CodeWarrior+USBTAP调试U-Boot技巧

CodeWarrior+USBTAP调试U-Boot技巧
CodeWarrior+USBTAP调试U-Boot技巧

CodeWarrior+USBTAP调试U-Boot2010-07-15 15:55:50

分类:LINUX

!# U-Boot 编译调试 ## 请参考Pro_&_Linux_App_Edition_Targeting_Manual.chm

./ltib ## install ltib

$ ./ltib -p u-boot -m prep ## get U-Boot source

$ cd rpm/BUILD/u-boot-1.1.3

$ vim config.mk

DBGFLAGS = -g2 -gdwarf-2

AFLAGS_DEBUG = -Wa,-gdwarf2

OPTFLAGS = -O1

$ vim u-boot-1.1.3/lib_ppc/board.c ## line624: debug => printf

debug ("Now running in RAM - U-Boot at: %08lx\n", dest_addr);

=> printf ("Now running in RAM - U-Boot at: %08lx\n", dest_addr);

$ make ## 编译,最好用 ./ltib -p u-boot -m scbuild

注意: 用ltib 编译,要修改confing/platform/mpc8349itx/.config中CLFAGS参数

编译常用(make distclean ; make MPC8349ITX_config ; make )

启动linux samba服务,将u-boot目录做共享目录由windows访问

在windows上访问uboot共享目录,打开后右键点击共享目录,映射为磁盘驱动器z

启动CodeWarrior IDE,

@ IDE: File > Open , find and open ELF file: u-boot , click OK

@ IDE: Choose Debugger : CodeWarrior USB TAP , click OK

按照提示选择添加缺少的文件start.S(前提是将源码完全复制),其余会自动添加,不能自动添加的,手动添加。

设置好断点,开发板上电。

加上跳线J22E,利用u-boot烧写u-boot.bin 到 fe700000

=> erase 0xfe70000 0xfe74ffff

=> cp.b $loadaddr 0xfe700000 $filesize

完毕,重启,去掉J22E调试。或flash 烧写u-boot.bin到fe700000 (依据

Pro_&_Linux_App_Edition_Targeting_Manual.chm)

上面利用u-boot烧写u-boot.bin到fe700000相当于下面的操作:

去掉J22 A,B,C,E,利用CodeWarrior烧写u-boot.bin到 0xfef0_0000

flash programmer加载配置文件liuby.xml,修改Flash Memory Base Address为fe80_0000 在Erase/Blank_chek窗口不要勾选 All Sectors,鼠标选取 fef00000 <-> fef4_ffff,擦除在Program/Verify窗口选取u-boot.bin,修改Apply Address Offset: 0xfef00000,烧写。完毕,插上J22 A,B,C,重启,调试。

调试分为3个阶段:

Debugging U-Boot before the MMU is Enabled

Debugging U-Boot after the MMU is Enabled

Debugging the U-Boot Section in RAM

1. Debugging U-Boot before the MMU is Enabled

遵照选择alternate load address: 0xfef0 0000

不选择Use Target Initialization File

CW -> Debug -> Attach to Process ;break停止,F10单步运行

2. Debugging U-Boot after the MMU is Enabled

遵照,不选择Alternate Load Addr:

不选择Use Target Initialization File

CW -> Debug -> Attach to Process ;break停止,F10单步运行

board_init_f(board.c)函数入口处设置 hardware断点。随记.

UBOOT命令详解

常用U-boot命令详解(z) 2010-09-30 15:05:52| 分类:学习心得体会|字号订阅 U-boot发展到现在,他的命令行模式已经非常接近Linux下的shell了,在我编译的 U-boot-2009.11中的命令行模式模式下支持“Tab”键的命令补全和命令的历史记录功能。而且如果你输入的命令的前几个字符和别的命令不重复,那么你就只需要打这几个字符即可,比如我想看这个U-boot的版本号,命令就是“ version”,但是在所有的命令中没有其他任何一个的命令是由“v”开头的,所以只需要输入“v”即可。 [u-boot@MINI2440]# version U-Boot 2009.11 ( 4月04 2010 - 12:09:25) [u-boot@MINI2440]# v U-Boot 2009.11 ( 4月04 2010 - 12:09:25) [u-boot@MINI2440]# base Base Address: 0x00000000 [u-boot@MINI2440]# ba Base Address: 0x00000000 由于U-boot支持的命令实在太多,一个一个细讲不现实,也没有必要。所以下面我挑一些烧写和引导常用命令介绍一下,其他的命令大家就举一反三,或者“help”吧! (1)获取帮助 命令:help 或? 功能:查看当前U-boot版本中支持的所有命令。 [u-boot@MINI2440]#help ?- alias for'help' askenv - get environment variables from stdin base - print or set address offset bdinfo - print Board Info structure bmp - manipulate BMP image data boot - boot default, i.e., run 'bootcmd' bootd - boot default, i.e., run 'bootcmd' bootelf - Boot from an ELF image in memory bootm - boot application image from memory bootp - boot image via network using BOOTP/TFTP protocol

