工程力学重点总结

工程力学重点总结
工程力学重点总结

第一章静力学的基本概念和公理受力图

一、刚体

P2 刚体:在力的作用下不会发生形变的物体。

力的三要素:大小、方向、作用点

平衡:物体相对于惯性参考系处于静止或作匀速直线运动。

二、静力学公理

1力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。

2二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。

3加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。

(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。

(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。4作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。

5 刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。

三、约束和约束反力

P7 约束:

1柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体;

2光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力;

3光滑圆柱铰链约束:

①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定;

4链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。

四、受力分析和受力图

选取研究对象,画出研究对象所受的全部主动力和约束反力,主动力一般是预先给定的,约束反力需根据约束的类型来判断。表示研究对象受力的简明图形,称为受力图。

第二章平面汇交力系

一、平面汇交力系合成和平衡的几何法

1、平面汇交力系合成的力多边形法制

由分力矢量折线和合力矢量构成的多边形称为力多边形。这种求合理矢量的几何作图法则称为力多边形法则。

平面汇交力系合成的结果是一个通过汇交点的合力,该合力矢量等于原力系中各分力的矢量和。

P16 平面汇交力系平衡的必要充分几何条件:力多边形自行封闭

二、力的分解与投影

力在某轴上的投影:等于力的大小乘以力与该轴正向之间夹角的余弦。

力的投影与力的分量是两个不同的概念。三、合力投影定理

P19 合力投影定理:合力在任一轴上的投影,等于各分力在该轴上投影的代数和。

四、平面汇交力系平衡的解析法

P20平面汇交力系平衡条件:∑F ix=0;∑F iy=0。2个独立平衡方程

第三章力矩平面力偶系

一、力对点之距

1、P24 力矩M0(F)=±Fh(逆时针为正),点O为矩心,垂直距离h为力臂,力使物体逆时针转动为正。

2、P25 合力矩定理:平面汇交力系的合力对平面内任一点的矩,等于所有各分力对同一点的矩的代数和。

二、力偶和力偶矩

1、P26力偶:大小相等、方向相反,作用线平行且不共线的两个力组成的力系称为力偶;

力偶矩M=±Fd(逆时针为正)

2、P27力偶的性质

力偶不能与一个力等效,力偶只能用力偶平衡;

力偶对其所在平面内任一点的矩恒等于力偶矩,与矩心的位置无关。

在同一平面内的两个力偶,只要两力偶的力偶矩(包括大小和方向)相等,则此两力偶的效应相等。这就是平面力偶的等效条件。

推论1力偶可在其作用面内任意转移,而不会改变它对刚体的效应。

推论2 只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不会改变它对刚体的效应。

三、平面力偶系的合成与平衡

1平面力偶系:作用在刚体上同一平面内的多个力偶,称为平面力偶系。

平面力偶系可以合成为一个合力偶,合力偶矩等于各分力偶矩的代数和。

2、P28 平面力偶系平衡条件:力偶系中所有各力偶矩的代数和等于零。

第四章平面任意力系

一、P33 力的平移定理:作用于刚体上的力可以平行移动到刚体内的任意一点,但必须附加一个力偶,该附加力偶的力偶矩等于原力对指定点的矩。

二、平面任意力系向作用面内一点简化

1、P34 平面力向力系一点简化

平面任意力系中各力的矢量和F R`称为该力系的主矢量,简称主矢;力系各力对简化中心O的矩的代数和Mo称为该力系对简化中心O的主矩。

平面任意力系向作用面内任一点简化,可得一个力和一个力偶。这个力等于该力系的主矢,作用线经过简化中心O;这个力偶的矩等于该力系对简化中心O的主矩。

2、平面任意力系的简化结果分析

(1)主矢F R`=0,主矩M o≠0,简化为一个力偶;

(2)主矢F R`≠0,无论主矩是否为0,简化为一个力;

(3)主矢F R`=0,主矩M o=0,平衡力系。

三、平面任意力系及其平衡方程

1、平面任意力系平衡的必要和充分条件是:力系的主矢和对任意一点的主矩都等于零。

P36 平面任意力系平衡条件:∑F x=0;∑F y=0,∑M O(Fi)=0。3个独立方程

2、P38平面平行力系平衡条件:∑F y=0,∑M O(F)=0,或∑M A(F)=0,∑M B(F)=0,2个独立方程

P39 静定,超静定

四、考虑滑动摩擦时的平衡问题

P43 摩擦:当两物体具有相对运动的趋势或相对运动时,在其接触处的公

切面内就会彼此作用有阻碍相对滑动的阻力,即滑动摩擦力,简称摩擦力。

静摩擦力:对物块施加一个大小可变的水平力F ,并由零逐渐增大,在接近某一数值Fc 的过程中,物块仅有相对支撑面滑动的趋势,但始终保持静止。可见支撑面除了对物块作用有法向约束反力Fn 外,必定还有切向约束反力Fs 作用,此力称为静滑动摩擦力,简称静摩擦力。

当主动力增大到Fc 时,物块虽无相对滑动,但即将失去平衡,称为平衡的临界状态。此时的静摩擦力达到最大值,称为最大静摩擦力,以Fmax 表示。

Fmax=fs ×Fn ,fs 是摩擦因数,Fn 是两物间的正压力(法向约束反力),这称为静摩擦定律。

静摩擦力的方向与物块的相对滑动趋势方向相反,大小随主动力的变化而变,但介于0和最大值之间,即

0≤Fs ≤Fmax

全约束反力与法线间的夹角的最大值φ称为摩擦角,摩擦角的正切等于静摩擦因数。如果作用于物块的全部主动力的合力F R 的作用线在摩擦角之内,则无论这个力怎么大,物块必保持静止,这称为自锁现象。 第五章 空间力系 重心 一、力在直角坐标轴上的投影 1、一次投影法

设力F 作用于物体上的O 点,过O 作空间直角坐标系Oxyz ,若已知力F 与x 、y 、z 坐标轴正向间的夹角分别是α、β、γ,则力F 在x 、y 、z 轴上的投影是: Fx=Fcos α;Fy=Fcos β;Fz=Fcos γ。 二、力对轴之矩

1、力对某轴的矩是力使刚体绕此轴转动效应的度量,它等于该力在垂直于该轴的平面上的投影对这平面与该轴的交点的矩。可表示为Mz(F)=Mo(Fxy)=±Fxy ·h

2、力对轴之矩的解析表达式

M x (F)=yF z -zF y ;M y (F)=zF x -xF z ;M Z (F)=xF y -yF x

三、空间力系平衡方程

P53 空间力系平衡条件:6个方程;空间汇交力系:3个方程;空间平行力系:3个方程

四、物体的重心和形心

地心对物体的吸引力称为物体的重力,其大小就是物体的重量。物体重力的作用点称为物体的重心。

由物体的几何形状和尺寸所决定的点是物体的几何中心,称为物体的形心。 第六章 点的运动 P64 质点 一、自然法 1、点的运动方程

动点在运动过程中,其弧坐标是时间t 的单值连续函数,S=f(t),上式称为以弧坐标表示的点的运动方程。 2、点的速度

点做曲线运动时,速度的大小等于弧坐标对时间的一阶导数的绝对值;方位沿轨迹切线,指向由弧坐标对时间的一阶导数的正负号判定。 P65 点的速度dt

ds

v =

3、点的加速度

加速度:切向加速度dt

dv

a =τ,速度大小变化;法向加速度ρ2v a n =

速度方向变化,加速度2

2n

a a a +=τ

点作曲线运动时,切向加速度表明速度大小对时间的变化率。其大小等于速度的代数值对时间的一阶导数,或等于弧坐标对时间的二阶导数;其方位沿轨迹的切线,指向由导数的正负号决定。

法向加速度表明速度方向对时间的变化率,其大小等于速度的平方处以轨迹上动点所在处的曲率半径(作圆周运动时,曲率半径等于半径R ),其方向沿轨迹动点所在处的法线,指向曲率中心。

直线运动:τa a

=;匀速曲线运动:n a a =;

