X射线荧光光谱分析基本原理

X射线荧光光谱分析基本原理
X射线荧光光谱分析基本原理

X射线荧光光谱分析

X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是

0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。

1.1 X射线荧光光谱分析的基本原理

当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K 系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ

射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下:

λ=K(Z-s)-2

这就是莫斯莱定律,式中K和S是常数。

而根据量子理论,X射线可以看成由一种量子或光子组成的粒子流,每个光具有的能量为:E=hν=hC/λ

式中,E为X射线光子的能量,单位为keV;h为普朗克常数;ν为光波的频率;C为光速。因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,C荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

1.2 X射线荧光光谱仪

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图1-3是这两类仪器的原理

图。

现将两种类型X射线光谱仪的主要部件及工作原理叙述如下:

X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。图1-4是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为50kV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源,其短波限0λ与高压U之间具有以下简单的关系

λ0(nm)=1.23984÷U

只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。大于lmin的一次X射线其能量不足以使受激元素激发。

X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。

分光系统

分光系统的主要部件是晶体分光器,它的作用是通过晶体衍射现象把不同波长的X射线分开。根据布拉格衍射定律2dsinθ=nλ,当波长为λ的X射线以θ角射到晶体,如果晶面间距为d,则在出射角为θ的方向,可以观测到波长为λ=2dsinθ的一级衍射及波长为λ/2, λ/3----- 等高级衍射。改变θ角,可以观测到另外波长的X射线,因而使不同波长的X 射线可以分开。分光晶休靠一个晶体旋转机构带动。因为试样位置是固定的,为了检测到波长为λ的荧光X射线,分光晶体转动θ角,检测器必须转动2θ角。也就是说,一定的2θ

角对应一定波长的X射线,连续转动分光晶体和检测器,就可以接收到不同波长的荧光X

射线见(图1-5)。

一种晶体具有一定的晶面间距,因而有一定的应用范围,目前的X射线荧光光谱仪备有不同晶面间距的晶体,用来分析不同范围的元素。上述分光系统是依靠分光晶体和检测器的转动,使不同波长的特征X射线接顺序被检测,这种光谱仪称为顺序型光谱仪。另外还有一类光谱仪分光晶体是固定的,混合X射线经过分光晶体后,在不同方向衍射,如果在这些方向上安装检测器,就可以检测到这些X射线。这种同时检测多种波长X射线的光谱仪称为同时型光谱仪,同时型光谱仪没有转动机构,因而性能稳定,但检测器通道不能太多,适合于固定元素的测定。

此外,还有的光谱仪的分光晶体不用平面晶体,而用弯曲晶体,所用的晶体点阵面被弯曲成曲率半径为2R的圆弧形,同时晶体的入射表面研磨成曲率半径为R的圆弧,第一狭缝,第二狭缝和分光晶体放置在半径为R的圆周上,使晶体表面与圆周相切,两狭缝到晶体的距离相等(见图1-6),用几何法可以证明,当X射线从第一狭缝射向弯曲晶体各点时,它们与点阵平面的夹角都相同,且反射光束又重新会聚于第二狭缝处。因为对反射光有会聚作用,因此这种分光器称为聚焦法分光器,以R为半径的圆称为聚焦圆或罗兰圆。当分光晶体绕聚焦圆圆心转动到不同位置时,得到不同的掠射角θ,检测器就检测到不同波长的X射线。当然,第二狭缝和检测器也必须作相应转动,而且转动速度是晶体速度的两倍。聚焦法分光的最大优点是荧光X射线损失少,检测灵敏度高。

检测记录系统

X射线荧光光谱仪用的检测器有流气正比计数器和闪烁计数器。(图1-7)是流气正比计数器结构示意图。它主要由金属圆筒负极和芯线正极组成,筒内充氩(90%)和甲烷(10%)的混合气体,X射线射入管内,使Ar原子电离,生成的Ar+在向阴极运动时,又引起其它Ar原子电离,雪崩式电离的结果,产生一脉冲信号,脉冲幅度与X射线能量成正比。所以这种计数器叫正比计数器,为了保证计数器内所充气体浓度不变,气体一直是保持流动状态的。流气正比计数器适用于轻元素的检测。

另外一种检测装置是闪烁计数器(图1-8)。闪烁计数器由闪烁晶体和光电倍增管组成。X射线射到晶体后可产生光,再由光电倍增管放大,得到脉冲信号。闪烁计数器适用于重元素的检测。除上述两种检测器外,还有半导体探测器,半导体探测器是用于能量色散型X射线的