Tiny6410_Uboot移植步骤详解

Uboot_for_Tiny6410_移植步骤详解 一、设计要求 1.目的 1)掌握U-boot剪裁编写 2)掌握交叉编译环境的配置 3)掌握U-boot的移植 2.实现的功能 1)U-boot编译成功 2)移植U-boot,使系统支持从NAND FLASH启动 二、设计方案 1.硬件资源 1)ARM处理器:ARM11芯片(Samsung S3C6410A),基于ARM1176JZF-S核设 计,运行频率533Mhz,最高可达 667Mhz 2)存储器:128M DDR RAM,可升级至 256M;MLC NAND Flash(2GB) 3)其他资源:具有三LCD接口、4线电阻 触摸屏接口、100M标准网络接口、标准DB9 五线串口、Mini USB2.0接口、USB Host 1.1、3.5mm音频输入输出口、标准TV-OUT

接口、SD卡座、红外接收等常用接口;另外 还引出4路TTL串口,另1路TV-OUT、 SDIO2接口(可接SD WiFi)接口等;在板的 还有蜂鸣器、I2C-EEPROM、备份电池、A D 可调电阻、8个中断式按键等。 2.软件资源 1)arm-linux-gcc-4.5.1(交叉编译) 2)u-boot-2010.09.tar.gz arm-linux-gcc-4.5.1-v6-vfp-20101103.t gz 三、移植过程 1.环境搭建 1)建立交叉编译环境 2)去这2个网站随便下载都可以下载得到最 新或者你想要的u-boot。( https://www.360docs.net/doc/c116893856.html,/batch.viewl ink.php?itemid=1694 ftp://ftp.denx.de/pub/u-boot/ )

UBoot移植详解

u-boot 移植步骤详解 1 U-Boot简介 U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。从FADSROM、8xxROM、PPCBOOT逐步发展演化而来。其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是相应的Linux内核源程序的简化,尤其是一些设备的驱动程序,这从U-Boot源码的注释中能体现这一点。但是U-Boot不仅仅支持嵌入式Linux 系统的引导,当前,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。就目前来看,U-Boot对PowerPC系列处理器支持最为丰富,对Linux的支持最完善。其它系列的处理器和操作系统基本是在2002年11 月PPCBOOT 改名为U-Boot后逐步扩充的。从PPCBOOT向U-Boot的顺利过渡,很大程度上归功于U-Boot的维护人德国DENX软件工程中心Wolfgang Denk[以下简称W.D]本人精湛专业水平和持着不懈的努力。当前,U-Boot项目正在他的领军之下,众多有志于开放源码BOOT LOADER移植工作的嵌入式开发人员正如火如荼地将各个不同系列嵌入式处理器的移植工作不断展开和深入,以支持更多的嵌入式操作系统的装载与引导。 选择U-Boot的理由: ①开放源码; ②支持多种嵌入式操作系统内核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS; ③支持多个处理器系列,如PowerPC、ARM、x86、MIPS、XScale; ④较高的可靠性和稳定性; ④较高的可靠性和稳定性; ⑤高度灵活的功能设置,适合U-Boot调试、操作系统不同引导要求、产品发布等; ⑥丰富的设备驱动源码,如串口、以太网、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、键盘等; ⑦较为丰富的开发调试文档与强大的网络技术支持; 2 U-Boot主要目录结构 - board 目标板相关文件,主要包含SDRAM、FLASH驱动; - common 独立于处理器体系结构的通用代码,如内存大小探测与故障检测;

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本)

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本) ?开发平台:i.MX 6UL ?最新系统: u-boot2015.04 + Linux4.1.15_1.2.0 ?交叉编译工具:dchip-linaro-toolchain.tar.bz2 源码下载地址: U-Boot: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.360docs.net/doc/c116893856.html,/git/cgit.cgi/imx/uboot-imx.git/ Kernel: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.360docs.net/doc/c116893856.html,/git/cgit.cgi/imx/linux-2.6-imx.git/ 源码移植过程: 1、将linux内核及uBoot源码拷贝到Ubuntu12.04系统中的dchip_imx6ul目录下; 2、使用tar命令分别将uboot和kernel解压到dchip_imx6ul目录下; 3、解压后进入uboot目录下,新建文件make_dchip_imx6ul_uboot201504.sh,且文件内容如下: ################################################################### # Build U-Boot.2015.04 For D518--i.MX6UL By FRESXC # ################################################################### #!/bin/bash export ARCH=arm export CROSS_COMPILE=/dchip-linaro-toolchain/bin/arm-none-linux-gnueabi - make mrproper # means CLEAN make mx6ul_14x14_evk_defconfig make2>&1|tee built_dchip_imx6ul_uboot201504.out 4进入kernel目录下,新建文件make_dchip_imx6ul_linux4115120.sh,且文件内容如下: ###################################################################

