第6讲 理清三个关系是复习好“导数及应用”的关键

第6讲 理清三个关系是复习好“导数及应用”的关键
第6讲 理清三个关系是复习好“导数及应用”的关键

第6讲理清三个关系是复习好“导数及应用”的关键

导数是解决函数问题的有力工具,是高考的热点,要从几何意义上认识导数概念的实质,会求曲线在某一点处的切线方程,熟练导数的基本运算、函数单调性与导数的关系,熟练利用导数研究函数的单调区间、极值、最值、零点,会用导数证明不等式等.

1.理清函数增长、递减快慢与切线斜率之间的关系.

函数增长、递减与否与导函数的符号有关,但函数增长、递减的快慢与导函数符号就无关了.函数增长、递减快慢与切线斜率之间的关系,如果切线斜率不小于零,且随着自变量的增大,切线斜率越来越大,说明函数增长速度越来越大,反之,说明函数增长速度越来越小.

2.理清函数单调性与导数的关系.

在区间M上,若f′(x)>0,则函数f(x)在区间M上是增函数.若f(x)在区间M上是增函数,则f′(x)≥0.即f′(x)>0是f(x)是增函数的充分不必要条件.

3.理清极值点与导函数零点的关系.

若x0是函数的极值点,则f′(x0)=0.反之,若f′(x0)=0,x0不一定是函数的极值点.如y=x3,尽管f′(0)=0,但y=x3在R上是增函数,x=0不是极值点.

4.理清判断导函数符号的程序.

研究函数f(x)导函数的一般程序为:确定函数定义域,求导,明确决定导函数f′(x)符号的因素,把这个因素即一个新的函数m(x)剥离出来,转而研究这个函数的零点.方程m(x)=0往往是可解的,只取函数f(x)定义域内的解.然后判断这些解的左右f′(x)的符号,最终确定f(x)的单调区间.如果含有参数,往往需要讨论.讨论点依次为:明确概念,确定方程m(x)=0的性质,讨论方程m(x)=0是一次方程还是二次方程;其次,研究方程m(x)=0的解的特点,是常数,还是与参数有关的变数.若方程m(x)=0的解与参数有关,往往讨论它们是否在函数定义域内;再次,要确定方程m(x)=0的解在函数定义域的排列顺序,即确定大小,往往需要讨论.如果方程m(x)=0是超越方程,一是观察,确定方程m(x)=0的解;若观察不出m(x)的符号规律,这时往往对m(x)求导,利用导数研究函数m(x),确

定m(x)的符号规律,继而确定f′(x)的符号规律,从而解决f(x)的单调性.

例1已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是________.

解后反思

f′(x)的符号变化决定函数的单调性,f′(x)的单调性决定f(x)增长、递减速度的快慢.例2设函数f(x)=x3-kx2+x(k∈R).

(1)当k=1时,求函数f(x)在点(0,0)处的切线方程;

(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.

解后反思

1.函数单调性是函数最重要的性质,函数的变化形态决定了函数的极值、最值、

零点,因此利用导数研究单调性是基础.

2.利用导数研究函数单调性,要归结于函数定义域内导函数零点的研究.运用函数与方程、数形结合的思想研究函数零点.对于含参数的问题,注意分类讨论.

例3已知函数f(x)=ln x+1

e x(k为常数,e=2.718 28…是自然对数的底数).

(1)求f(x)的单调区间;

(2)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.

解后反思

从f′(x)中剥离出来决定导函数f′(x)符号的函数h(x),若方程h(x) =0是超越方程,不能求解,就利用函数与方程思想,观察方程的解或确定方程是否有解;或研究h(x)是否恒大于等于零或恒小于等于零.

总结感悟

1.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.

2.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义

判定是最大值还是最小值即可,不必再与端点的函数值比较.

3.函数f(x)在某个区间内单调递增,则f′(x)≥0而不是f′(x)>0 (f′(x)=0在有限个点处取到).

4.利用导数解决实际生活中的优化问题,要注意问题的实际意义.