检测(见下节)。这样,由X光激发产生的荧光X射线,经晶体分光后,由检测器检测,即得2θ-荧光X射线强度关系曲线,即荧光X射线谱图,图1-9是一种合金钢的荧光X射线谱。

能量色散谱仪

以上介绍的是利用分光晶体将不同波长的荧光X射线分开并检测,得到荧光X射线光谱。能量色散谱仪是利用荧光X射线具有不同能量的特点,将其分开并检测,不必使用分光晶体,而是依靠半导体探测器来完成。这种半导体探测器有锂漂移硅探测器,锂漂移锗探测器,高能锗探测器、Si-PIN光电二极管探测器(图1-10)等。早期的半导体探测器需要利用液氮制冷,随着技术的进步,新型的探测器利用半导体制冷技术代替了笨重的液氮罐,只有大拇指般粗细。

X光子射到探测器后形成一定数量的电子-空穴对,电子-空穴对在电场作用下形成电脉冲,脉冲幅度与X光子的能量成正比。在一段时间内,来自试样的荧光X射线依次被半导体探测器检测,得到一系列幅度与光子能量成正比的脉冲,经放大器放大后送到多道脉冲分析器(通常要1000道以上)。按脉冲幅度的大小分别统计脉冲数,脉冲幅度可以用X光子的能量标度,从而得到计数率随光子能量变化的分布曲线,即X光能谱图(图1-11)。能谱图经计算机进行校正,然后显示出来,其形状与波谱类似,只是横座标是光子的能量。

图1-11 用放射性同位素fe55照射Si-PIN探测器得出的谱图

图1-12 典型的多元素谱图

能量色散的最大优点是可以同时测定样品中几乎所有的元素(图1-12)。因此,分析速度快。另一方面,由于能谱仪对X射线的总检测效率比波谱高,因此可以使用小功率X光管激发荧光X射线。另外,能谱仪没有波谱仪那么复杂的机械机构,因而工作稳定,仪器体积也小。从现在的发展趋势来看,能谱仪已经逐渐在各个领域替代波谱仪。

定性定量分析方法

样品制备

进行X射线荧光光谱分析的样品,可以是固态,也可以是水溶液。无论什么样品,样品制备的情况对测定误差影响很大。对金属样品要注意成份偏析产生的误差;化学组成相同,热处理过程不同的样品,得到的计数率也不同;成份不均匀的金属试样要重熔,快速冷却后车成圆片;对表面不平的样品要打磨抛光;对于粉末样品,要研磨至300目-400目,然后压成圆片,也可以放入样品槽中测定。对于固体样品如果不能得到均匀平整的表面,则可以把试样用酸溶解,再沉淀成盐类进行测定。对于液态样品可以滴在滤纸上,用红外灯蒸干水份后测定,也可以密封在样品槽中。总之,所测样品不能含有水、油和挥发性成份,更不能含有腐蚀性溶剂。如果不能破坏待测样品,而该待测样品的表面又不平整(比如说贵金属首饰),利用天瑞公司独有的修正算法测量及计算,也可以达到令人满意的效果。

定性分析

不同元素的荧光X射线具有各自的特定波长或能量,因此根据荧光X射线的波长或能量可以确定元素的组成。如果是波长色散型光谱仪,对于一定晶面间距的晶体,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成份。对于能量色散型光谱仪,可以由通道来判别能量,从而确定是何种元素及成份。事实上,在定性分析时,可以靠天瑞公司的自动定性识别算法自动识别谱线,给出定性结果。但是如果元素含量过低或存在元素间的谱线干扰时,仍需人工鉴别。首先识别出X光管靶材的特征X射线和强峰的伴随线,然后根据能量标注剩余谱线。在分析未知谱线时,要同时考虑到样品的来源,性质等因素,以便综合判断。含量定量分析

X射线荧光光谱法进行定量分析的依据是元素的荧光X射线强度Ii与试样中该元素的含量Ci成正比:

Ii=Is*Ci

式中,Is为Ci=100%时,该元素的荧光X射线的强度。根据式(1-1),可以采用标准曲线法,

增量法,内标法等进行定量分析。但是这些方法都要使标准样品的组成与试样的组成尽可能相同或相似,否则试样的基体效应或共存元素的影响,会给测定结果造成很大的偏差。所谓基体效应是指样品的基本化学组成和物理化学状态的变化对X射线荧光强度所造成的影响。化学组成的变化,会影响样品对一次X射线和X射线荧光的吸收,也会改变荧光增强效应。例如,在测定不锈钢中Fe和Ni等元素时,由于一次X射线的激发会产生NiKα荧光X射线,NiKα在样品中可能被Fe吸收,使Fe激发产生FeKα,测定Ni时,因为Fe的吸收效应使结果偏低,测定Fe时,由于荧光增强效应使结果偏高。这时需要用各种算法进行修正,经过多年的潜心研究和技术积累,天瑞仪器公司已经有了多种非常有效的修正算法,足以应对复杂多变的样品基体,并且在实际应用中为客户解决了一个又一个难题。