uboot下载内核和文件系统的步骤

uboot 下载内核和文件系统的步骤 1)下载linux到系统的SDRAM运行(仅做测试之用,断电或退出后就会消失) 1>运行Uboot,设置环境变量 Uboot>setenv bootargs root=/dev/ram rw initrd=0x21100000,6000000 ramdisk_size=15360 console=ttyS0,115200,mem=32M 启动系统环境变量 Uboot>setenv ethaddr 12:34:56:78:99:aa mac 地址 Uboot>setenv ipaddr [目标板 ip 地址] 目标板 ip 地址 Uboot>setenv serverip [主机 ip 地址] 主机 ip 地址 2>下载linux内核,文件系统 打开tftpserver应用程序,设置根目录路径,将内核、文件系统等拷贝到所设置的根目录下。 Uboot>tftp 21100000 ramdisk.gz 下载文件系统 Uboot>tftp 21000000 uImage 下载 linux 内核 Uboot>bootm 21000000 启动 linux 然后linux操作系统就开始运行。 2)烧写 Linux 到系统的 Flash 运行 1>设置运行Linux的环境变量 Uboot> setenv bootargs root=/dev/ram rw initrd=0x21100000,6000000 ramdisk_size=15360 console=ttyS0,115200,mem=32M 启动系统环境变量Uboot>setenv image cp.b 10020000 21000000 b0000 拷贝内核到sdram Uboot>setenv ramdisk cp.b 100d0000 21100000 226000 拷贝文件系统到sdram Uboot>setenv boot bootm 设置变量boot Uboot>setenv bootcmd run ramdisk\;run image\;run boot 设置默认变量bootcmd Uboot>setenv ethaddr 12:34:56:78:99:aa mac 地址 Uboot>setenv ipaddr 目标板 ip 地址目标板 ip 地址,由你自己决定Uboot>setenv serverip 主机ip地址主机ip地址,就是你的PC的ip Uboot>saveenv 保存环境变量 2>烧写Linux内核到Flash Uboot>tftp 21100000 ramdisk.gz Uboot>cp.b 21100000 100d0000 226000

u-boot启动分析

背景: Board →ar7240(ap93) Cpu →mips 1、首先弄清楚什么是u-boot Uboot是德国DENX小组的开发,它用于多种嵌入式CPU的bootloader程序, uboot不仅支持嵌入式linux系统的引导,当前,它还支持其他的很多嵌入式操作系统。 除了PowerPC系列,还支持MIPS,x86,ARM,NIOS,XScale。 2、下载完uboot后解压,在根目录下,有如下重要的信息(目录或者文件): 以下为为每个目录的说明: Board:和一些已有开发板有关的文件。每一个开发板都以一个子目录出现在当前目录中,子目录存放和开发板相关的配置文件。它的每个子文件夹里都有如下文件(以ar7240/ap93为例): Makefile Config.mk Ap93.c 和板子相关的代码 Flash.c Flash操作代码 u-boot.lds 对应的链接文件 common:实现uboot命令行下支持的命令,每一条命令都对应一个文件。例如bootm命令对应就是cmd_bootm.c cpu:与特定CPU架构相关目录,每一款Uboot下支持的CPU在该目录下对应一个子目录,比如有子目录mips等。它的每个子文件夹里都有入下文件: Makefile Config.mk Cpu.c 和处理器相关的代码s Interrupts.c 中断处理代码 Serial.c 串口初始化代码 Start.s 全局开始启动代码 Disk:对磁盘的支持