匀变速曲线运动:τa 是常数,n a 不等于零,

t a v v τ+=0,2

002

1t a t v s s τ+

+= 二、直角坐标法

1、点的直角坐标运动方程和轨迹方程

)(1t f x =,)(2t f y =,上式就是点的直角坐标运动方程。

动点以t 为参数的轨迹参数方程,从中消去时间t ,就可以得到点的轨迹方程。

第七章 刚体的基本运动

P73 平动:刚体在运动过程中,若其上任意直线始终与它的初始位置保持平行,则称刚体作平行移动,简称平动。

刚体平动的特征:刚体平动时,其上各点的轨迹相同且平行,同一瞬时各点的速度和加速度相等。

P74定轴转动:刚体在运动过程中,如果其上(或其拓延部分)有一条直线始终保持不动,则称为刚体的定轴转动,简称转动。 转动方程:刚体转动过程中,转角

)(t ??=,是时间的函数,反映了刚体整

体的转动规律。

角速度

dt

d ?ω=,角加速度

dt

d ω

α=

角速度30

60

2n

n ππω=

=

(n 是转速,r/min)

P76 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==,

第八章 质点动力学基础

惯性定律:无外力作用时,质点将保持原来的运动状态(静止或匀速直线运动)。 运动定律:质点因受力的作用而产生的加速度,其方向和力的方向相同,大小与力的大小成正比,即

F ma =,m 是质点的质量,a 是质点的加速度,F 是

作用在质点上的合力。

作用与反作用定律:两个物体间的作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在这两个物体上。 第九章 刚体动力学基础

刚体内各质点的质量与其到z 轴的距离的平方的乘积之和,称为刚体对z 轴的转动惯量,用J z 表示,即2i i z

r m J ∑=,转动惯量:圆环2mR J z =;圆

2/2mR J z =;细杆12/2ml J z =。

P91平行轴定理:刚体对任一轴的转动惯量等于刚体对通过质心且与该轴平行的

轴的转动惯量加上刚体的质量与两轴间距离平方的乘积,即

2`md J J z z +=

P88转动定理:转动刚体对转轴大的转动惯量与角加速度的乘积等于作用于刚体的所有外力对转轴之矩的代数和,此结论称为转动定理。 第十章 动能定理

P97平动刚体动能2

2

mv

T =

;转动刚体动能2

2

ωz J T =

P100重力的功

)(G 12z z A --=

弹性力的功

)(2

222

1δδ-=

c A 作用在定轴转动刚体上的力的功

?=2

1

???d M A z

功率的定义式:v F dt

ds

F dt A

P

ττ

δ===

功率与力矩、转速的关系:n

P

M 9550=

P101动能定理:i

e A

A T T ∑+∑=-12,质点系初始与终了位置的动能

改变等于所有外力、内力的总功,对刚体来说内力作功为0,所以

e A T T ∑=-12

第十一章 材料力学的基本概念 P107 构建承载能力主要包括三个方面:

强度(构件抵抗破坏的能力,即在规定的使用条件下,构件不发生断裂或显著的永久变形)、

刚度(构件抵抗变形的能力,即在规定的使用条件下,变形不超过允许的限度)、 稳定性(构件保持原有平衡形式的能力,即在规定的使用条件下,构件能保持原有的平衡形式。

对变形固体所做的基本假设:

连续性假设(认为组成变形固体的物质毫无间隙地充满了它的整个几何空间,而且变形后仍保持这种连续性。)、

均匀性假设(认为整个物体是由同一材料组成。)、

各向同性假设(认为物体在各个方向具有相同的物理性质)、

小变形假设(认为物体的变形与构件尺寸相比属高阶小量,可以不考虑因变形而引起的尺寸变化,就称为小变形假设)。

内力:因外力作用而引起构件内各部分之间相互作用力的改变量,称为附加内力,简称内力。 全应力:dA

dF

=

P

,通常把全应力p 分解为垂直于截面的分量σ(正应力)和与截面相切的分量τ(切应力)。

P108 截面法:是材料力学中研究内力的基本方法,步骤为:一截为二,任取其一;相互作用,代之内力;根据平衡,确定内力

P109杆件变形的基本形式:拉伸与压缩、剪切、扭转、弯曲 第十二章 轴向拉伸与压缩

一、拉伸与压缩的概念:杆件所受外力(或外力的合力)作用线与杆轴线重合;杆件的变形为轴线方向的伸长或缩短。这种变形形式称为轴向拉伸或轴向压缩。 二、轴向拉伸或压缩的强度计算

P111正应力

][σσ≤=

A

F N

许用应力(强度条件),n o /][σσ=,o

σ是材料的极限应力

上式可以解决三个方面的强度计算问题:强度校核;设计截面;确定许可载荷。

三、轴向拉伸或压缩时的变形

1、轴向形变 P114线应变:

l l

?=

ε,胡克定律εσE =或EA

l F l N =?,E 是材料拉压弹性模量,E A 是材料抗拉压刚度 2、横向形变 横向线应变

μεε-=`,μ是泊松比

四、材料在拉伸和压缩时的力学性质 1、低碳钢在拉伸时的力学性质 (1)弹性阶段

弹性阶段由直线段oa 和微弯段ab 组成,a 点对应的应力值称为比例极限,用

P

σ表示。在微弯段ab ,应力与应变不再成比例,但材料的变形仍是弹性的。b 点对

应的应力值称为弹性极限,用e σ表示,它是材料只产生弹性变形的最大应力

值。

(2)屈服阶段

当应力超过b 点,增加到某一数值时,变形显著增长而应力几乎不变,这种现象称为屈服。屈服阶段的最低点c 所对应的应力值称为屈服极限,用

s σ表示。

屈服极限

s σ是衡量材料强度的重要指标。

(3)强化阶段

超过屈服阶段后,材料又恢复了对变形的抗力,若要它继续变形必须增加拉力,这种现象称为材料的强化,所以cd 段称为强化阶段,最高点d 所对应的应力称为强度极限,用

b σ表示,它是材料能承受的最大应力,也是衡量材料强度的

另一重要指标。 (4)局部变形阶段

试件拉断后,弹性变形消失,塑性变形仍然保留。残余伸长与l

之比的百分率称为伸长率,用δ表示

%1001?-=

l

l

l δ,衡量材料塑性的另一指标是断面收缩率ψ,%1001

?-=

A

A A ψ 塑性材料(如低碳钢)通常以屈服极限为其极限应力。对于脆性材料,由于没有屈服极限,故以断裂时的强度极限

b σ为其极限应力。

P122应力集中:由于构件形状尺寸的突变,引起局部应力急剧增大的现象,称为应力集中。应力集中处的最大应力

ax m σ与该截面上平均应力m σ之比,称

为理论应力集中因数,用K t 表示,m

t K σσm ax

=,K t 与材料无关,它反映了

应力集中的程度,其值大于1 第十三章 剪切

剪切:作用在构件两侧面上分布力的合力大小相等、方向相反、作用线垂直杆轴线且相距很近;构件沿着与水平行的截面发生相对错动。这种变形形式称为剪切。

P128 剪切实用计算:假定切应力在剪切面上是均匀分布的,强度条件:

][ττ≤=

A

F S

许用切应力,n o /][ττ=。 挤压实用计算:假定挤压应力在挤压面上是均匀分布的

挤压强度条件:

][bs bs

bs

bs A F σσ≤=

许用挤压应力,对圆柱形挤压面dl A bs =,d 是圆直径,l 是圆柱高度

切应力互等定理:在单元体互相垂直的截面上,垂直于截面交线的切应力必定成对存在,大小相等,方向则均指向或都背离此交线,这称为切应力互等定理。 剪切胡克定律:切应变γ与横截面相对错动的位移成正比;γ所在的截面与切应力所在的截面是相互垂直的。切应力τ与切应变γ成正比关系:τ=G γ,上式称为胡克剪切定律。 第十四章 扭转

1、扭转:外力是一对大小相等、转向相反的力偶,作用在垂直于杆轴线的平面内;其变形的特点是各横截面绕轴线相对转动。杆件的这种变形形式称为扭转,以扭转变形为主的杆件称为轴。

2、P134传动轴扭转外力偶矩)(95500m N n

p

M ?=,p 是功率,n 是

转速(r/min )

3、P135扭矩T :横截面上的内力偶矩T 称为扭矩。按照右手螺旋法则,将扭矩用矢量(双箭头)表示,其指向离开截面的为正,反之为负。

4、圆轴扭转时横截面的应力:

(1)横截面的间距不变,线应变ε=0,所以横截面上没有正应力。

(2)由于横截面像刚性平面一样绕轴线作相对转动,圆柱面上小矩形沿圆周方向发生相对错动,其直角产生了微小的改变,出现了切应变。

5、P137扭转切应力

p

p W T

R I T ==/max

σ,I p 是极惯性矩,W p 是抗扭

截面系数:圆形16

32

3

4

D

W D

I p p

ππ=

=

,,

空心圆轴)(),(43

44

116

132

απαπ-=

-=

D W D I p p ,

α=d/D

等直圆轴扭转强度条件][max

max

ττ≤=

p

W T

许用切应力;

阶梯轴的情况][max

max

ττ

≤????