厚度定量分析

⑴单层薄膜厚度:

X射线荧光光谱法进行厚度定量分析的依据是厚度为t的薄膜元素的荧光X射线强度It与无限厚(实际达到饱和厚度即可)薄膜元素的荧光X射线强度I∞有如下关系:

It/I∞=1-e(k*t)

式中,k为与薄膜有关的一个常数

⑵多层薄膜厚度:

多层薄膜的厚度定量分析跟单层薄膜是类似的,但是需要考虑外层薄膜对内层薄膜荧光的吸收作用,算法更加复杂,在这里就不详细说明了。

总结

X射线荧光光谱法有如下特点:

分析的元素范围广,从Na11到U92均可测定;

荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便;

分析浓度范围较宽,从常量到微量都可分析。重元素的检测限可高达1ppm,轻元素稍差;

分析样品不被破坏,分析快速,准确,便于自动化。

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

X射线荧光光谱分析原理

一 X射线荧光光谱分析原理 利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X 射线能谱法(能量色散)。 当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。 根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。 X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X 光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅

度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。 X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器。探测器和记录等与X射线荧光光谱仪相同。 X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。 X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 二企业挑选X线荧光光谱仪的基本准则应该包括满足要求、优良性能和低购入成本三个方面。 1.满足使用要求是最基本要素

X射线荧光光谱仪国内厂家

X射线荧光光谱仪国内厂家 产品介绍 天瑞仪器公司是国内最大的X射线荧光光谱仪厂家,全球专业生产高性能X射线荧光光谱仪(XRF)的公司。2011年推出的高性能、台式X荧光合金分析仪EDX3600H,融汇全球领先的合金分析技术,配备合金测试效果最佳的智能真空系统,利用低能光管配合真空测试,可以有效的降低干扰,提高轻元素分辨率,大大提高合金中微量的Al、Si、P等轻元素的检测效果。 EDX3600H合金光谱仪是天瑞仪器公司为合金测试专门开发的仪器类型。 具有测试精度高、测试速度快、测试简单等特点。 同时具有合金测试、合金牌号分析、有害元素分析,土壤分析仪、贵金属分析等功能。 检测样品包括从钠至铀的所有合金、金属加工件、矿物、矿渣、岩石等,形态为固体、液体、粉末等。 性能特点 高效超薄窗X光管,指标达到国际先进水平 针对合金的测试而开发的专用配件 SDD硅漂移探测器,良好的能量线性、能量分辨率和能谱特性,较高的峰背比 天瑞仪器专利产品—信噪比增强器(SNE),提高信号处理能力25倍以上 低能X射线激发待测元素,对Pb、S等微含量元素激发效果好 智能抽真空系统,屏蔽空气的影响,大幅扩展测试的范围 自动稳谱装置保证了仪器工作的一致性; 高信噪比的电子线路单元 针对不同样品自动切换准直器和滤光片,免去手工操作带来的繁琐 多参数线性回归方法,使元素间的吸收、增强效应得到明显的抑制; 内置高清晰摄像头 液晶屏显示让仪器的重要参数(管压、管流、真空度)一目了然 标准配置 合金测试高效超薄窗X光管 超薄窗大面积的原装进口SDD探测器 信噪比增强器SNE 光路增强系统 高信噪比电子线路单元

X射线荧光光谱分析的基本原理解析

X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。 K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K 系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射。 如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE 释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数 Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定 的关系,据此,可以进行元素定量分析。 X射线荧光光谱法有如下特点: 1,分析的元素范围广,从4Be到92U均可测定; 2,荧光X射线谱线简单,相互干扰少,样品不必分离,分析方法比较简便; 3,分析浓度范围较宽,从常量到微量都可分析。重元素的检测限可达ppm量级,轻元素稍 差; 4,分析样品不被破坏,分析快速,准确,便于自动化。 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子