Doc:文档目录。Uboot有非常完善的文档。 Drivers:Uboot支持的设备驱动程序都放在该目录,比如网卡,支持CFI的Flash,串口和USB等。 Fs:支持的文件系统,Uboot现在支持cramfs、fat、fdos、jffs2和registerfs。 Include:Uboot使用的头文件,还有对各种硬件平台支持的汇编文件,系统的配置文件和对文件系统支持的文件。该目下configs目录有与开发板相关的配置文件,如 ar7240_soc.h。该目录下的asm目录有与CPU体系结构相关的头文件,比如说mips 对应的有asm-mips。 Lib_xxx:与体系结构相关的库文件。如与ARM相关的库放在lib_arm中。 Net:与网络协议栈相关的代码,BOOTP协议、TFTP协议、RARP协议和NFS文件系统的实现。 Tools:生成Uboot的工具,如:mkimage等等。 3、mips架构u-boot启动流程 u-boot的启动过程大致做如下工作: 1、cpu初始化 2、时钟、串口、内存(ddr ram)初始化 3、内存划分、分配栈、数据、配置参数、以及u-boot代码在内存中的位置。 4、对u-boot代码作relocate 5、初始化malloc、flash、pci以及外设(比如,网口) 6、进入命令行或者直接启动Linux kernel 刚一开始由于参考网上代码,我一个劲的对基于smdk2410的板子,arm926ejs的cpu看了N 久,启动过程和这个大致相同。 整个启动中要涉及到四个文件: Start.S →cpu/mips/start.S Cache.S →cpu/mips/cache.S Lowlevel_init.S →board/ar7240/common/lowlevel_init.S Board.c →lib_mips/board.c 整个启动过程分为两个阶段来看: Stage1:系统上电后通过汇编执行代码 Stage2:通过一些列设置搭建了C环境,通过汇编指令跳转到C语言执行. Stage1: 程序从Start.S的_start开始执行.(至于为什么,参考u-boot.lds分析.doc) 先查看start.S文件吧!~ 从_start标记开始会看到一长串莫名奇妙的代码:

UBoot源码分析1

?UBoot源码解析(一)

主要内容 ?分析UBoot是如何引导Linux内核 ?UBoot源码的一阶段解析

BootLoader概念?Boot Loader 就是在操作系统内核运行之前运行 的一段小程序。通过这段小程序,我们可以初始 化硬件设备、建立内存空间的映射图,从而将系 统的软硬件环境带到一个合适的状态,以便为最 终调用操作系统内核准备好正确的环境 ?通常,Boot Loader 是严重地依赖于硬件而实现 的,特别是在嵌入式世界。因此,在嵌入式世界 里建立一个通用的Boot Loader 几乎是不可能的。 尽管如此,我们仍然可以对Boot Loader 归纳出 一些通用的概念来,以指导用户特定的Boot Loader 设计与实现。

UBoot来源?U-Boot 是 Das U-Boot 的简称,其含义是 Universal Boot Loader,是遵循 GPL 条款的开放源码项目。最早德国 DENX 软件工程中心的 Wolfgang Denk 基于 8xxROM 和 FADSROM 的源码创建了 PPCBoot 工程项目,此后不断 添加处理器的支持。而后,Sysgo Gmbh 把 PPCBoot 移 植到 ARM 平台上,创建了 ARMBoot 工程项目。最终, 以 PPCBoot 工程和 ARMBoot 工程为基础,创建了 U- Boot 工程。 ?而今,U-Boot 作为一个主流、通用的 BootLoader,成功地被移植到包括 PowerPC、ARM、X86 、MIPS、NIOS、XScale 等主流体系结构上的百种开发板,成为功能最多、 灵活性最强,并且开发最积极的开源 BootLoader。目前。 U-Boot 仍然由 DENX 的 Wolfgang Denk 维护

嵌入式Linux之我行 史上最牛最详细的uboot移植,不看别后悔

嵌入式Linux之我行——u-boot-2009.08在2440上的移植详解(一) 嵌入式Linux之我行,主要讲述和总结了本人在学习嵌入式linux中的每个步骤。一为总结经验,二希望能给想入门嵌入式Linux 的朋友提供方便。如有错误之处,谢请指正。 ?共享资源,欢迎转载:https://www.360docs.net/doc/c116893856.html, 一、移植环境 ?主机:VMWare--Fedora 9 ?开发板:Mini2440--64MB Nand,Kernel:2.6.30.4 ?编译器:arm-linux-gcc-4.3.2.tgz ?u-boot:u-boot-2009.08.tar.bz2 二、移植步骤 本次移植的功能特点包括: ?支持Nand Flash读写 ?支持从Nor/Nand Flash启动 ?支持CS8900或者DM9000网卡 ?支持Yaffs文件系统 ?支持USB下载(还未实现) 1.了解u-boot主要的目录结构和启动流程,如下图。

u-boot的stage1代码通常放在cpu/xxxx/start.S文件中,他用汇编语言写成;u-boot的stage2代码通常放在lib_xxxx/board.c文件中,他用C语言写成。各个部分的流程图如下:

2. 建立自己的开发板项目并测试编译。 目前u-boot对很多CPU直接支持,可以查看board目录的一些子目录,如:board/samsung/目录下就是对三星一些ARM 处理器的支持,有smdk2400、smdk2410和smdk6400,但没有2440,所以我们就在这里建立自己的开发板项目。 1)因2440和2410的资源差不多,主频和外设有点差别,所以我们就在board/samsung/下建立自己开发板的项目,取名叫my2440 2)因2440和2410的资源差不多,所以就以2410项目的代码作为模板,以后再修改

uboot移植实验

一、移植环境 ?主机:UBUNTU ?开发板:飞凌2440 ?编译器:arm-linux-gcc-4.3.2.tgz ?u-boot:u-boot-2009.03.tar.bz2