??=p W T 6、圆轴的扭转变形

P139扭转角

p

GI Tl =

?(

?的单位是弧度)

,GI p

:截面的抗扭刚度,其值越大,圆轴抗扭转变形的能力越强。

7、刚度条件

][φ?

φ≤=

=

p

GI T

l

许用扭转角,单位是度/米,需把上式

中的弧度换算成度,即

)/]([180m GI T p φπ

φ≤?=

第十五章 弯曲内力

1、平面弯曲:受弯构件受力的特点是:外力是垂直于杆轴线的横向力或作用在其轴线平面内的力偶;变形的特点是:杆轴线弯曲成一条曲线。这种变形形式称为弯曲,以弯曲变形为主的杆件称为梁。

工程中梁的横截面一般都有一个对称轴。该对称轴所组成的平面称为纵向对称面,若外力都作用在该平面内,梁的轴线将在该平面内弯成一条平面曲线,这种弯曲称为平面弯曲。

2、静定梁的三种基本形式:简支梁、外伸梁、悬臂梁。

3、弯曲内力:在所截截面的内侧取微段,凡使微段产生顺时针转动趋势的剪力为正,反之为负。使微段弯曲变形后,凹面朝上的弯矩为正,反之为负。

4、P146剪力F s 、弯矩M :剪力Fs 等于截面以左梁上所有外力的代数和;弯矩M 等于截面以左梁上所有外力对截面形心力矩的代数和。在左段梁上,向上的

横向外力产生正剪力和正弯矩,反之为负剪力和负弯矩;顺时针转向的外力偶产生正弯矩,反之为负。

剪力方程和弯矩方程:剪力和弯矩沿轴线的变化可表示为x 的函数,即

)(F F x s s =,)(x M M =,上述关系称为剪力方程和弯矩方程。该方

程可以图线表示,以x 为横坐标,Fs 或M 为纵坐标,取向上为正,所画出的Fs 、M 沿轴线变化的图线称为剪力图和弯矩图。 5、剪力、弯矩和分布载荷集度之间的微分关系 P150剪力F s 、弯矩M 与均衡力q 的关系

q dx x d s =)(F ,)()

(x F dx x dM s =,

q dx

x M d =2

2)( 上述三式表明:剪力图上某处斜率等于该处线分布载荷集度(规定向上的q 为正);弯矩图上某处的斜率等于该处剪力值;弯矩图上某处斜率的变化率等于该处线分布的载荷集度。可得出剪力和弯矩图的规律如下:

(1)若梁段的q=0,则该段剪力图为水平线;弯矩图为斜直线,当F s >0时,直线右向上倾斜,当F s <0时,直线右向下倾斜。

(2)若梁段的q 等于常数,则该段剪力图为斜直线,弯矩图为二次抛物线;当q 向上(q >0时),Fs 图为右向上倾斜的直线,M 图为凹面向上的抛物线;当q

向下时,则相反。

(3)在Fs=0处,弯矩有极值,M 图在该处有水平切线;当q 向上时,弯矩有极小值,当q 向下时,弯矩有极大值。

(4)在集中力作用处,剪力图发生突跳,突跳数值和方向与集中力相同;该处

M 图连续,但有转折。

(5)在集中力偶作用出,弯矩图发生突跳,突跳数值与集中力偶相同。 (6)最大弯矩可能发生在集中力和集中力偶作用处(包括插入端处),或剪力等于零的截面处。

6、作剪力图和弯矩图的步骤: (1)求支反力。

(2)在载荷不连续处分力区,并写出剪力方程、弯矩方程。 (3)作出剪力图和弯矩图,确定最大剪力、最大弯矩。 第十六章 弯曲应力

1、P154中性轴:梁弯曲时,靠近顶面的纤维缩短了,靠近底面的纤维伸长了,由于变形的连续性,梁内必有一层不伸长也不缩短的纵向纤维,称为中性层,中性层与横截面的交线称为中性轴,梁弯曲时横截面绕中性轴相对转动。

2、中性层曲率Z EI M

dx d k ===

ρθ1,Z EI 是截面抗弯刚度。横截面

上正应力Z

I My

=

σ,M 是弯矩,y 是所求应力点到中性轴的距离。

3、P155最大正应力发生在距离中性层最远的各点处,最大正应力

Z

Z W M I My =

=max max

σ,I Z 是惯性矩,W Z 是抗弯截面系数:

矩形6

122

3bh W bh I Z Z ==,;(6

122

3zy W zy I Z Z ==,)

圆形32

64

3

4

d W d I Z Z

ππ=

=

,;空心圆截面

)1(32

)1(64

43

4

4

απαπ-=

-=

d W d I Z Z ,,D

d =

α 4、组合截面的惯性矩和平行移轴公式

根据惯性矩的定义,组成截面对某轴的惯性矩应等于各组成部分面积对该轴的

惯性矩之和。即:∑==n

i zi

z

I I 1

A a I I zc z 2+=,称为惯性矩平行移轴公式,表明截面对某轴的惯性矩等

于它对平行于该轴的形心轴的惯性矩,加上截面面积与两轴间距离平方的乘积。 5、P158弯曲正应力强度计算

][max σσ≤许用弯曲正应力 对于低碳钢一类的塑性材料,强度条件是

][M max max σσ≤=

z

W

对于脆性材料,强度条件是

][1max max

++≤=σσz

I y

M ,

][1

max max --≤=

σσz

I y M

6、弯曲切应力和切应力强度条件 (1)矩形截面梁的切应力

对于高大于宽的的矩形截面梁,切应力的分布特点是:

横截面上各点的切应力方向与剪力平行,沿横截面的宽度均匀分布,沿高度按抛物线分布,

)4

(F 622

3y h bh s -=τ,Fs 是横截面的剪力,b 、h 分别是截面的宽和高,y

是所求应力点到中性轴的距离。

在截面的上、下边缘处,切应力τ=0,在中性轴上各点处,切应力为最大,其

值是A

Fs

232F 3max

=

=

bh s τ,A 是横截面的面积,可见矩形截面梁的最大

切应力是平均切应力的1.5倍。

(2)工字形截面梁的切应力

工字形截面梁最大切应力发生在中性轴上,其值为

腹板

A Fs

dI s z z ≈

=max *max

S F τ

(3)圆形截面与薄壁环截面梁的切应力

圆形截面最大弯曲切应力为A

Fs

34max

=

τ,A 是截面面积;

薄壁圆环截面最大弯曲切应力为A

Fs

2max =τ,A 是圆环截面积

Rt π2A =

切应力强度条件是][A

Fs max

max

ττ≤=k

材料的剪切许永应力。 P163提高弯曲强度的措施:合理安排梁的支承与载荷;合理设计截面的形状;采用等强度梁。 第十七章 弯曲变形

1、P169 挠度v 、转角θ:取梁变形前的轴线为x 轴,梁左端为坐标原点,y 轴

向上。当梁在xy 平面发生弯曲时,其轴线就在该平面内弯成一条连续而光滑的曲线,称为挠曲线。横截面形心在垂直于x 轴方向的线位移v 称为挠度,横截面绕中性轴转过的角度θ称为转角。向上挠度为正,逆时针转动的转角为正,反之为负。

2、挠度方程和转角方程分别是:

)(x v v =,)(x θθ=,)`(tan x v dx

dv

==

≈θθ 挠曲线近似微分方程:EI x M dx v d )(2

2=或EI

x M v )

(``= 梁在固定端处挠度和转角都等于零。

P172叠加法:当梁上有几种载荷同时作用时,可以先分别计算每一种载荷单独作用时梁所产生的变形,然后按代数值相加,即得梁的实际变形,这种方法称为叠加法。

3、梁的刚度条件:][max

v v ≤许用挠度,][max θθ≤许用转角。

提高弯曲刚度的措施:缩短梁的跨度(或增加支座)对于提高梁的刚度比提高强度更有效;梁的变形与惯性矩I 成反比,而强度与抗弯截面系数W 成反比;梁的变形与材料的弹性模量E 成反比,而强度与E 无关。 P176表17-1 (8)(9)