【误区警示】

1.研究函数问题,首先要明确函数的定义域.利用导数解决函数问题时,不能

让自变量的范围发生变化.如f(x)=ln x,定义域为(0,+∞),求导后f′(x)=1 x,

x的取值范围为(-∞,0)∪(0,+∞).

2.已知f(x)在给定区间的单调性,应转化为f′(x)≥0或f′(x)≤0,非f′(x)>0或f′(x)>0.

A级

1.(2016·全国Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.

2.函数f(x)=(x-3)e x的单调递增区间是________.

3.函数y=f(x)在一点的导数值为0是函数y=f(x)在这点取极值的__________条件.

4.函数f(x)=12x-x3在区间[-3,3]上的最小值是________.5.(2016·全国Ⅱ)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x +1)的切线,则b=________.

6.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.

B级

7.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点的个数为________.

8.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为____________.

9.设函数f(x)的导数为f′(x),且f(x)=f′(π

2)sin x+cos x,则f′(π

4)=________.

10.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a 的取值范围是________.

11.若函数f(x)=(1-x2)(x2+ax+b)的图象关于直线x=-2对称,则f(x)的最大值是________.

12.已知关于x的函数f(x)=ax-a

e x(a≠0).

(1)当a=-1时,求函数f(x)的极值;

(2)若函数F(x)=f(x)+1没有零点,求实数a的取值范围.

第6讲理清三个关系是复习好“导数及应用”的关键

题型分析

例1②

解析由y=f′(x)的图象知,f′(x)≥0,y=f(x)为增函数.

f′(x)在区间(-1,0)上递增,说明y=f(x)图象的切线斜率随x的增大而增大,则f(x)区间(-1,0)上增长速度越来越快.在(0,1)上f′(x)递减,说明y=f(x)图象的切线斜率随x的增大而减小,说明f(x)在区间(0,1)上增长速度越来越慢.故填②.

例2解f′(x)=3x2-2kx+1,

(1)当k=1时,f′(0)=1,

即f(x)在点(0,0)处的切线斜率k=1,

∴f(x)在点(0,0)处的切线方程为y=x.

(2)当k<0时,f′(x)=3x2-2kx+1,其开口向上,对称轴x=k

3,且过(0,1)点.

①当Δ=4k2-12=4(k+3)(k-3)≤0,即-3≤k<0时,f′(x)≥0,f(x)在[k,-k]上单调递增.

∴m=f(x)min=f(k)=k,

M=f(x)max=f(-k)=-2k3-k.

②当Δ=4k2-12>0,即k<-3时,

令f′(x)=0得x1=k+k2-3

3,x2=

k-k2-3

3,且k

∴m=min{f(k),f(x1)},

M=max{f(-k),f(x2)}.

又f(x1)-f(k)=x31-kx21+x1-k =(x-k)(x21+1)>0,

∴m=f(k)=k,

又f(x2)-f(-k)

=x32-kx22+x2-(-k3-k·k2-k) =(x2+k)[(x2-k)2+k2+1]<0,∴M=f(-k)=-2k3-k.

综上,当k<0时,f(x)的最小值m=k,最大值M=-2k3-k.

例3(1)解由f(x)=ln x+1

e x,

得f′(x)=1-x-x ln x

x e x,x∈(0,+∞),

令h(x)=1-x-x ln x,x∈(0,+∞),

可看出h(1)=0,

当x∈(0,1)时,h(x)>0;

当x∈(1,+∞)时,h(x)<0.

又e x>0,

所以x∈(0,1)时,f′(x)>0;

x∈(1,+∞)时,f′(x)<0.

因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明因为g(x)=xf′(x),

所以g(x)=1

e x(1-x-x ln x),x∈(0,+∞).

由(1)知h(x)=1-x-x ln x,

求导得h′(x)=-ln x-2,

所以当x∈(0,e-2)时,h′(x)>0,函数h(x)单调递增;当x∈(e-2,+∞)时,h′(x)<0,函数h(x)单调递减.