X射线荧光光谱仪介绍

X-射线荧光光谱仪(XRF) 1、仪器介绍 X-射线荧光光谱仪(XRF),现有日本Rigaku公司生产的ZSX primus波长色散型XRF一台,及配套所必须的电源设备、冷循环水设备和前处理熔样机等。X射线荧光光谱分析技术制样简单、分析快速方便、应用广泛,可用于测定包括岩石、土壤、沉积物等在内的各种地质样品的化学组成。分析元素范围从Be(4)到U(92),最常见的是用于主量元素分析,如SiO2、Al2O3、CaO、Fe2O3T、K2O、MgO、MnO、Na2O、P2O5、TiO2、LOI等元素。 2、仪器功能和技术参数: (1) 功能:定性分析、半定量分析和定量分析; (2) X射线管:4KW超薄端窗型(30μm)、铑靶X射线管; (3) 分光晶体:LiF(200)、Ge(111)、PET、RX25、LiF(220); (4) 进样器:48位自动样品交换器; (5) 测角仪:SC:5-118度(2θ);PC:13-148度(2θ); (6) 分析元素范围:Be4-U92; (7) 线性范围:10-2 - 10-6; (8) 仪器稳定度:≤0.05%; (9) 测量误差:<5%。 3、应用和优势: XRF应用广泛,可用于岩石、矿物、土壤、植物、沉积物、冶金、矿业、钢铁、化工产品等样品中常量和痕量的定量分析。具有快速方便、制样简单、无损测量、分析元素宽、灵敏度高等优点。 X-ray Fluorescence Spectrometer (XRF) 1、I nstrument Introducation: The wavelength dispersion X-ray fluorescence spectrometer (XRF) is ZSX primus, made by Rigaku, Japan, with a set of instruments of electrical power unit, cold circulating water equipment and automatic fusion machine. XRF is widely used for geological element analysis, including rocks, soils, sediments, etc, which is simplicity and convenience of operation. Its analyzable elements range is from Be (4) to U (92). XRF is most common for the analysis of major elements, such as SiO2, Al2O3, CaO, Fe2O3T, K2O, MgO, MnO, Na2O, P2O5, TiO2 and LOI. 2、Instrument Technical Parameters: (1) Fucation: qualitative analysis, semi-quantitative analysis and quantitative analysis; (2) X-ray tube: 4KW ultrathin end-window (30μm) Rh target X-ray tube;

X射线荧光光谱分析基本原理及仪器工作原理解析

X射线荧光光谱分析基本原理 当能量高于原子内层电子电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,然后自发地由能量高的状态跃迁到能量低的状态。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子成为俄歇电子.它的能量是具有独一特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差,因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。如图所示: K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=E K-E L,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线, L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X 射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。而我们天瑞仪器公司生产的X射线荧光光谱仪就属于能量色散型的。下面是仪器的工作原理图: 能量色散型X射线荧光光谱仪工作原理 仪器工作原理 通过高压工作产生电子流打入到X光管中靶材产生初级X射线,初级X射线经过过滤和聚集射入到被测样品产生次级X射线,也就是我们通常所说的X荧光,X荧光被探测器探测到后经放大,数模转换输入到计算机,计算机计算出我们需要的结果。