第十八章组合变形

组合变形:许多工程构件在外力作用下,往往同时产生两种或两种以上的基本变形,称为组合变形。

拉压+弯曲:由拉压应力与弯曲应力叠加后仍为拉压应力,对于拉压强度相等的材料,强度条件是

][F max

max σσ≤+=

+z

N W M A ;对于抗拉和抗压强度不等的材料,需对最大拉应力和最大压应力分别进行校核。

P184弯曲+扭转:横向力使轴弯曲,弯矩是M ;转动力使轴扭转,扭矩是T 。 第三强度理论][4223στσσ≤+=r

第四强度理论

][3224στσσ≤+=r ,式中σ和τ

分别是危险点的

正应力和切应力。

圆轴仅受弯扭组合变形时,第三、第四强度理论写成下式

第三强度理论

][1223σσ≤+=

T M W Z r ;

第四强度理论

][75.01224σσ≤+=

T M W Z

r ,式中M 和T 分

别为危险截面的弯矩和扭矩,Wz 是抗弯截面系数。

第十九章 压杆的稳定性

1、压杆的稳定性:在受压时不能保持原有直线平衡形式而发生弯曲,这种破坏现象称为压杆失稳。对于受压杆件,除了必须具有足够的强度和刚度外,还必须具有保持原有直线平衡形式的能力,即具有足够的稳定性。

2、临界力:临界力就是压杆保持微弯平衡的最小轴向力。

3、欧拉公式:2

2)(F l EI

cr μπ=,μ是长度因数,反映了杆端约束条件对临界

力的影响,杆端约束越强,μ越小,临界力越大。l μ称为压杆的相当长度,

即把不同约束的压杆折算成两端铰支压杆的长度。

4、临界应力

A

)(A F 22l EI

cr cr μπσ=

=

或22

λπσE cr =

其中压杆的柔度

i

l

μλ=

,综合反映了压杆的长度、杆端约束、截面形状和尺

寸对临界应力的影响。

惯性半径A

I

i =

欧拉公式的适用范围是p 2

2σλπσ≤=E

cr ,即 p p

2λσπλ=≥E

,p λ是与材料比例极限相对应的柔度。

(1)细长杆

p λλ≤,欧拉公式2

πσE cr

=;

(2)中长杆

p S λλλ<<,直线公式λσb a cr -=;

(3)粗短杆

S λλ≤,强度公式S cr σσ=

5、压杆的稳定性条件是:]

[F F

st cr

n =

或][st cr

cr st

n F F n ≥==

σ

σ,st n 是压杆工作时的实际稳定安全因数,[st n ]是规定的稳定安全因数,σ是压杆的工作应力。

若压杆截面由局面削弱(如螺钉孔等)时,应同时进行强度和稳定校核。稳定性校核时,可以不考虑截面局部削弱的影响,因为压杆保持稳定性的能力与压杆整体的弯曲刚度有关,截面局部削弱对压杆临界力影响很小。

提高压杆稳定性的措施:合理选择材料;减小柔度(包括减小压杆的支承长度;改善支承情况,减小长度因数μ;选用合理的截面形状) 第二十章 动载荷

1、动载荷和静载荷的本质区别:前者构件内各点的加速度必须考虑,后者可忽略不计。

动应力和动应变:由加速度引起的载荷一般称为动载荷,在动载荷作用下,构件内的应力和变形称为动应力和动应变。 2、构件作匀加速直线运动时的应力

匀加速直线运动中,g

a d

+

=1K ,d K 是动荷因数,是动内力和静内力

的比值。 其强度条件是][max max σσσ≤=j d d K 材料在静载荷下的许用应力

值。

对于作向上匀加速直线运动(加速度已知)的构件,其应力和变形的分析方法

是:首先计算动荷因数Kd ;然后计算构件的静应力和静变形;最后计算动应力和动变形。

3、构件受冲击时的应力和变形 (1)自由落体冲击

d K G F j

d

d =??=,d K 是自由落体冲击时的动荷因数。 计算可得,j

d h

?+

+=211K

(2)对d K 的讨论:j ?是冲击物以静载荷方式作用在被冲击物上时,冲击点沿冲击方向的线位移;

若h=0,即冲击物G 突然加到被冲击物上时,此时产生的冲击应力和变形是静载荷下的两倍,称为突加载荷;

当j ?/h>>1时,可近似取j

d

h

?=

2K ,此式可用于冲击问题的比较

和分析;

动荷因数Kd 虽由冲击点的静位移求得,但适用于整个冲击系统,即冲击系统的动荷因数只有一个,构件上所有点的动变形和动应力都可计算。

P204 提高构件抗冲击能力的措施:静变形j ?越大,动荷因数Kd 越小,所以增大静变形是减小冲击载荷、提高构件抗冲击能力的主要途径。由于静变形j ?与构件的刚度成反比,因此,常采用降低构件刚度的方法来减少冲击载荷的影响。

第二十一章 交变应力

1、交变应力:随时间作周期性变化的应力,称为交变应力。交变应力重复变化一次的过程,称为一个应力循环。

疲劳破坏的特点及机理:构件在交变应力作用下的破坏与静应力下的破坏有本质区别:(1)构件破坏时的应力一般远低于材料的强度极限,甚至低于材料的屈服极限。

(2)即使是塑性材料制作的构件,破坏时也无明显的塑性形变,而是突然发生脆性断裂;

(3)破坏的端口通常呈现两个区域:一个是光滑区域,一个是颗粒状的粗糙区域。

构件的疲劳破坏实质上是裂纹萌生、扩展和最后断裂的过程。 2、交变应力的表示方法和循环特征

一个应力循环中的最大应力和最小应力分别用

max σ、min σ表示;平均应力

2

max

min m σσσ+=

,是交变应力中的静应力部分;

交变应力的变化幅度为

2

min

max a σσσ-=

,是交变应力中的动应力部分。

循环特征m ax

m in

σσ=

r :(1)min max σσ-=,r =-1,对称循环交变应力;

(2)

min σ=0,r =0,脉动循环交变应力; (3)

min max σσ=,r =1,静应力。

3、材料的持久极限:材料能经受无限次应力循环而不发生疲劳破坏的最高应力值,称为材料的持久极限(或疲劳极限)。材料持久极限用符号r σ表示,r 是

循环特征。

P210影响构件持久极限的主要因素:构件外形的影响;尺寸大小的影响;表面加工质量的影响。

除此以外还有一些因素,如周围介质对构件的腐蚀,某些加工工艺所造成的残余应力等,对构件的持久极限都有一定影响。

提高构件疲劳强度的措施:合理设计构件形状,降低有效应力集中因数;提高表面光洁度,降低表层应力集中,可以提高构件的持久极限;工程上还通过一些工艺措施来提高构件表层强度,从而达到提高疲劳强度的目的。

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

工程力学复习要点_简答题答案

2010-2011学年第2学期工程力学复习要点 简 答 题 参 考 答 案 1、说明下列式子的意义和区别。 ①21F F =;②21F F ρρ=;③力1F ρ等效于力2F ρ。 【答】: ①21F F =,表示两个量(代数量或者标量)数值大小相等,符号相同; ②21F F ρρ=,表示两个矢量大小相等、方向相同; ③力1F ρ等效于力2F ρ,力有三个要素,所以两个力等效,是指两个力的三要素相同。 2、作用与反作用定律和二力平衡公理都提到等值、反向、共线,试问二者有什么不同 【答】:二者的主要区别是: 二力平衡公理中等值、反向、共线的两个力,作用在同一刚体上,是一个作用对象,两个力构成了一个平衡力系,效果是使刚体保持平衡,对于变形体不一定成立。 作用与反作用定律中等值、反向、共线的两个力,作用在两个有相互作用的物体上,是两个作用对象,此两力不是平衡力系,对刚体、变形体、静止或者作变速运动的物体都适用。 3、力在坐标轴上的投影与力沿相应坐标轴方向的分力有什么区别和联系 【答】:力在坐标轴上的投影是代数量,可为正、负或零,没有作用点或作用线;力沿相应坐标轴的方向的分力是矢量、存在大小、方向和作用点。当坐标轴或力的作用线平移时,力的投影大小和正负不变,但沿对应坐标轴的分力作用点发生改变。 当x 轴与y 轴互相垂直时,力沿坐标轴方向的分力大小等于力在对应坐标轴上投影的绝对值;当x 轴与y 轴互相不垂直时,力沿坐标轴方向的分力大小不等于力在对应坐标轴上投影的绝对值。 4、什么叫二力构件分析二力构件受力时与构件的形状有无关系凡两端用铰链连接的杆都是二力杆吗 【答】:二力构件是指只受两个力作用而保持平衡的构件............... ,二力构件既可以是杆状,也可以是任意形状的物体。 分析二力构件受力时,与构件的几何形状没有关系(即并不考虑物体的几何形状),只考虑物体:(1)是否只受两个力的作用(一般情况下都是忽略重力的作用);(2)是否保持平衡状态。符合以上两个条件的任何物体,都是二力构件。在二力构件中,形状为杆的构件称为二力杆,可以是直杆,也可以是曲杆。 两端用铰链连接且中间不受其他外力作用的杆(重力不计),才是二力杆。 5、试叙述力的平移定理和它的逆定理。 【答】:力的平移定理:作用在刚体上的力,可以从原作用点等效地平行移动到刚体内的任一指定点,但必须同时在该力与所指定点所决定的平面内附加一力偶,附加力偶矩等于原力对指定点之矩。示意图如下图所示。 力的平移定理的逆定理... :作用在同一刚体同一平面内的一个力F ρ和一个力偶,可以合成为