所以当x∈(0,+∞)时,h(x)≤h(e-2)=1+e-2.

又当x∈(0,+∞)时,0<1

e x<1,

所以当x∈(0,+∞)时,1

e x h(x)<1+e

-2,即g(x)<1+e-2.

综上所述结论成立.

线下作业

1.2x+y+1=0 2.(2,+∞) 3.必要不充分 4.-16

5.1-ln 2

解析y=ln x+2的切线为:y=1

x1·x+ln x1+1(设切点横坐标为x1).

y =ln(x +1)的切线为:y =

1x 2+1x +ln(x 2+1)-x 2

x 2+1

,(设切点横坐标为x 2) ∴?????1x 1=

1

x 2+1,ln x 1+1=ln (x 2+1)-x 2

x 2+1

解得x 1=12,x 2=-1

2,∴b =ln x 1+1=1-ln 2. 6.2

解析 设e x =t ,则x =ln t (t >0), ∴f (t )=ln t +t

∴f ′(t )=1

t +1,∴f ′(1)=2. 7.1

解析 极小值点应有先减后增的特点. 8.(-1,+∞)

解析 设m (x )=f (x )-(2x +4),则m ′(x )=f ′(x )-2>0,∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0,∴m (x )>0的解集为{x |x >-1},即f (x )>2x +4的解集为(-1,+∞). 9.- 2

解析 因为f (x )=f ′(π

2)sin x +cos x , 所以f ′(x )=f ′(π

2)cos x -sin x , 所以f ′(π2)=f ′(π2)cos π2-sin π

2, 即f ′(π

2

)=-1,

所以f (x )=-sin x +cos x . f ′(x )=-cos x -sin x .

故f ′(π4)=-cos π4-sin π

4=- 2. 10.[3

4,+∞)

解析 f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x ,

由题意当x ∈[-1,1]时,f ′(x )≤0恒成立, 即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立. 令g (x )=x 2+(2-2a )x -2a , 则有???g (-1)≤0,g (1)≤0,

即???(-1)2

+(2-2a )·

(-1)-2a ≤0,12+2-2a -2a ≤0,

解得a ≥3

4. 11.16

解析 依题意,f (x -2)为偶函数,

f (x -2)=(-x 2+4x -3)[x 2+(a -4)x +4-2a +b ], 其中x 3的系数为8-a ,故a =8, x 的系数为28+4b -11a ,故b =15, 令f ′(x )=0,得x 3+6x 2+7x -2=0, 由对称轴为x =-2可知,

将该式分解为(x +2)(x 2+4x -1)=0,

可知其在5-2和-5-2处取到最大值,最大值为16. 12.解 (1)f ′(x )=-a e x (x -2)

(e x )2

=-a (x -2)e x

,x ∈R .

当a =-1时,f (x ),f ′(x )的变化情况如下表:

所以,当a

(2)F′(x)=f′(x)=-a(x-2)

e x.

①当a<0时,F(x),F′(x)的情况变化如下表:

因为F(1)=

若使函数F(x)没有零点,需且仅需

F(2)=a

e2+1>0,解得a>-e

2,

所以此时-e2

②当a>0时,F(x),F′(x)的情况变化如下表:

因为F(2)>F(1)>0,且F(1-10

a)=

e1-

10

a-10

e1-

10

a

<

e-10

e1-

10

a

<0,

所以此时函数F(x)总存在零点.

(或:当x>2时,F(x)=a(x-1)

e x+1>1,

当x<2时,令F(x)=a(x-1)

e x+1<0,

即a(x-1)+e x<0,

由于a(x-1)+e x

得x<1-e2

a,即x<1-

e2

a时F(x)<0,即x<2时F(x)存在零点.)