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

X-荧光光谱仪基本理论及工作原理

自从1895年伦琴发现X-射线以来,产生的X-射线仪器多种多样。但是进入80年代,由于20世纪末,半导体材料和计算及技术的迅速发展,出现了Si(Li) 探测器技术和能量色散分析技术。最近十几年在国际上一种新的多元素分析仪器迅速发展起来。已经成为一种成熟的,应用广泛的分析仪器。他就是X-射线荧光能谱仪,全称为:能量色散X-射线荧光光谱仪。以下介绍一下这种仪器的情况: 一. X-荧光能谱技术基本理论 1.X-荧光 物质是由原子组成的,每个原子都有一个原子核,原子核周围有若干电子绕其飞行。不同元素由于原子核所含质子不同,围绕其飞行的电子层数、每层电子的数目、飞行轨道的形状、轨道半径都不一样,形成了原子核外不同的电子能级。在受到外力作用时,例如用X-光子源照射,打掉其内层轨道上飞行的电子,这时该电子腾出后所形成的空穴,由于原子核引力的作用,需要从其较外电子层上吸引一个电子来补充,这时原子处于激发态,其相邻电子层上电子补充到内层空穴后,本身产生的空穴由其外层上电子再补充,直至最外层上的电子从空间捕获一个自由电子,原子又回到稳定态(基态)。这种电子从外层向内层迁移的现象被称为电子跃迁。由于外层电子所携带的能量要高于内层电子,它在产生跃迁补充到内层空穴后,多余的能量就被释放出来,这些能量是以电磁波的形式被释放的。而这一高频电磁波的频率正好在X波段上,因此它是一种X射线,称X-荧光。因为每种元素原子的电子能级是特征的,它受到激发时产生的X-荧光也是特征的。 注意,这里的X-荧光要同宝石学中所描述的宝石样品在X射线照射下所发出可见光的荧光概念相区别。 2.X荧光的激发源 使被测物质产生特征X-射线,即X-荧光,需要用能量较高的光子源激发。光子源可以是X-射线,也可以是低能量的γ-射线,还可以是高能量的加速电子或离子。对于一般的能谱技术,为了实现激发,常采用下列方法。 a. 源激发放射性同位素物质具有连续发出低能γ-射线的能力,这种能力可以用来激发物质的X荧光。用于源激发使用的放射性同位素主要是: 55Fe(铁)、109Cd(镉)、241Am(镅)、244Cm(锔)等,不同的放射性同位素源可以提供不同特征能量的辐射。一般将很少量的放射性同位素物质固封在一个密封的铅罐中,留出几毫米或十几毫米的小孔径使射线经过准直后照射到被测物质。源激发具有单色性好,信噪比高,体积小, 重量轻的特点,可制造成便携式或简易式仪器。但是源激发功率低,荧光强度低,测量灵敏度较低。另一方面,一种放射性同位素源的能量分布较为狭窄,仅能有效分析少量元素,因此,有时将两种甚至三种不同的放射性同位素源混合使用,以分析更多的元素。 b. 管激发 管激发是指使用X-射线管做为激发源。X-射线管是使用密封金属管,通过高压使高速阴极电子束打在阳极金属材料钯上(如Mo靶、Rh靶、W靶、Cu靶等),激发出X-射线,X-射线经过(X射线)管侧窗或端窗、并经过准直后,照射被测物质激发X-荧光。 由于X-射线管发出的X-射线强度较高,因此,能够有效激发并测量被测物质中所含的痕量元素。另一方面X-射线管的高压和电流可以随意调整,能够获得不同能量分布的X-射线,结合使用滤光片技术,可以选择激发更多的元素。

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

X射线荧光光谱仪结构和原理

X射线荧光光谱仪结构和原理 第一章 X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。 波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合 则结合了两者的优点。 X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和 数据处理等几部分组成。 § 1.1激发源 激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子 和同步辐射光源。波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管, 功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。能量色散X射线荧光光谱仪用 的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象 和核衰变等。商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的Y射线、电子俘 获和内转换所产生X射线和同步辐射光源。 § 1.1.1 X射线管 1、X射线管的基本结构 目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图 如下: X 光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并

2021年X射线荧光分析的基本原理

X射线荧光分析的基本原理 欧阳光明(2021.03.07) 1. 绪论 物质是由各种元素按照不同的构成方式构成的。各种元素的原子是由原子核和一定数目的核外电子构成。不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O…层。K层上的电子能量最低,由里向外,电子的能量逐渐升高。原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子……。当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内层电子层上即出现一个“空穴”。具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.001~10nm)。为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。对于K 层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为Kα谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为Kβ谱线,其他层的电子发生跃迁时的情况依此类推(如图 1.1所示)。利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分析,称为X射线荧光光谱分析。 图1.1原子结构示意图 在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。对K层电子而言,特定元素的荧光X射线Kα>Kβ,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。 2. X射线与固体之间的相互作用

X射线荧光光谱仪制样要求

X射线荧光光谱仪制样要求 1、定量分析 定量分析是对样品中指定元素进行准确定量测定。定量分析需要一组标准样品做参考。常规定量分析一般需要5个以上的标准样品才能建立较可靠的工作曲线。 常规X射线荧光光谱定量分析对标准样品的基本要求: (1)组成标准样品的元素种类与未知样相似(最好相同); (2)标准样品中所有组分的含量应该已知; (3)未知样中所有被测元素的浓度包含在标准样品中被测元素的含量范围中; (4)标准样品的状态(如粉末样品的颗粒度、固体样品的表面光洁度以及被测元素的化学态等)应和未知样一致,或能够经适当的方法处理成一致。 标准样品可以向研制和经营标准样品的机构(如美国的NIST等)购买,如果买不到合适的标准样品,可以委托分析人员研制,但应考虑费用和时间的承受能力。 2、定性分析与半定量分析 定性分析和半定量分析不需要标准样品,可以进行非破坏分析。半定量分析的准确度与样品本身有关,如样品的均匀性、块状样品表面是否光滑平整、粉末样品的颗粒度等,不同元素半定量分析的准确度可能不同,因为半定量分析的灵敏度库并未包括所有元素。同一元素在不同样品中,半定量分析的准确度也可能不同。大部分主量元素的半定量分析结果相对不确定度可以达到10%(95%置信水平)以下,某些情况下甚至接近定量分析的准确度。 半定量分析适用于:对准确度要求不是很高,要求速度特别快(30min以内可以出结果),缺少合适的标准样品,非破坏性分析等情况。 另外,分析样品中,除要求分析的感兴趣元素外,其他元素或组分的含量也必须预先知道。如Li2O-B2O3-SiO2系的玻璃,由于常规不能分析Li2O和B2O3,所以必须用其他方法(如AA,ICP-A ES等)测出它们的含量,然后用X射线荧光光谱法测定其他元素。