3)修改u-boot根目录下的Makefile文件。查找到smdk2410_config的地方,在他下面按照smdk2410_config的格式建立mini2440_config的编译选项,另外还要指定交叉编译器 4)测试编译新建的mini2440开发板项目

到此为止,u-boot对自己的mini2440开发板还没有任何用处,以上的移植只是搭建了一个mini2440开发板u-boot的框架,要使其功能实现,还要根据mini2440开发板的具体资源情况来对u-boot源码进行修改。 3. 根据u-boot启动流程图的步骤来分析或者修改添加u-boot源码,使之适合mini2440开发板(注:修改或添加的地方都用红色表示)。 1)mini2440开发板u-boot的stage1入口点分析。 一般在嵌入式系统软件开发中,在所有源码文件编译完成之后,链接器要读取一个链接分配文件,在该文件中定义了程序的入口点,代码段、数据段等分配情况等。那么我们的my2440开发板u-boot的这个链接文件就是cpu/arm920t/u-boot.lds,打开该文件部分代码如下:

知道了程序的入口点是_start,那么我们就打开mini2440开发板u-boot第一个要运行的程序cpu/arm920t/start.S(即u-boot的stage1部分),查找到_start的位置如下: 从这个汇编代码可以看到程序又跳转到start_code处开始执行,那么再查找到start_code 处的代码如下:

iTop4412的uboot第一阶段

2 uboo t 源码分析 2.5.1.star t.S 2.5.1.star t.S 引入引入 2.5.1.1、u-boot.lds中找到start.S入口 (1)在C语言中整个项目的入口就是 main函数(这是 个.c文件的项目,第一个要分析的文件就是包含了C语言规定的),所以譬如说一 个有 main函数的那个文件。 10000 ( 2 方。ENTRY(_start)因此 _start 符号所在的文件就是整个程序的起始文 件, _sta rt 所在处的 代码就是整个程序的起始代码。 2.5.1.2、SourceInsight中如何找到 文件 (1)当前状况:我们知道在uboot中的1000多个文件中有一个符号 叫 _start,但是我们不知道 这个符号在哪个文件中。这种情况下要查找一个符号在所有项目中文件中的引用,要使用SourceInsight的搜索功能。 (2)start.s 在cpu/arm_cortexa9/start.s (3)然后进入start.S文件中,发现 个uboot的入口代码,就是第57 57行中就 是行。_sta rt 标号的定义处,于是乎我们就找到了整 2.5.1.3、SI中找文件技巧 (1)以上,找到了start.S文件,下面我们就从start.S文件开始分析uboot第一阶段。 (2)在SI中,如果我们知道我们要找的文件的名字,但是我们又不知道他在哪个目录下,我 们要怎样找到并打开这个文件?方法是在 SI中先打开右边的工程项目管理栏目,然后点击 最左边那个(这个是以文件为单位来浏览的),然后在上面输入栏中输入要找的文件的名 字。我们在输入的时候,SI在不断帮我们进行匹配,即使你不记得文件的全名只是大概记 得名字,也能帮助你找到你要找的文件。 2.5.2.start.S解析1 2.5.2.1、不简单的头文件包含

UBOOT详细解读

大多数bootloader都分为stage1和stage2两部分,u-boot也不例外。依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。 1、Stage1 start.S代码结构 u-boot的stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:(1)定义入口。由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。 (2)设置异常向量(Exception Vector)。 (3)设置CPU的速度、时钟频率及终端控制寄存器。 (4)初始化内存控制器。 (5)将ROM中的程序复制到RAM中。 (6)初始化堆栈。 (7)转到RAM中执行,该工作可使用指令ldr pc来完成。 2、Stage2 C语言代码部分 lib_arm/board.c中的start arm boot是C语言开始的函数也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数只要完成如下操作: (1)调用一系列的初始化函数。 (2)初始化Flash设备。 (3)初始化系统内存分配函数。 (4)如果目标系统拥有NAND设备,则初始化NAND设备。 (5)如果目标系统有显示设备,则初始化该类设备。 (6)初始化相关网络设备,填写IP、MAC地址等。 (7)进去命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。 3、U-Boot的启动顺序(示例,其他u-boot版本类似) cpu/arm920t/start.S @文件包含处理 #include @由顶层的mkconfig生成,其中只包含了一个文件:configs/<顶层makefile中6个参数的第1个参数>.h #include #include

u_boot移植(五)之分析uboot源码中nand flash操作

u_boot移植(五)之分析uboot源码中nand flash操作 一、OneNand 和Nand Flash 我们已经能从Nand Flash启动了,启动之后,大家会看到如下效果: 可以看出,我们的uboot默认使用的是OneNand。需要注意的是我们的FSC100上面是没有OneNand的,有的是K9F2G08U0B 型号的NAND FLASH。 前面我们了解过Nor Flash 和Nand Flash,那OneNand Flash又是什么呢?