综上所述,所求实数a的取值范围是-e2

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

导数及其应用概念及公式总结

导数与微积分重要概念及公式总结 1.平均变化率:=??x y 1212) ()(x x x f x f -- 称为函数f (x )从x 1到x 2的平均变化率 2.导数的概念 从函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000 ()() ()lim x f x x f x f x x ?→+?-'=? 3.导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,(其中 00(,())x f x 为切点),即 0000 ()() ()lim x f x x f x f x k x ?→+?-'==? 切线方程为:()()()000x x x f x f y -'=- 4.常用函数的导数: (1)y c = 则'0y = (2)y x =,则'1y = (3)2y x =,则'2y x = (4)1y x = ,则'21y x =- (5)*()()n y f x x n Q ==∈,则'1n y nx -= (6)sin y x =,则'cos y x = (7)cos y x =,则'sin y x =- (8)()x y f x a ==,则'ln (0)x y a a a =?> (9)()x y f x e ==,则'x y e = (10)()log a f x x =,则'1 ()(0,1)ln f x a a x a = >≠

数学人教A版选修2-2讲义:第一章导数及其应用1.1 1.1.1~1.1.2

1.1.1~1.1.2 变化率问题 导数的概念 1.平均变化率 函数f (x )从x 1到x 2的平均变化率Δy Δx =□ 01f (x 2)-f (x 1)x 2-x 1 . 若函数y =f (x )在点x =x 0及其附近有定义,则函数y =f (x )在x 0到x 0+Δx 之间的平均变化率是Δy Δx =□ 02f (x 0+Δx )-f (x 0)Δx . 2.瞬时变化率 设函数y =f (x )在x 0附近有定义,当自变量在x =x 0附近改变Δx 时,函数值的改变量Δy =□ 03f (x 0+Δx )-f (x 0). 如果当Δx 趋近于0时,平均变化率Δy Δx 趋近于一个常数L ,则常数L 称为函数f (x )在x 0的瞬时变化率,记作□ 04lim Δx →0 f (x 0+Δx )-f (x 0)Δx =L . 3.函数y =f (x )在x =x 0处的导数 一般地,函数y =f (x )在点x 0处的瞬时变化率是lim Δx →0 Δy Δx =□ 05lim Δx →0 f (x 0+Δx )-f (x 0) Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或□ 06y ′| x =x 0.即f ′(x 0)=□ 07lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 简言之,函数y =f (x )在x =x 0处的导数就是y =f (x )在x =x 0处的□ 08瞬时变化率.

导数概念的理解 (1)Δx→0是指Δx从0的左右两侧分别趋向于0,但永远不会为0. (2)若f′(x0)=lim Δx→0Δy Δx存在,则称f(x)在x=x0处可导并且导数即为极限值. (3)令x=x0+Δx,得Δx=x-x0, 于是f′(x0)=lim x→x0f(x)-f(x0) x-x0 与概念中的f′(x0)=lim Δx→0 f(x0+Δx)-f(x0) Δx意 义相同. 1.判一判(正确的打“√”,错误的打“×”) (1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.() (2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.() (3)在导数的定义中,Δx,Δy都不可能为零.() 答案(1)√(2)×(3)× 2.做一做 (1)自变量x从1变到2时,函数f(x)=2x+1的函数值的增量与相应自变量的增量之比是________. (2)函数f(x)=x2在x=1处的瞬时变化率是________. (3)函数y=f(x)=1 x在x=-1处的导数可表示为________. 答案(1)2(2)2(3)f′(-1)或y′|x =-1 探究1求函数的平均变化率 例1求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率,并求当x0=2,Δx=0.1时平均变化率的值. [解]函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为 f(x0+Δx)-f(x0) (x0+Δx)-x0= [3(x0+Δx)2+2]-(3x20+2) Δx =6x0·Δx+3(Δx)2 Δx=6x0+3Δx. 当x0=2,Δx=0.1时,函数y=3x2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.