X射线荧光光谱分析的基础知识

《X射线荧光光谱分析的基础知识》讲义 廖义兵 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li 的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要分析手段。 一、X射线荧光光谱分析的基本原理 元素的原子受到高能辐射激发而引起层电子的跃迁,同时发射出具有一定特殊性波长的X射线,根据莫斯莱定律,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z? s) ?2 式中K和S是常数。 而根据量子理论,X射线可以看成由一种量子或光子组成的粒子流,每个光具有的能量为: E=hν=h C/λ 式中,E为X射线光子的能量,单位为keV;h为普朗克常数;ν为光波的频率;C 为光速。 因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。 图1为以准直器与平面单晶相组合的波长色散型X射线荧光光谱仪光路示意图。 图1 平面晶体分光计光路示意图 A—X射线管;B—试料;C—准直器;D—分光晶体;E—探测器 由X射线管(A)发射出的X射线(称为激发X射线或一次X射线)照射到试料(B),试料(B)中的元素被激发而产生特征辐射(称为荧光X射线或二次X射线)。荧光X射线通过准直器(C)成为近似平行的多色光束投向晶体(D)时,对于某一

X射线荧光光谱仪操作步骤

1.开机顺序 1.1 打开空压机电源,检查二次压力为5.0bar。 1.2 打开水冷机电源,并调节水流压力至4 bar(4公斤)。 1.3 打开P10气体钢瓶主阀,设定二次压力为0.7-0.8bar。 1.4 如果配置了冲氦系统,打开He气钢瓶,设定二次压力为0.8bar。 1.5 打开主电源开关(配电柜空气开关),使主机处于待机状态。 1.6 按下“POWER ON”开关,使主机处于“开机” 状态。 1.7 开计算机,运行分析软件,用户名及密码为“SUPERQ”。 1.8 打开光谱仪状态图,检查仪器真空度(小于100Pa?),P10气体流量(1L/Min左右)。 1.9 转动HT钥匙,打开高压,仪器自动设定高压为20kv/10mA,同时启动循环水。 A检查水流量,内循环水(3-5L/Min),外水(1-4L/Min)。 B等待仪器内部温度稳定(30度)后可正常分析。 2. 停机 2.1 逐步降低高压到20kv/10mA(或运行Sleep程序) 。 2.2 等待3分钟后,转动钥匙关闭HT高压。 2.3 关闭SuperQ,使分析软件与主机脱机。 2.4 按下“Standby”开关,仪器处于待机状态。 2.5 如晚上及周末不使用仪器,建议设定高压为20kv/10mA低功率状态, 不要关机。 3. X-Ray Tube 老化 如主机停机超过24小时,需对X-Ray Tube 进行老化处理。

3.1 手动老化 开机后运行TCM2403按以下顺序进行: 20kv/10mA→30kv/10mA→40kv/10mA→40kv/20mA→50kv/30mA→60kv/40mA→60kv/50mA 如停机时间大于24小时小于100小时,每步停留时间为1分钟。如仃机时间大于 100 小时,每步停留时间为5分钟。 3.2 自动老化(Breeding) A.开机后运行TCM2403,如停机时间大于24小时小于100小时,选择“Fast”老化,如停机时间大于100小时,选择“Normal”老化。 B.启动XRF system setup,运行System菜单下的Tube breeding, 如停机时间大于24小时小于100小时,选择“Fast”老化,如停机时间大于100小时,选择“Normal”老化。 C.在光谱仪状态图,以手动方式进行老化。 4. P10气体瓶更换 为了防止气瓶内的杂质进入分析仪, 建议在瓶压为10个气压时即更换新气。4.1 逐步把高压降至20kv/10mA,等待3分钟后,关闭高压。 4.2 设定分光室介质为空气状态。 4.3 关闭钢瓶主阀门,取下减压阀。 4.4 更换新的P10气体瓶。 4.5 快速打开气瓶主阀并迅速关闭以冲洗接口。 4.6 安装减压阀,打开主阀门,检查二次压力为0.7-0.8bar。(通常为0.75bar) 4.7打开主机电源 4.8在谱仪状态图中点Start Detector Gas按钮启动P10气,