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

工程力学实验报告

工程力学实验报告 自动化12级实验班 §1-1 金属材料的拉伸实验 一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度R eH,下屈服强度R eL和抗拉强度R m 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度R m。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。 二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。 三、试样 (a) (b) 图1-1 试样 拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试

样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料 室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作l 0,通常在其两端划细线标志。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 四、实验原理 低碳钢(Q235 钢)拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F-ΔL 曲线),如图(1-2)。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。 屈服阶段反映在F-ΔL 曲线图上为一水平波动线。上屈服力eH F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力eL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力R m 是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算: 上屈服强度R eH :0 S F R eH eH = (1-1) 下屈服强度R eL :0 S F R eL eL = (1-2 ) 抗拉强度R m : 0 S F R m m = (1-3) 在强化阶段任一时刻卸载、再加载,可以观察加载、御载规律和冷作硬化现象。 在F m 以前,变形是均匀的。从F m 开始,产生局部伸长和颈缩,由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。

工程力学知识点总结(良心出品必属精品)

工程力学知识点总结 第0章 1.力学:研究物体宏观机械运动的学科。机械运动:运动效应,变形效应。 2.工程力学任务:A.分析结构的受力状态。B.研究构件的失效或破坏规律。C.分研究物体运动的几何规律D.研究力与运动的关系。 3.失效:构件在外力作用下丧失正常功能的现象称为失效。三种失效模式:强度失效、刚度失效、稳定性失效。 第1章 1.静力学:研究作用于物体上的力及其平衡的一般规律。 2.力系:是指作用于物体上的一组力。 分类:共线力系,汇交力系,平行力系,任意力系。 等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。 3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。 4.分力的方位角:力与x 轴所夹的锐角α: 方向:由 Fx 、Fy 符号定。 5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。(刚体是理想化模型,实际不存在) 6.力矩:度量力使物体在平面内绕一点转动的效果。 方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。(2) 力作用线过矩心。 力沿作用线移动时,力矩不会发生改变。力可以对任意点取矩。 7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。(例:不能单手握方向盘,不能单手攻丝) 特点: 1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。 2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。 3.力偶对其作用面内任一点的矩恒等于力偶矩。即:力偶对物体转动效应与矩心无关。 三要素:大小,转向,作用面。 力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。 推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。(只能在作用面内而不能脱离。) 推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力 和力偶臂的大小,而不改变对刚体的作用。 8.静力学四大公理 A.力的平行四边形规则(矢量合成法则):适用范围:物体。 B.二力平衡公理:适用范围:刚体 (对刚体充分必要,对变形体不充分。) 注:二力构件受力方向:沿两受力点连线。 C.加减平衡力系公理:适用范围:刚体 D.作用和反作用公理:适用范围:物体 特点:同时存在,大小相等,方向相反。 注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。(即:作用力反作用力不是平衡力) ()O M F Fd =±

工程力学基础知识

工程力学基础知识 第1篇 静力学 1、平面汇交力系平衡的充要条件是该力系的合力等于零。即: ∑∑==0,0y x F F 2、平面汇交力系简化的依据是平行四边形法则。 3、平面汇交力系可列2个独立方程,求解2个未知量。 4、在平面问题中力对点之矩不仅与力的大小有关而且与矩心位置有关。(方向:绕矩心逆正顺负) 5、合力矩定理:平面汇交力系的合力对于平面内任一点之矩等于所有分力对于该点之矩的代数和。 6、力和力偶是静力学的两个基本要素。 7、平面力偶系的合成结果是一个力偶,汇交力系的合成结果是一个力。(注:力只能与力平衡;力偶只能与力偶平衡) 8、平面力偶系平衡的充要条件是:力偶系中各力偶矩的代数和为零。即 :∑=0i M 9、平面任意力系简化的依据是力线平移定理。 10、力线平移定理揭示了力与力偶的关系。 11、平面任意力系可列3个独立方程,求解3个未知量。 第2篇 材料力学 1、杆件的四种基本变形:轴向拉伸或压缩、剪切、扭转、弯曲 2、为使杆件能正常工作应满足(三个考虑因素):强度要求、刚度要求、稳定性要求。

3、材料力学对变形固体所做的四个基本假设:连续性假设、均匀性假设、各向同性假设、小变形假设。 4、求内力的方法为截面法。 轴向拉压部分 5、轴向拉压的受力特点:外力合力的作用线与杆的轴线重合。 轴向拉压的变形特点:杆件产生沿轴线方向的拉伸或压缩。 6、轴向拉压杆横截面上的内力为轴力(符号N F ),该力产生正应 力σ,公式为:A F N =σ,其中A 为横截面面积。 7、圣维南原理:应力分布只在力系作用区域附近有明显差别,在离开力系作用区域较远处,应力分布几乎均匀。 8、低碳钢拉伸的四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形(颈缩)阶段。 9、衡量材料塑性的指标:伸长率和断面收缩率。 10、拉压杆强度计算的三类问题: (1)校核: []σσ≤??? ??=max max A F N (2)设计截面尺寸:A F A N ≥ (3)确定许可荷载:[]A F ?≤σ 11、拉压杆变形:EA Fl l =? 扭转部分 12、扭转时外力偶矩的计算公式:n P M k e 9549 =,其中k P 单位为kw ,n 单位为min r 。 13、扭矩正负号判断:右手定则(具体见教材145页)。

工程力学实验总结

工程力学实验总结 1.对于标准拉伸试件为测量标距Lo的长度,可选用游标卡尺;为测量标距Lo的总变形在 弹性范围内的?长,可选用引伸计;对其加载并测量荷载值,可选用万能试验机。 2.我们接触过的动态试验机有冲击试验机和疲劳试验机,而后者又分为两种,一种是旋转 弯曲疲劳试验机,另一种是高频拉压疲劳试验机。 3.如果测点处是二向应力状态,则当主应力方向已知时,应选择直角应变花,使丝韧沿主 应力方向粘贴,当主应力方向根本无法估计时,应选用等角应变花。 4.对粘贴后的应变片进行质量检查,要求为:a粘贴位置,方向准确b粘贴缝内无气泡, 孔隙c应变计阻值无明显变化d一般测量引出线与构件间的绝缘电阻大于100M欧姆5.在对断后的低碳钢进行拉伸试件测定长度时,若断面距最近标距点的距离大于Lo/3,可 采用直接测量法;若该距离等于或者小于Lo/3,采用移位法测量。(工程力学实验课本P160);若断口在两段与头部距离小于或者等于2d时,试验无效。 6.为减小应变片机械滞后效应,可采取的措施有:采用高质量的应变计;固化完全;在正 式测量前,预先加,卸载3-5次。 7.对于液压式试验机,测力的方式有压力表测试,摆锤测试,弹簧测试,电子测试。 8.如果进行高温下的应变测量,多选电阻应变计的基底为金属基,敏感栅的材料为铂钨合 金,敏感栅最好为丝绕式。 9.使用液压摆锤式万能试验机时,确认摆杆是否铅垂有三种方法:a看摆杆标示牌上的刻 线与缓冲挡座的指示刻线是否对齐b看水准仪的气泡是否居中c增减摆锤,看力度盘上的指针位置是否变化。 10.为了减少电磁干扰对对电阻应变测量的影响可采取的措施有:a将测量导线捆绑成束b 改变应变仪的方向c使用屏蔽电缆线。 11.金属材料的圆截面拉伸试样分为比例试样和非比例试样。比例试样关系式:Lo=Kd,其 中K=5为短比例试样,K=10为长比例试样。Lo为原始标距,d为原始直径。 12.引伸计是一种测量变形的器具,按其结构原理引伸计可分为机械引伸计,光学引伸计, 电学引伸计三大类。 13.以敏感栅的工艺上考虑,横向效应最大的是丝绕式应变计,疲劳寿命最短的是短接式应 变计,横向效应最小的是箔式应变计。 14.使用液压万能试验机时为减少读数误差,常要求所测荷载在满量程的20%-80%之间。 15.应变片粘贴方向不准造成的误差,不仅与角偏差有关,还和预定粘贴方位与该点主应变 的夹角有关。 16.对发动机活塞连杆机构中的连杆,若要测量其材料的持久极限,需选择拉压疲劳试验机。 17.在铸铁的拉伸,压缩,扭转实验中,试样破坏后的形式分别为横截面,45°斜截面,45° 螺旋断面。 18.电测法测量应变时,为尽量显示测点的真实应变,在应力集中点应选用小应变计,在测 非均质材料的应用大应变计,并且应变计的标距长度至少是直径的4倍。 19.为减少应变片粘贴不准确带来大测量误差,在测点的主应力方向已知时,选择直角应变 花,并沿主应力方向粘贴;在主应力方向未知时,选择等角应变花。 20.由于应变计敏感栅的横栅部分感受横向应变而对轴向测量值产生的影响称为横向效应, 其大小用H表示。 21.在一钢结构表面某点站贴一枚应变计(另有一枚补偿计)应变计与应变仪间用80米的 长导线连接,连接方式为半桥三线接法,若已知应变计与应变仪的灵敏系数均为2.0,导线电阻为0.175Ω/m,应变计电阻为120Ω,测得应变仪读数为。。。。。。 22.一构件处于平面应力状态,若要测定构件上的某点的主应力,在该点至少站贴2枚应变