2019衡水名师原创理科数学专题卷:专题五《导数及其应用》

2019届高三一轮复习理科数学专题卷 专题五 导数及其应用 考点13:导数的概念及运算(1,2题) 考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是最符合题目要求的。) 1.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( ) A.2sin x B.22sin x C.2cos x D.sin 2x 2.【来源】2017-2018年河北武邑中学高二理周考 考点13 易 已知()21cos 4 f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( ) 3.【2017课标II ,理11】 考点14 易 若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2e a b + +的取值范围是( ) A.2,2e e ??++∞ ??? B.[),e +∞ C.[)2,+∞ D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难 已知函数2x y =的图象在点),(2 00x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象 相切,则0x 必满足( )

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章 单元测试题 一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点() A.1 个B.2 个 C.3 个D.4 个 1 1 2.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在 1 同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是() C.8D.4 2 3.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( ) ππ3 A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π) 3 π 3 C.[ 4π,π ) D.[ 2,4π] 1 4.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()

3 3 A.m≥2 B.m>2 3 3 C.m≤2 D.m<2 x 2 2 5.函数f ( x) =cos x-2cos 2的一个单调增区间是 () f x 0+3 -f x 0 Δx 6.设f ( x) 在x=x0 处可导,且lim Δx =1, Δx→0 则 f ′(x0)等于( ) A.1 B.0 C.3 x+9 7.经过原点且与曲线y=x+5相切的切线方程为() A.x+y=0 B.x+25y=0 C.x+y= 0 或x+25y=0 D.以上皆非 8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2- 3b<0 时,f ( x) 是() A.增函数 B.减函数 C.常数 D.既不是增函数也不是减函数

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

第一章导数及其应用练习题

第一章导数及其应用练习题 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第一章导数及其应用 1.1 变化率与导数 1.1.1 变化率问题1.1.2 导数的概念 1.已知函数f(x>=2x2-4的图象上一点(1,-2>及邻近一点(1+Δx,-2+Δy>,则错误!等于( >.b5E2RGbCAP A.4B.4xC.4+2ΔxD.4+2(Δx>2 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是( >. A.4 B.4.1 C.0.41 D.3 3.如果某物体的运动方程为s=2(1-t2>(s的单位为m,t的单位为s>,那么其在1.2 s末的瞬时速度为( >.p1EanqFDPw A.-4.8 m/s B.-0.88 m/sC.0.88 m/s D.4.8 m/s 4.已知函数y=2+错误!,当x由1变到2时,函数的增量Δy=________. 5.已知函数y=错误!,当x由2变到1.5时,函数的增量Δy=________. 6.利用导数的定义,求函数y=错误!+2在点x=1处的导数.7.已知函数y=f(x>=x2+1,则在x=2,Δx=0.1时,Δy的值为( >. A.0.40 B.0.41 C.0.43 D.0.44 8.设函数f(x>可导,则错误!错误!等于( >.DXDiTa9E3d A.f′(1> B.3f′(1> C.错误!f′(1> D.f′(3>

9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________. 10.某物体作匀速运动,其运动方程是s=vt,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.RTCrpUDGiT 11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0= 1.6×10-3s,求子弹射出枪口时的瞬时速度.5PCzVD7HxA 12.(创新拓展>已知f(x>=x2,g(x>=x3,求满足f′(x>+2=g′(x>的x的值. 1.1.3导数的几何意义 1.已知曲线y=错误!x2-2上一点P错误!,则过点P的切线的倾斜角为( >.jLBHrnAILg A.30° B.45° C.135° D.165° 2.已知曲线y=2x3上一点A(1,2>,则A处的切线斜率等于( >. A.2 B.4C.6+6Δx+2(Δx>2D.6 3.设y=f(x>存在导函数,且满足错误!错误!=-1,则曲线y=f(x>上点(1,f(1>>处的切线斜率为( >.xHAQX74J0X A.2 B.-1 C.1 D.-2 4.曲线y=2x-x3在点(1,1>处的切线方程为________.

导数及其应用大题精选

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数)0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数 2()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数 ()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数 a ax x x f 23)(3+-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.