X荧光光谱仪(XRF)的基本原理

X荧光光谱仪是根据X射线荧光光谱的分析方法配置的多通道X射线荧光光谱仪,它能够分析固体或粉状样品中各种元素的成分含量。 X射线荧光(XRF)能够测定周期表中多达83个元素所组成的各种形式和性质的导体或非导体固体材料,其中典型的样品有玻璃、塑料、金属、矿石、耐火材料、水泥和地质物料等。凡是能和x射线发生激烈作用的样品都不能分析,而且要分析的样品必须是在真空(4~5pa)环境下才能测定。 X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管通过产生入射X射线(一次X射线),来激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X 射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。 近年来,X荧光光谱分析在各行业应用范围不断拓展,广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域,特别是在RoHS检测领域应用得zui多也zui广泛,是一种中型、经济、高性能的波长色散X射线光谱仪。 X荧光光谱仪具有以下优点: a)分析速度高。测定用的时间与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。 b)X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。大多数分析元素均可用其进行分析,可分析固体、粉末、熔珠、液体等样品,分析范围为Be到U。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。特别是在超软X射线范围内,这种效应更为显著。波长变化用于化学位的测定。 c)非破坏分析。在测定中不会引起化学状态的改变,也不会出现试样飞散现象。同一试样可反复多次测量,结果重现性好。 d)X射线荧光分析是一种物理分析方法,所以对在化学性质上属同一族的元素也能进行分析。 e)分析精密度高。 f)制样简单,固体、粉末、液体样品等都可以进行分析。 当然,也有一些不足之处,具体如下: a)难于作分析,故定量分析需要标样。 b)对轻元素的灵敏度要低一些。 c)容易受相互元素干扰和叠加峰影响。

全自动荧光免疫分析仪工作原理

、基本结构 (一)按照反应装置的结构,自动生化分析仪主要分为流动式(FLOW SYSTEM、) 分立式(DISCRETE SYSTE两大类。 1.流动式指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。 2.分立式指各待测样品与试剂混合后的化学反应都是在各自的反应杯中完成。其中有几类分支。 (1) 典型分立式自动生化分析仪。此型仪器应用最广。 (2) 离心式自动生化分析仪,每个待测样品都是在离心力的作用下,在各自的反应槽内与试剂混合,完成化学反应并测定。由于混合,反应和检测几乎同时完成,它的分析效率较高。 3.袋式自动生化分析仪是以试剂袋来代替反应杯和比色杯,每个待测样品在各自的试剂袋内反应并测定。 4.固相试剂自定生化分析仪(亦称干化学式自动分析仪) 是将试剂固相于胶片或滤纸片等载体上,每个待测样品滴加在相应试纸条上进行反应及测定。操作快捷、便于携带是它的优点。 ( 二) 典型分立式自动生化分析仪基本结构 1样品(SAMPLE系统 样品包括校准品、质控品和病人样品。系统一般由样品装载、输送和分配等装置组成。 样品装载和输送装置常见的类型有: (1) 样品盘(SAMPLE)ISK),即放置样品的转盘有单圈或内外多圈,单独安置或与试剂转盘或反应转盘相套合,运行中与样品分配臂配合转动。有的采用更换式样品盘,分工作和待命区,其中放置多个弧形样品架(SECTOF作转载台,仪器在测定中自动放置更换,均对样品盘上放置的样品杯或试管的高度、直径和深度有一定要求,有的需专用样品杯,有的可直接用采血试管。样品盘的装载数,以及校准品、质控品、常规样品和急诊样品的装载数,一般都是固定的。这些应根据工作需要选择。 (2) 传动带式或轨道式进样即试管架(RACK不连续,常为10个一架,靠步进马达驱动传送带,将试管架依次前移,再单架逐管横移至固定位置,由样品分配臂采样。 (3) 链式进样试管固定排列在循环的传动链条上,水平移动到采样位置,有的仪器随后可清洗试管。 分配加样装置大都由注射器、步进马达或传动泵、加样臂和样品探针等组成,① 注射器