二、uboot 源码中Nand Flash部分代码分析 我们从Nand Flash初始化看起,打开lib_arm/board.c文件,为了紧抓主 线,以下代码只列举出了主线代码。

可以看出,我们可以通过CONFIG_CMD_NAND和 CONFIG_CMD_ONENAND两个宏来选择NAND FLASH初始化还是 ONENAND FLASH初始化。 uboot 中默认定义了宏CONFIG_CMD_ONENAND,所以选择的是ONENAND FLASH初始化。我们的FSC100上面使用的是 NAND FLASH,所以我们要定义CONFIG_CMD_NAND宏,取消CONFIG_CMD_ONENAND宏的定义。 嗯!先做个记录: 修改include/configs/fsc100.h,定义宏CONFIG_CMD_NAND,取消宏CONFIG_CMD_ONENAND。 好了,接下我们看看nand_init()函数时如何实现的。

看以看出,这段代码调用根据CONFIG_SYS_MAX_NAND_DEVICE宏[默认没有定义]的值来决定系统中Nand Flash设备的个数。接着调 用nand_init_chip()函数完成Nand Flash初始化,然后计算出每块Nand Flash的大小。最终会输出Nand Flash总的容量。 嗯!做个记录: 修改include/configs/fsc100.h,定义 宏CONFIG_SYS_MAX_NAND_DEVICE,值为1 没有看明白的地方是给nand_init_chip()函数传递的参数,接下来我们来看看他们是如何定义的。 哈哈,终于到了让人头疼的地方了。先来看看struct nand_chip和struct mtd_info两个结构体,这两个结构体的成员有很多很多,很多初学者一看到就晕头转向了,为了让大家不被吓到,我对这两个结构体的成员做了精简,只保留我们关心的成员,其它的都去掉了。 (1)struct nand_chip

uboot移植笔记

u-boot-2015-01移植笔记 一、修改编译器路径 修改顶层Makefile文件,查找CROSS_COMPILE =,注释掉if判断,增加一行CROSS_CMPILE = arm-linux- (根据编译器不同这个自行添加,在这里感谢胡茂晓同学)。 二、复制平台相近board 1、进入board子目录下的samsung子目录,复制trats2文件夹为自己平台名字的文件夹(这里笔者使用iTop4412)。 2、进入iTop4412子目录,修改为。 3、修改Makefile,将trats2改为iTop4412。 三、修改板子相应配置 1、从源码根目录下进入include/configs目录,复制为。 2、从源码根目录下进入configs目录,复制trats2_defconfig为iTop4412_defconfig。 3、修改iTop4412_defconfig,将CONFIG_DEFAULT_DEVICE_TREE="exynos4412-trats2"改为CONFIG_DEFAULT_DEVICE_TREE="exynos4412-iTop4412"。

四、增加自己的Device Tree Source 1、从源码根目录下进入arch/arm/Dts目录,复制 exynos4412- 。 2、修改当前目录下的Makefile文件,将 dtb-$(CONFIG_EXYNOS4) += \ \ \ \ \ 修改成 dtb-$(CONFIG_EXYNOS4) += \ \ \ \ \ \

五、制作顶层.config文件 1、在源码根目录下使用命令make menuconfig(貌似刚支持图形界面配置)。 2、先配置基本的,Architecture select 选项选择ARM architecture,architecture选项的子选项Target select选择Samsun EXYNOS;EXYNOS board select选项选择Exynos4412 Trat2 board。 3、在Device Tree Control选项下,y(yes)Run-time configuration via Device Tree,选择Provider of DTB for control 为Embedded DTB for DT control,在Default Device Tree for DT control选项下输入exynos4412-iTop4412,退出。 4、保存退出,在源码根目录下会生成.config文件,需要用命令ls –a 查看。 5、在源码根目录下使用命令vim .config,修改.config文件。将CONFIG_SYS_BOARD="trats2" 修改成CONFIG_SYS_BOARD="iTop4412";将CONFIG_SYS_CONFIG_NAME="trats2"修改成CONFIG_SYS_CONFIG_NAME="iTop4412";将CONFIG_DEFAULT_DEVICE_TREE=""修改成CONFIG_DEFAULT_DEVICE_TREE="exynos4412-iTop4412"。(注意:每次使用make menuconfig后都要修改本条)