导数及其应用 复习课 教案

导数及其应用复习课教案 【教材分析】 导数及其应用内容分为三部分:一是导数的概念;二是导数的运算;三是导数的应用. 先让学生通过大量实例,经历有平均变化率到瞬时变化率刻画现实问题的过程,理解导数的概念及其几何意义,然后通过定义求几个简单函数的导数,从而得出导数公式及四则运算法则,最后利用导数的知识解决实际问题. 该部分共分三节,第三节则是“导数的应用”,内容包括利用导数求切线方程;判断函数的单调性;利用导数研究函数的最值、极值;导数的实际应用. 在“利用导数求切线方程”中介绍了利用导函数的几何意义求切线的斜率,进而求解切线方程;在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法;在“导数的实际应用”中主要介绍了利用导数知识解决实际生活中的最优化问题. 【考纲解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 1.导数的几何意义,导数的四则运算及利用导数研究函数的单调性,求函数的极值、最值等. 2.与直线、圆锥曲线、分式、含参数的一元二次不等式等结合在一起考查,题型多样,属中高档题目. 【教学目标】 1.能熟练应用导数的几何意义求解切线方程 2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学重点】 理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学难点】 原函数和导函数的图像“互译”,解决一些恒成立问题 【学法】 本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。 在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。【教法】 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老

《第一章导数及其应用》教材分析与教学建议(精)

《第一章 导数及其应用》教材分析与教学建议 广州市黄埔区教育局教研室 肖凌戆 导数是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用,任何事物的变化率都可以用导数来描述,其基本思想是以直代曲。导数是研究函数和解决实际生活中优化问题的重要工具. 在普通高中数学课程标准中,规定导数及其应用的教学内容有: (1)导数概念及其几何意义; (2)导数的运算; (3)导数在研究函数中的应用; (4)生活中的优化问题举例(导数在解决实际问题中的应用); (5)定积分与微积分基本定理.(文科数学不做要求) 本章内容在普通高中数学课程标准实验教材中的相应位置是:人教A 版选修1-1第三章,人教A 版选修2-2第一章. 一、课标要求 导数及其应用的基本教学要求是: 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;通过函数图象直观地理解导数的几何意义. 2.能根据导数定义,求函数2,,y c y x y x ===,3,y x =1y x =,y =只要求求函数2,,y c y x y x ===, 1y x =的导数);能利用给出的基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b +的导数(文科数学不做要求);会使用导数公式表. 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 4.结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值. 5.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 6.通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念.(文科数学不做要求) 7.通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义.(文科数学不做要求) 8.体会微积分的建立在人类文化发展中的意义和价值. 二、课时安排 1.本章理科教学时间约需24课时,具体分配如下: 变化率与导数 约3课时

导数及其应用复习课教学设计

导数及其应用复习课教学设计 教学目标 1、知识与技能 (1)利用导数求函数的单调区间; (2)利用导数求函数的极值以及函数在闭区间上的最值; (3)解决很成立问题 2、过程与方法 1)能够利用函数性质作图像,反过来利用函数的图像研究函数的性质如交点情况,能合理利用数形结合解题。 2)学会利用熟悉的问答过渡到陌生的问题。 3、情感态度与价值观 这是一堂复习课,教学难度有所增加,培养学生思考问题的习惯,以及克服困难的信心。 重点和难点: 重点是应用导数求单调性,极值,最值 难点是恒成立问题 教学过程: (一)、导入. 给出三道题 (1)曲线3231y x x =-+在点(1,1)-处的切线方程为 ( ) A. 34y x =- B. 32y x =-+ C. 43y x =-+ D. 45y x =- (2)过原点作曲线x y e =的切线,切线的斜率____________ (3)函数3223125y x x x =--+在[0,3]上的最大值____________ [设计意图: 数学的教学要遵循循序渐近的原则,三道题是导数应用中基础的题型。其中(1), (2)两题同是求切线方程,却不同类型题,学生不易识别其间的不同之处容易出错。通过题目的求同存异,加深学生对题目的本质的理解] (二)、例题剖析 例1.已知函数32()25f x x ax x =+-+ 若()f x 在2(1,)3 -上单调递减,在(1,)+∞上单调递增,求实数a 的值 提问:本题已知函数在给定区间上的单调性,求解析式中参数。由条件得到什么? 学生:'(1)f 是极小值 师:为什么? 没有回答 师:在学习极值的时候,要成为极值点,首先要保证在这个点上的导数等于0,现在导数=0不能保证,怎么能说取得极小值。 举反例:

数学选修2-2第一章导数及其应用练习题汇编

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题1.1.2导数的概念 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于(). A.4 B.4x C.4+2Δx D.4+2(Δx)2 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是(). A.4 B.4.1 C.0.41 D.3 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为(). A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 4.已知函数y=2+1 x,当x由1变到2时,函数的增量Δy=________. 5.已知函数y=2 x,当x由2变到1.5时,函数的增量Δy=________. 6.利用导数的定义,求函数y=1 x2+2在点x=1处的导数. 7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.44

8.设函数f(x)可导,则lim Δx→0f(1+Δx)-f(1) 3Δx等于(). A.f′(1) B.3f′(1) C.1 3f′(1) D.f′(3) 9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________. 10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________. 11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度. 12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

导数及其应用周练练习题(有详细答案)

高二数学《导数及其应用》 一、选择题 1.0()0f x '=是可导函数()f x 在点0x 处取极值的: A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2、设曲线2 1y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为 A. B. C. D. 3.在曲线y =x 2 上切线的倾斜角为π4 的点是( ) A .(0,0) B .(2,4) C.? ????14,116 D.? ?? ??12,14 4.若曲线y =x 2 +ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 5.函数f (x )=x 3 +ax 2 +3x -9,已知f (x )在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 6. 已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2 -2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值 范围是( ) A .m <2或m >4 B .-4,对于任意实数x 都有()0f x ≥,则 (1) '(0) f f 的最小值为

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

高二数学选修2-2第一章 导数及其应用测试题及答案

(数学选修2-2) 第一章 导数及其应用 一、选择题 1.若()sin cos f x x α=-,则' ()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数' ()f x 的图象是( ) 3.已知函数1)(2 3--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,( +∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足' (1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数 )(x f 在开区间),(b a 内有极小值点( ) a b x y ) (x f y ?=O A .1个 B .2个 C .3个 D .4个

二、填空题 1.若函数2 f x x x c 在2x =处有极大值,则常数c 的值为_________; 2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3 (1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2 ()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由.

导数及其应用教材分析

第三章导数教材分析 一、内容安排 本章大体上分为导数的初步知识、导数的应用、微积分建立的时代背景和历史意义部分. 导数的初步知识.关键是导数概念的建立.这部分首先以光滑曲线的斜率与非匀速直线运动的瞬时速度为背景,引出导数的概念,给出按定义求导数的方法,说明导数的几何意义.然后讲述初等函数的求导方法,先根据导数的定义求出几种常见函数的导数、导数的四则运算法则,再进一步给出指数函数和对数函数的导数. 这部分的末尾安排了两篇阅读材料,一篇是结合导数概念的“变化率举例”,另一篇是介绍导数应用的“近似计算”. 导数的应用,这部分首先在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法.然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法*最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法. 微积分是数学的重要分支,导数是微积分的一个重要的组成部分.一方面,不但数学的许多分支以及物理、化学、计算机、机械、建筑等领域将微积分视为基本数学工具,而且,在社会、经济等领域中也得到越来越广泛的应用.另一方面,微积分所反映的数学思想也是日常生活与工作中认识问题、研究问题所难以或缺的. 本章共9小节,教学课时约需18节(仅供参考) 3. 1导数的概念 ............. 约3课时 3. 2几种常见函数的导数........... 约1课时 3. 3函数的和、差、积、商的导数...... 约2课时 3. 4复合函数的导数............. 约2课时 3. 5对数函数与指数函数的导数....... 约2课时 3. 6函数的单调性............. 约1课时 3. 7函数的极值 ............. 约2课时 3. 8函数的最大值与最小值......... 约2课时 3. 9微积分建立的时代背景和历史意义....约1课时 小结与复习.............. 约2课时 二、教学目标 1?了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式:

相关文档
最新文档