。 (3)连续从事本职业工作2年以上。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作1年以上,经本职业中级正规培训达到规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业工作3年以上。 (3)取得经劳动保障行政部门审核认定的、以中级技能为培训目标的中等以上职业学校本职业毕业证书。

水泥全分析

吉林工业职业技术学院 冶金与建筑材料检验综合报告 水泥全分析 姓名: 学号: 专业班级: 指导教师:

吉林工业职业技术学院 目录 摘要: (1) 关键词 (1) 第一篇水泥分析简介 (2) 1 资料查阅 (2) 1.1水泥组成、分类、用途 (2) 1.2水泥生产简介 (2) 1.3水泥检测项目与控制指标 ................................................ 错误!未定义书签。 2 文献综述 (3) 2.1水泥检测意义 (3) 2.2拟定预做实验方案 ........................................................... 错误!未定义书签。第二篇实验部分 . (4) 1检测项目一水泥中硅含量的测定 (4) 1.1测定意义 (4) 1.2测定方法 ............................................................................ 错误!未定义书签。 1.3仪器及工作参数 (4) 1.4试剂 (4) 1.5工作程序 (4) 1.6结果与讨论 ........................................................................ 错误!未定义书签。2检测项目二水泥中铁、铝含量的测定 . (6) 1.1测定意义 (6) 1.2测定方法 (6) 1.3仪器及工作参数 (7) 1.4试剂 (7) 1.5工作程序 (7) 1.6结果与讨论 ........................................................................ 错误!未定义书签。

硅酸盐水泥的分析实验报告

硅酸盐水泥中的SiO2,Fe2O3,Al2O3,CaO 和MgO含量的测定 摘要 硅酸是一种很弱的无机酸,在水溶液中绝大部分以溶胶状态存在在用浓酸和加热蒸干等方法处理后,能使绝大部分硅酸水溶胶脱水成水凝胶析出,因此可以利用沉淀分离的方法把硅酸与水泥中的铁、铝、钙、镁等其他组分分开重量法测定SiO2 的含量,Fe2O3 、Al2O3 、CaO和MgO的含量以EDTA配位滴定法测定。 关键词:SiO2、Fe2O3 、Al2O3 、CaO和MgO、EDTA Abstract Silicate is a weak inorganic acid , it exists in aqueous solution in most in the form of the gel .When heated with concentrated acid and evvaporated ,dehydration can make most of the acid water sol gel precipition into water . Therefore,the method can be used to precipition of iron silicate and cement ,aluminum,calcium and other components separately from the content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the EDTA titrimetric method. Keywords: SiO2, Fe2O3, Al2O3, CaO and MgO, EDTA

水泥化学分析用普通试剂及配制

水泥化学分析用普通试剂及配制 1、CMP混合指示剂 称取1.000g甲基百里香酚蓝、0.200g酚酞与50g已在105℃~110℃烘干过的硝酸钾(KNO3)混合研细,保存在磨口瓶中。 2、EDTA—铜溶液 按EDTA标准滴定溶液[c(EDTA)=0.015mol/L]与硫酸铜标准滴定溶液[c(CuSO4)=0.015mol/L]的体积比,准确配制成等浓度的混合溶液。 3、K-B混合指示剂(1+2.5) 称取1.000g酸性铬蓝K与2.5g萘酚绿B与50g已在105℃~110℃烘干过的硝酸钾(KNO3)混合研细,保存在磨口瓶中。 4、PAN[1-(2-吡啶偶氮)-2-萘酚]指示剂溶液 将0.2gPAN溶于100ml95%乙醇中。 5、pH值为3的缓冲溶液 将3.2g无水乙酸钠(CH3COONa)溶于水中,加120ml冰乙酸(CH3COOH),用水稀释至1L,摇匀。 6、PH值为4.3的缓冲溶液 将42.3g无水乙酸钠(CH3COONa)溶于水中,加80ml冰乙酸(CH3COOH),用水稀释至1L,摇匀。 7、PH值为6的缓冲溶液 将200g无水乙酸钠(CH3COONa)溶于水中,加20ml冰乙酸(CH3COOH),用水稀释至1L,摇匀。 8、PH值为10的缓冲溶液 将67.5g氯化铵(NH4Cl)溶于水中,加570ml氨水,加水稀释至1L。 9、乙二醇-乙醇(2+1)溶液 将1000ml乙二醇与500ml无水乙醇混合,再加入0.2g酚酞,摇匀,用0.1mol/L 的氢氧化钠-无水乙醇溶液中和呈微红色,贮存与干燥的玻璃瓶中,密封保存。 10、三乙醇胺[N(CH2CH2OH)3](1+2) 11、无水乙醇(C2H5OH) 体积分数不低于99.5% 12、无水碳酸钠(Na2CO3) 将无水碳酸钠用玛瑙研钵研细至粉末状保存。 13、无水碳酸钾(K2CO3) 将无水碳酸钾用玛瑙研钵研细至粉末状保存。 14、半二甲酚橙指示剂溶液(5g/L) 将0.5g半二甲酚橙溶于100ml水中。 15、甲基红指示剂溶液(2g/L) 将0.2g甲基红溶于100ml乙醇中。 16、甲基红-溴甲酚绿混合指示剂溶液 将0.05g甲基红与0.05g溴甲酚绿溶于约100ml无水乙醇中。 17、甲基橙指示剂溶液(1g/L) 将0.1g甲基橙溶于100ml乙醇中。 18、甲基百里香酚蓝指示剂(MTB)

气瓶标准中的化学分析名词术语

安全管理编号:LX-FS-A92376 气瓶标准中的化学分析名词术语 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

气瓶标准中的化学分析名词术语 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (一)钢的熔炼成份 钢的熔炼成份是指钢在熔炼(和罐内脱氧)完毕,浇汪中期的化学成份。为了使其有一定的代表性,代表滚炉或罐的于均成份,在标准方法中规定在样模内铸成小锭,饱取或钻取试屑,按规定的标准方法进行分析。 (二)成品成份 钢材的成品成份,又叫验证分析成份,是指从成品钢材上(包括气瓶用初轧钢坯)按规定方法(详见GB 222—84)钻取或饱取试屑,并按规定的标准方法分析得来的化学成份。钢材的成品成份主要是供使用部

相关文档
最新文档