uboot启动代码详解

·1 引言 在专用的嵌入式板子运行GNU/Linux 系统已经变得越来越流行。一个嵌入式Linux 系统从软件的角度看通常可以分为四个层次: 1. 引导加载程序。固化在固件(firmware)中的boot 代码,也就是Boot Loader,它的启动通常分为两个阶段。 2. Linux 内核。特定于嵌入式板子的定制内核以及内核的启动参数。 3. 文件系统。包括根文件系统和建立于Flash 内存设备之上文件系统,root fs。 4. 用户应用程序。特定于用户的应用程序。有时在用户应用程序和内核层之间可能还会包括一个嵌入式图形用户界面。常用的嵌入式GUI 有:MicroWindows 和MiniGUI 等。 引导加载程序是系统加电后运行的第一段软件代码。回忆一下PC 的体系结构我们可以知道,PC 机中的引导加载程序由BIOS(其本质就是一段固件程序)和位于硬盘MBR 中的OS Boot Loader(比如,LILO 和GRUB 等)一起组成。BIOS 在完成硬件检测和资源分配后,将硬盘MBR 中的Boot Loader 读到系统的RAM 中,然后将控制权交给OS Boot Loader。Boot Loader 的主要运行任务就是将内核映象从硬盘上读到RAM 中,然后跳转到内核的入口点去运行,也即开始启动操作系统。 而在嵌入式系统中,通常并没有像BIOS 那样的固件程序(注,有的嵌入式CPU 也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由Boot Loader 来完成。比如在一个基于ARM7TDMI core 的嵌入式系统中,系统在上电或复位时通常都从地址 0x00000000 处开始执行,而在这个地址处安排的通常就是系统的Boot Loader 程序。·2 bootloader简介 简单地说,Boot Loader (引导加载程序)就是在操作系统内核运行之前运行的一段小程序,它的作用就是加载操作系统, 实现硬件的初始化,建立内存空间的映射图,为操作系统内核准备好硬件环境并引导内核的启动。如上图所示的那样在设备的启动过程中bootloader位于最底层,首先被运行来引导操作系统运行,很容易可以看出bootloader是底层程序所以它的实现严重地依赖于硬件,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的BootLoader几乎是不可能的。尽管如此,一些功能强大、支持硬件环境较多的BootLoader也被广大的使用者和爱好者所支持,从而形成了一些被广泛认可的、较为通用的的bootloader实现。 2.1 Boot Loader 所支持的CPU 和嵌入式板 每种不同的CPU 体系结构都有不同的Boot Loader。有些Boot Loader 也支持多种体系结构的CPU,比如U-Boot 就同时支持ARM 体系结构和MIPS 体系结构。除了依赖于CPU 的体系结构外,Boot Loader 实际上也依赖于具体的嵌入式板级设备的配置。这也就是说,对于两块不同的嵌入式板而言,即使它们是基于同一种CPU 而构建的,要想让运行在一块板子上的Boot Loader 程序也能运行在另一块板子上,通常也都需要修改Boot Loader 的源程序。 2.2 Boot Loader 的安装媒介(Installation Medium)

Uboot_for_mini6410_移植步骤详解

这是u-boot-2010.09 针对友善之臂MINI6410移植的最基础版本,只包含了就基本的系统引导,NAND读写,DM9000网卡等等。但是这个足够开发的方便使用。今后会陆续添加原先我为mini2440添加的所有功能。 但是此次移植并非我的功劳,首先基本的移植是由Alex Ling 完成的,你可以在这里看到他提交的补丁,但是编译后无法使用,可能是因为host系统不同,对脚本的解析不同,使得spl部分的生成出现问题,只需修改一下nand_spl目录下目标板目录的中config.mk中的 PAD_TO := $(shell expr $$[$(TEXT_BASE) + 4096]) 即可。 DM9000的驱动没有太大的问题(修改了一点可能出现问题的地方,感谢肖工指教),但是原本的u-boot并没有调整所有SROM控制器的配置(其中包括连接DM9000所使用的bank1的总线),我使用了友善带的u-boot的参数配置了一下就好了。 一:https://www.360docs.net/doc/c116893856.html,/batch.viewlink.php?itemid=1694 ftp://ftp.denx.de/pub/u-boot/ 去这2个网站随便下载都可以下载得到最新或者你想要的u-boot。现在我将下载u-boot-2010-09,这个也就是最新的版本啦。 下载后把它解压,然后得到u-boot-2010-09的文件夹,然后进去,并且做下面几件事情:1:进入arch这个文件夹,把出arm外的前部文件夹删掉 2:进入board这个文件夹,把除samsung外前部文件夹删掉 3:进入include/configs,把除smdk6400.h外的所有文件删除。 4: 把顶层目录下有一个叫onenand_ipl的文件夹删除掉,因为没有用到。 5:进入nand_spl/board,把除samsung外全部文件删除掉。 6:再进入arch/arm/cpu文件夹,把除arm1176外其他文件夹删除掉。 7:再进入arch/arm/include/asm文件夹,把除arch-s3c64xx文件外带arch-XX的文件夹删除8:再进入board/samsung文价夹下,把除smdk6400外其他文价夹删除掉。 至此已经把没用到或者不想见到它的文件夹跟文件删除掉了。爽吧。 二: 1:在顶层的目录下找到Makefile文件,并且打开,因为vi或者vim没用习惯而是改用gedit。lwf@lwf-desktop:/home/u-boot-2010.12$ sudo gedit Makefile 在这个Makefile你会找到: ######################################################################### ## ARM1176 Systems ######################################################################### smdk6400_noUSB_config \ smdk6400_config : unconfig @mkdir -p $(obj)include $(obj)board/samsung/smdk6400 @mkdir -p $(obj)nand_spl/board/samsung/smdk6400