工程力学(工)

一、单选题 1. (4分)在研究拉伸与压缩应力应变时,我们把杆件单位长度的绝对变形称为() ? A. 应力 ? B. 线应变 ? C. 变形 ? D. 正应力 得分:0知识点:工程力学(工)作业题收起解析 答案B 解析 考查要点: 试题解答: 总结拓展: 2. (4分) 某简支梁A.B.受载荷如图所示,现分别用R A.、R B.表示支座A.、B.处的约束反力,则它们的关系为( )。 ? A. R A.<R B.

? B. R A.>R B. ? C. R A.=R B. ? D. 无法比较 得分:0知识点:工程力学(工)作业题收起解析 答案C 解析 考查要点: 试题解答: 总结拓展: 3. (4分)一空间力系中各力的作用线均平行于某一固定平面,而且该力系又为平衡力系,则可列独立平衡方程的个数是( ) ? A. 6个 ? B. 5个 ? C. 4个 ? D. 3个 得分:0知识点:工程力学(工)作业题收起解析 答案A 解析 考查要点: 试题解答: 总结拓展: 4.

(4分) 情况如下图所示,设杆内最大轴力和最小轴力分别为N mA.x和N min,则下列结论正确的是( ) ? A. N mA.x=50KN,N min=-5KN; ? B. N mA.x=55KN,N min=-40KN;、 ? C. N mA.x= 55KN,N min=-25KN; ? D. N mA.x=20KN,N min=-5KN; 得分:0知识点:工程力学(工)作业题收起解析 答案A 解析 考查要点: 试题解答: 总结拓展: 5. (4分) 如图所示,质量为m、长度为Z的均质细直杆OA.,一端与地面光滑铰接,另一端用绳A.B.维持在水平平衡位置。若将绳A.B.突然剪断,则该瞬时,杆OA.的角速度ω和角加速度仅分别为( )

工程力学复习要点

一、填空题 1.力是物体间相互的相互机械作用,这种作用能使物体的运动状态和形状发生改变。 2.力的基本计量单位是牛顿(N )或千牛顿()。 3.力对物体的作用效果取决于力的大小、方向和作用点(作用线)三要素。 4.若力F r 对某刚体的作用效果与一个力系对该刚体的作用效果相同,则称F r 为该力系的合力,力系中的每个力都是F r 的分力。 5.平衡力系是合力(主矢和主矩)为零的力系,物体在平衡力系作用下,总是保持静止或作匀速直线运动。 6.力是既有大小,又有方向的矢量,常用带有箭头的线段画出。 7.刚体是理想化的力学模型,指受力后大小和形状始终保持不变的物体。 8.若刚体受二力作用而平衡,此二力必然大小相等、方向相反、作用线重合。 9.作用力和反作用力是两物体间的相互作用,它们必然大小相等、方向相反、作用线重合,分别作用在两个不同的物体上。 10.约束力的方向总是与该约束所能限制运动的方向相反。 11.受力物体上的外力一般可分为主动力和约束力两大类。 12.柔性约束限制物体绳索伸长方向的运动,而背离被约束物体,恒为拉力。 13.光滑接触面对物体的约束力,通过接触点,沿接触面公法线方向,指向被约束 的物体,恒为压力。 14.活动铰链支座的约束力垂直于支座支承面,且通过铰链中心,其指向待定。 15.将单独表示物体简单轮廓并在其上画有全部外力的图形称为物体的受力图。在受力图上只画受力,不画施力;在画多个物体组成的系统受力图时,只画外力,不画内力。 16.合力在某坐标轴上的投影,等于其各分力在 同一轴 上投影的 代数 和,这就是合力投影定理。若有一平面汇交力系已求得x F ∑和y F ∑,则合力大小R F 。 17.画力多边形时,各分力矢量 首尾 相接,而合力矢量是从第一个分力矢量的 起点 指向最后一个分力矢量的 终点 。 18.如果平面汇交力系的合力为零,则物体在该力系作用下一定处于 平衡 状态。 19.平面汇交力系平衡时,力系中所有各力在两垂直坐标轴上投影的代数和分别等于零。 20.平面力系包括平面汇交力系、平面平行力系、平面任意力系和平面力偶系等类型。 21.力矩是力使物体绕定点转动效应的度量,它等于力的大小与力臂的乘积,其常用单位为N m ?或kN m ?。 22.力矩使物体绕定点转动的效果取决于力的大小和力臂长度两个方面。 23.力矩等于零的条件是力的大小为零或者力臂为零(即力的作用线通过矩心)。 24.力偶不能合成为一个力,力偶向任何坐标轴投影的结果均为零。 25.力偶对其作用内任一点的矩恒等于力偶矩与矩心位置无关。 26.同平面内几个力偶可以合成为一个合力偶,合力偶矩等于各分力偶矩的代数和。 27.力偶是由大小相等、方向相反、作用线不重合的两个平行力组成的特殊力系,它只对物体产生 转动 效果,不产生 移动 效果。 28.力偶没有 合力,也不能用一个力来平衡,力偶矩是转动效应的唯一度量; 29.力偶对物体的作用效应取决于力偶矩的大小、力偶的转向和作用面三个要素。 30.平面任意力系向作用面内任一点简化的结果是一个力和一个力偶。这个力称为原力系的主矢,它作用在简化中心,且等于原力系中各力的矢量和;这个力偶称为原力系对简化中心的主矩,它等于原力系中各力对简化中心的力矩的代数和。 31.平面任意力系的平衡条件是:力系的主矢和力系对任何一点的主矩分别等于零;应用平面任意力系的平衡方程,选择一个研究对象最多可以求解三个未知量。

工程力学公式总结

刚体 力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 平面汇交力系平衡几何条件:力多边形自行封闭 合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。它表明了合力与分力在同一坐标轴投影时投影量之间的关系。 平面汇交力系平衡条件:∑F ix =0;∑F iy =0。2个独立平衡方程 第三章 力矩 平面力偶系 力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。 Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正) 力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。 平面力偶系平衡条件是合力偶矩等于零。 第四章 平面任意力系 力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向 平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 平面平行力系平衡条件:∑F iy =0,∑M 0(Fi)=02个独立方程 摩擦,阻止两物体接触表面发生切向相互滑动或滚动的现象。静摩擦力,若两相互接触且相互挤压,而又相对静止的物体,在外力作用下如只具有相对滑动趋势,而又未发生相对滑动,则它们接触面之间出现的阻碍发生相对滑动的力,谓之“静摩擦力”。动摩擦力,两物体相对运动时的摩擦力。 重心是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。 第五章 空间力系 P53 空间力系平衡条件:6个方程。空间平行力系:3个方程 影响构件持久极限的主要因素:构件尺寸外形和表面质量。 质点的运动:点的速度dt ds v = ,加速度:切向加速度dt dv a = τ,速度大小变化;法向加速度ρ 2 v a n = , 速度方向变化,加速度2 2n a a a +=τ 刚体的基本运动角速度dt d ?ω= ,角加速度dt d ωα= ,角速度n πω2=(n 是转速,r/s) 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 质心运动定理:e F ma ∑= 转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2 mR J z =:

工程力学

《工程力学》综合复习资料 1.已知:梁AB 与BC ,在B 处用铰链连接,A 端为固定端,C 端为可动铰链支座。 试画: 梁的分离体受力图。 2.已知:结构如图所示,受力P 。DE 为二力杆,B 为固定铰链支座,A 为可动铰链支座,C 为中间铰链连接。 试分别画出ADC 杆和BEC 杆的受力图。 3.试画出左端外伸梁的剪力图和弯矩图。(反力已求出) D E C B A P

4.已知:悬臂梁受力如图所示,横截面为矩形,高、宽关系为h=2b ,材料的许用应力〔σ〕=160MPa 。 试求:横截面的宽度b=? 5.已知:静不定结构如图所示。直杆AB 为刚性,A 处为固定铰链支座,C 、 D 处悬挂于拉杆①和②上,两杆抗拉刚度均为EA ,拉杆①长为L ,拉杆②倾斜角为α,B 处受力为P 。 试求:拉杆①和②的轴力N1 , N2 。 提示:必须先画出变形图、受力图,再写出几何条件、物理方程、补充方程和静力方程。可以不求出最后结果。 q M e =qa 2 =(11/6)qa

6.已知:一次静不定梁AB ,EI 、L 为已知,受均布力q 作用。 试求:支反座B 的反力。 提示:先画出相当系统和变形图,再写出几何条件和物理条件。 7.已知:①、②、③杆的抗拉刚度均为EA ,长L ,相距为a ,A 处受力P 。 试求:各杆轴力。 提示:此为静不定结构,先画出变形协调关系示意图及受力图,再写出几何条件、物理条件、补充方程,静立方程。 A L B q

8.已知:传动轴如图所示,C轮外力矩M c=1.2 kN m ,E轮上的紧边皮带拉力为T1,松边拉力为T2,已知 T1=2 T2,E轮直径D=40 cm ,轴的直径d=8cm,许用应力[σ]=120 Mpa 。 求:试用第三强度理论校核该轴的强度。 9.已知:梁ABC受均布力q作用,钢质压杆BD为圆截面,直径d=4 0 mm, BD杆长 L=800 mm , 两端铰链连接,稳定安全系数nst=3 , 临界应力的欧拉公式为 σcr=π2 E / λ2 ,经验公式为σcr= 304–1.12 λ, E = 2 0 0 GPa , σp=2 0 0 MPa ,σs=2 3 5 MPa 。

工程力学拉伸实验报告

试验目的: 1. 测定低碳钢(塑性材料)的弹性摸量E;屈服极限σs 等机械性能。 2.测定灰铸铁(脆性材料)的强度极限σb 3.了解塑性材料和脆性材料压缩时的力学性能。 材料拉伸与压缩实验指导书 低碳钢拉伸试验 拉伸试验的意义: 单向拉伸试验是在常温下以缓慢均匀的速度对专门制备的试件施加轴向载荷,在试件加载过程中观测载荷与变形的关系,从而决定材料有关力学性能。通过拉伸试验可以测定材料在单向拉应力作用下的弹性模量及屈服强度、抗拉强度、延伸率、截面收缩率等指标。其试验方法简单且易于得到较可靠的试验数据,所以是研究材料力学性能最基本、应用最广泛的试验。 操作步骤: 1.试验设备:WDW-3050电子万能试验机 2.试件准备:用游标卡尺测量试件试验段长度l0和截面直径d0,并作记录。 3.打开试验机主机及计算机等相关设备。 4.试件安装(详见WDW3050电子万能试验机使用与操作三.拉伸试件的安装)。 5.引伸计安装(用于测量E, 详见WDW3050电子万能试验机使用与操作四.引伸计安装)。 6.测量参数的设定: 7.再认真检查一遍试件安装等试验准备工作。 8.负荷清零,轴向变形清零,位移清零。 9.开始进行试验,点击试验开始。 10.根据提示摘除引伸计。 11.进入强化阶段以后,进行冷作硬化试验,按主机控制面板停止,再按▼,先卸载到10kN,再加载,按▲,接下来计算机控制,一直到试件断裂(此过程中计算机一直工作,注意观察负荷位移曲线所显示的冷作硬化现象.). 12.断裂以后记录力峰值。 13.点击试验结束(不要点击停止)。

14.材料刚度特征值中的弹性模量E的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择应力─应变曲线。在曲线上较均匀地选择若干点,记录各点的值,分别为及 (如i =0,1,2,3,4),并计算出相应的 计算E i的平均值,得到该材料的弹性模量E的值。 15.材料强度特征值屈服极限和强度极限的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择负荷─位移曲线,找到的曲线屈服阶段的下屈服点,即为屈服载荷F s, 找到的曲线上最大载荷值,即为极限载荷P b. 计算屈服极限:;计算强度极限:; 16.材料的塑性特征值延伸率及截面收缩率的测定 试件拉断后,取下试件,沿断裂面拼合,用游标卡尺测定试验段长度,和颈缩断裂处截面直径。 计算材料延伸率 计算截面收缩率 低碳钢拉伸试验报告 试验目的: 1. 掌握电子万能试验机操作; 2. 理解塑性材料拉伸时的力学性能; 3. 观察低碳钢拉伸时的变形特点; 4. 观察低碳钢材料的冷作硬化现象; 5. 测定低碳钢材料弹性模量E ; 6. 测定材料屈服极限和强度极限; 7. 测定材料伸长率δ和截面收缩率Ψ 试验设备:

工程力学(一)知识要点

《工程力学(一)》串讲讲义 (主讲:王建省工程力学教授,Copyright 2010-2012 Prof. Wang Jianxing) 课程介绍 一、课程的设置、性质及特点 《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。 本课程的性质及特点: 1.一门专业基础课,且部分专科、本科专业都共同学习本课程; 2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。 二、教材的选用 工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。 三、章节体系 依据《理论力学》、《材料力学》基本体系进行,依次是 第1篇理论力学 第1章静力学的基本概念和公理受力图 第2章平面汇交力系 第3章力矩平面力偶系 第4章平面任意力系 第5章空间力系重心 第6章点的运动 第7章刚体基本运动 第8章质点动力学基础 第9章刚体动力学基础 第10章动能定理 第2篇材料力学 第11章材料力学的基本概念 第12章轴向拉伸与压缩 第13章剪切 第14章扭转 第15章弯曲内力 第16章弯曲应力 第17章弯曲变形 第18章组合变形 第19章压杆的稳定性 第20章动载荷 第21章交变应力

考情分析 一、历年真题的分布情况 结论:在全面学习教材的基础上,掌握重点章节内容,基本概念和基本计算,根据各个章节的分数总值, 请自行给出排序结果。 二、真题结构分析 全国2010年1月自学考试工程力学(一)试题 课程代码:02159 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

工程力学实验报告

实验一金属材料的拉伸及弹性模量测定试验 实验时间:设备编号:温度:湿度: 一、实验目的 1、观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢的弹性模量E。 3、测定低碳钢拉伸时的屈服极限;强度极限,伸长率和截面收缩率 4、测定铸铁的强度极限。 5、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 6、了解CMT微机控制电子万能实验机的构造原理和使用方法。 二、实验设备和仪器 1.CMT微机控制电子万能实验机 2.电子式引伸计仪 3.游标卡尺 4.钢尺 三.实验原理 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。2—1图 低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、

颈缩四个阶段。 铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。抗拉强度σb较低,无明显塑性变形。与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs、最大载荷Fb和铸铁试件的最大载荷Fb。 取下试件测量试件断后最小直径d1和断后标距 l1,由下述公式Fl?lA?AFs????10b01?100%??100%???bs AAlA 0000可计算低碳钢的拉伸屈服点σs。、抗拉强度σb、伸长率δ,和断面收缩率ψ;铸铁的抗拉强度σb。 低碳钢的弹性模量E由以下公式计算: ?Fl0?E A?l0式中ΔF为相等的加载等级,Δl为与ΔF相对应的变形增量。 四、实验步骤 低碳钢拉伸试验步骤(1). 按照式样、设备的准备及测试工作,大致可以将低碳钢拉伸试验步骤归纳如下: lodo。在式样标距段的及标距首先,将式样标记标距点,测量式样直径两端和中间3处测量式样直径,每处直径取两个相互垂直方向的平均值,do。用扎规和钢板尺处直径的最小值取作试验的初始直径做好记录。3lo。测量低碳钢式样的初始标距长度接着,安装试件。按照微机控制电子万能试验机的操作方法,运行电子万能试验机程序,