Uboot启动代码解析

U-Boot启动过程 开发板上电后,执行U-Boot的第一条指令,然后顺序执行U-Boot 启动函数。看一下board/smdk2410/u-boot.lds这个链接脚本,可以知道目标程序的各部分链接顺序。第一个要链接的是cpu/arm920t/start.o,那么U-Boot的入口指令一定位于这个程序中。下面分两阶段介绍启动流程: 第一阶段 1.cpu/arm920t/start.S 这个汇编程序是U-Boot的入口程序,开头就是复位向量的代码。_start: b reset //复位向量 ldr pc, _undefined_instruction ldr pc, _software_interrupt ldr pc, _prefetch_abort ldr pc, _data_abort ldr pc, _not_used ldr pc, _irq //中断向量 ldr pc, _fiq //中断向量 … /* the actual reset code */ reset: //复位启动子程序

/* 设置CPU为SVC32模式 */ mrs r0,cpsr bic r0,r0,#0x1f orr r0,r0,#0xd3 msr cpsr,r0 /* 关闭看门狗 */ ………… relocate: /* 把U-Boot重新定位到RAM */ adr r0, _start /* r0是代码的当前位置 */ ldr r1, _TEXT_BASE /*_TEXT_BASE是RAM中的地址 */ cmp r0, r1 /* 比较r0和r1,判断当前是从Flash启动,还是RAM */ beq stack_setup /* 如果r0等于r1,跳过重定位代码 */ /* 准备重新定位代码 */ ldr r2, _armboot_start ldr r3, _bss_start sub r2, r3, r2 /* r2 得到armboot的大小 */ add r2, r0, r2 /* r2 得到要复制代码的末尾地址 */ copy_loop: /* 重新定位代码 */ ldmia r0!, {r3-r10} /*从源地址[r0]复制 */

uboot命令

U-boot基础 现在为Linux开放源代码Bootloader有很多,blob、 redboot及U-BOOT等,其中U-BOOT是目前用来开发嵌入式系统引导代码使用最为广泛的Bootloader。它支持POWERPC、ARM、MIPS和 X86等处理器,支持嵌入式操作系统有Linux、Vxworks及NetBSD等。 2.1 U-boot源代码目录结构 |-- board 平台依赖,存放电路板相关的目录文件 |-- common 通用多功能函数的实现 |-- cpu 平台依赖,存放cpu相关的目录文件 |-- disk 通用。硬盘接口程序 |-- doc 文档 |-- drivers 通用的设备驱动程序,如以太网接口驱动 |-- dtt |-- examples 应用例子 |-- fs 通用存放文件系统的程序 |-- include 头文件和开发板配置文件,所有开发板配置文件放在其configs 里 |-- lib_arm 平台依赖,存放arm架构通用文件 |-- lib_generic 通用的库函数 |-- lib_i386 平台依赖,存放x86架构通用文件 |-- lib_m68k 平台依赖 |-- lib_microblaze 平台依赖 |-- lib_mips 平台依赖 |-- lib_nios 平台依赖 |-- lib_ppc平台依赖,存放ppc架构通用文件 |-- net 存放网络的程序 |-- post 存放上电自检程序 |-- rtc rtc的驱动程序 `-- tools 工具 详细实例: ?board:开发板相关的源码,不同的板子对应一个子目录,内部放着主板相 关代码。 Board/at91rm9200dk/at91rm9200.c, config.mk, Makefile, flash.c ,u-boot.lds等都和具体开发板的硬件和地址分配有关。 ?common:与体系结构无关的代码文件,实现了u-boot所有命令,其中内置 了一个shell脚本解释器(hush.c, a prototype Bourne shell grammar parser), busybox中也使用了它。 ?cpu:与cpu相关代码文件,其中的所有子目录都是以u-boot所支持的cpu 命名。

相关文档
最新文档