《工程力学》学习心得

《工程力学》学习心得 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《工程力学》学习心得大二马上就要过去了,在即将过去的一年的大学学习中,我们已经把力学中的理论力学和材料力学都快学习完了。这一年的学习让我了解了许多有关于力的新知识和计算的新方法,老师讲了很多例题的解法,特别是学习的方式更是让我的受益匪浅。 在半年学习力学的过程中,一开始,我以为力学不一定很难,因为很多内容是大学物理里的,所以我应该很容易掌握,但经过一段时间的学习后,我发现它并不是想象中的那么容易,首先,学习内容多,而且有部分特别难。除此之外在学习力学的过程中,还要必须学会画图,学会受力分析。 从老师刚开始老师给我们讲述有关于力学的一些基本知识,并阐明了学习的目标和宗旨到现在将近一年,有时感觉力学容易有时有感觉难。上学期力学考的不是很理想,就是因为有阶段没好好听课,导致材料力学里弯曲变形没学懂,考试前没好好复习,这学期刚开始还是有些吃力,但是后来就慢慢赶上老师的进度,感觉老师应该每次

上课时应该穿插讲一点以前学过的知识来巩固我们以前的知识。 老师也很负责,先把新知识仔细地将一遍,然后再将例题一一讲解一遍,然后挑一两道相似的习题给我们同学现场做,有时还会随意抽同学上黑板做。放学后,老师还会布置一定的作业,到每周力学实验课连同上次力学实验一起交上去。,每次上课都让同学把与上课无关的东西收起来。上课的时候每次做题他都会看看学生的步骤。到考试之前,他还会让我们找个时间来答疑。 通过上学期的学习,我发现其实态度比学习方法更重要,在学习中我们应该端正自己的态度,如果一个学生不能端正自己的态度,大学基本上也学不到多少东西。而且这种心态不能有丝毫松懈,一旦松懈,就得花更长的时间来“补课”。有句话说:“学如逆水行,不进则退。心似平原散马,易放难收。” 上学期力学只考了七十几分,是我对自己有了一个全新的认识。在这学期我一定会好好努力,并且通过自己的努力,争取在期末能得到理想的成绩。给自己即将结束的力学之旅画上一个完整的句号。

工程力学实验总结

工程力学实验总结 对于标准拉伸试件为测量标距Lo的长度,可选用游标卡尺;为测量标距Lo的总变形在弹性范围内的?长,可选用引伸计;对其加载并测量荷载值,可选用万能试验机。 我们接触过的动态试验机有冲击试验机和疲劳试验机,而后者又分为两种,一种是旋转弯曲疲劳试验机,另一种是高频拉压疲劳试验机。 如果测点处是二向应力状态,则当主应力方向已知时,应选择直角应变花,使丝韧沿主应力方向粘贴,当主应力方向根本无法估计时,应选用等角应变花。 对粘贴后的应变片进行质量检查,要求为:a粘贴位置,方向准确b粘贴缝内无气泡,孔隙c应变计阻值无明显变化d一般测量引出线与构件间的绝缘电阻大于100M欧姆 在对断后的低碳钢进行拉伸试件测定长度时,若断面距最近标距点的距离大于Lo/3,可采用直接测量法;若该距离等于或者小于Lo/3,采用移位法测量。(工程力学实验课本P160);若断口在两段与头部距离小于或者等于2d时,试验无效。 为减小应变片机械滞后效应,可采取的措施有:采用高质量的应变计;固化完全;在正式测量前,预先加,卸载3-5次。 对于液压式试验机,测力的方式有压力表测试,摆锤测试,弹簧测试,电子测试。 如果进行高温下的应变测量,多选电阻应变计的基底为金属基,敏感栅的材料为铂钨合金,敏感栅最好为丝绕式。 使用液压摆锤式万能试验机时,确认摆杆是否铅垂有三种方法:a看摆杆标示牌上的刻线与缓冲挡座的指示刻线是否对齐b看水准仪的气泡是否居中c增减摆锤,看力度盘上的指针位置是否变化。 为了减少电磁干扰对对电阻应变测量的影响可采取的措施有:a将测量导线捆绑成束b改变应变仪的方向c使用屏蔽电缆线。 金属材料的圆截面拉伸试样分为比例试样和非比例试样。比例试样关系式:Lo=Kd,其中K=5为短比例试样,K=10为长比例试样。Lo为原始标距,d为原始直径。 引伸计是一种测量变形的器具,按其结构原理引伸计可分为机械引伸计,光学引伸计,电学引伸计三大类。 以敏感栅的工艺上考虑,横向效应最大的是丝绕式应变计,疲劳寿命最短的是短接式应变计,横向效应最小的是箔式应变计。 使用液压万能试验机时为减少读数误差,常要求所测荷载在满量程的20%-80%之间。 应变片粘贴方向不准造成的误差,不仅与角偏差有关,还和预定粘贴方位与该点主应变的夹角有关。 对发动机活塞连杆机构中的连杆,若要测量其材料的持久极限,需选择拉压疲劳试验机。在铸铁的拉伸,压缩,扭转实验中,试样破坏后的形式分别为横截面,45°斜截面,45°螺旋断面。 电测法测量应变时,为尽量显示测点的真实应变,在应力集中点应选用小应变计,在测非均质材料的应用大应变计,并且应变计的标距长度至少是直径的4倍。 为减少应变片粘贴不准确带来大测量误差,在测点的主应力方向已知时,选择直角应变花,并沿主应力方向粘贴;在主应力方向未知时,选择等角应变花。 由于应变计敏感栅的横栅部分感受横向应变而对轴向测量值产生的影响称为横向效应,其大小用H表示。 在一钢结构表面某点站贴一枚应变计(另有一枚补偿计)应变计与应变仪间用80米的长导线连接,连接方式为半桥三线接法,若已知应变计与应变仪的灵敏系数均为2.0,导线电阻

工程力学重点知识总结

工程力学 第一章 在该刚体内前后任意移动, 而不改 变它对该刚体的作用。 I 白比味 在空间的位移不受任何限 H 曰*的制的物体称为自由体。 2. 非自由体:位移受到限制的物体称为非自由体。 3?约束 由周围物体所构成的、限制非自由体位移的釦生 、、亠" 注意: 物体向约束所限制的方向有运动趋势时,就会有约束力? 另外,有约束,不一定有约束力 4:讨论约束主要是分析,有哪些约束力?约束力的方向是?最终要确定约 束力的大小和方向。 5:柔性约束,约束力的数目为 1方向离开约束物体。光滑接触面约束,约 束数目1。 注意:□接触面为两个面时,约束力为分布的同向平行力系, 可用其合理表示。②若一物体以尖点与另一个物体接触,可将尖点是为小圆 弧。再者,一般考虑物体的自重,忽略杆的自重,除非题目要求考虑。 光滑圆柱铰链约束:01固定铰支座(直杆是被约束物体),约束力数目为2; 推论 (力在刚体上的可传性) 作用于刚体的力, 其作用点可以沿作用线 或对非自曲体的某些位移起限制作用

Q中间铰约束按合力讨论,有一个约束力,方向未知:安分力讨论,有 两个约束力,方向可以假设(正交) 注意:销钉和杆直接接触传递力,杆 和杆之间不直接传递力。O3可动铰支座仅限制物体在垂直与接触面方向的移动。约束力数目为1 向心推力轴承,约束力数目为2;止推轴承有三个约束力 强调:无约束的方向一定没有约束力! 平面约束: (1)柔性约束:有一个约束力,离开物体; (2)光滑接触面(线、点)约束: 有一个约束力,指向物体; (3)光滑BI柱较链约束 扎固定餃支座约束:有两个正交约束力, 方向可以假设; B.中间较约束:有两个正交约束力,方向可以假设; G可动较支座或辗轴约束: 有一个约束力,方向可以假设; 空间约束: (1)空间球较约束:有三个正交约束力, 方向可以假设; (2)向心轴承约束:有两个正交约束力, 方向可以假设; (3)向心推力轴承约束:有三个正交约束力, 方向可以假设; 第二章 矢量表达式:R = F i+F2+F. + F4= ^Y i i-↑结论:力在某轴上的投影,等于力的模乘以力与该轴正向间夹角

相关文档
最新文档