X射线荧光原理及其分析应用

X射线荧光分析原理及其应用 刘召贵白燕春编著 西安市西清华仪器研究所 一九九五年二月二十日

前言 X射线荧光分析技术是一门新兴的分析技术,利用这种技术,可以对固体、粉末、液体甚至气体等样品进行定性和定量分析。 作为一门分析技术,X射线荧光分析具有如下几个突出的特点:1)分析速度快;几十秒至几分钟内可同时分析样品中的多个元素; 2)分析准确度高; 3)无损; 4)与化学状态没有关系; 5)制样简单。鉴于以上突出优点,X 射线荧光分析技术在冶金、有色、地质、煤炭、造纸、建材、考古、商检等许多领域得到了越来越广泛的应用。对迅速指导生产起到了重大作用。 本书作为X射线荧光分析技术速成讲义,是以西安市西清华仪器研究所研制的WTH、GD系列X荧光分析仪为背景,本着深入浅出和理论结合实际的原则,旨在使初学者在短期内迅速掌握这门新兴的技术。 本讲义的第一、三、四、五讲由刘召贵编著,第二、六讲由白燕春编著。由于作者的水平有限,加上时间仓促,书中难免有不妥之处,希望大家提出宝贵意见,以便我们在今后的工作中做得更好。 编著者 一九九五年二月二十日

目录 第一讲X射线荧光及其分析原理 (1) 1、X射线 (1) 2、X射线荧光 (2) 3、特征X射线 (2) 4、X射线对物质的作用 (4) 5、X射线荧光分析 (4) 6、X射线荧光分析法与其它分析方法的比较 (4) 第二讲X射线荧光分析仪的原理及其构造 (6) 1、X射线荧光分析仪的分类 (6) 2、波长色散型 (6) 3、能量色散法 (8) 4、波长色散与能量色散仪器的比较 (10) 5、其他 (10) 第三讲样品的制备以及激发源的准备 (11) 1、制备样品的目的 (11) 2、样品中导致测量误差的主要因素 (11) 3、样品的制备 (11) 4、激发源的准备 (12) 第四讲基体效应的实验和数学校正法及其谱处理 (14) 1、基体效应的概念 (14) 2、基体效应的校正方法 (16) 3、经验系数法 (16) 4、校正效果的判断 (18) 5、校正元素的选择 (19) 6、谱处理 (19) 7、定性分析 (19) 第五讲X荧光分析测量一些基本概念 (21) 1、精密度 (21) 2、准确度 (21) 3、计数统计误差 (21) 4、检出限 (22) 5、灵敏度 (22) 6、漂移 (22) 7、误差 (22)

荧光分析仪器详细原理

第五章原子发射光谱分析 (Atomic Emission Spectrometry, AES) 分析对象:大多数金属原子;利用光子的发射现象;外层电子;线状光谱(line spectrum)。 5.1 概述 1、定义:AES是据每种原子或离子在热或电激发下,发射出特征的电磁辐射而进行元素定性和定量分析的方法。 2、历史:1859年德国学者KIRCHHOFF和BENSEN——分光镜;随后30年——定性分析; 1930年以后——定 量分析 3、特点: 1)多元素检测(multi-element) : 2)分析速度快: 多元素检测; 可直接进样; 固、液样品均可 3)选择性好(selectivity):Nb与Ta;Zr与Ha,Rare-elements 4)检出限(detection limit, DL)低: 10-0.1μg/g(或μg/mL),ICP-AES可达ng/mL级 5)准确度高(accuracy):一般5-10%,ICP可达1%以下。 6)所需试样量少; 7)线性范围宽(linear range),4-6个数量级: 8)无法检测非金属元素----O、S、N、X(处于远紫外);P、Se、Te-----难激发,常以原子荧光法测定) 5.2基本原理 一、原子发射光谱的产生 1、过程 a) 能量(电或热、光)—基态原子 b) 外层电子(outer electron) (低能态E1高能态E2) c) 外层电子(低能态E1高能态E2) d) 发出特征频率(ν)的光子: ?E = E2-E1 = hν =hc/λ 2、几个概念 激发电位(excited potential):由低能态--高能态所需要的能量,以eV表示。每条谱线对应一激发电位。 原子线:原子外层电子的跃迁所发射的谱线,以I表示, 如Na(I) 共振线(resonance linre):由激发态——基态(ground state)跃迁所产生的谱线,激发电位最小—最易激发—谱线最强。 电离(ionization)、电离电位(ionization potential)和离子线:原子受激后得到足够能量而失去电子—电离;所需的能量称为电离电位;离子的外层电子跃迁—离子线。以II,III,IV等表示。 二、原子能级与能级图(energy level diagram) 原子能级通常以光谱项(spectral term)符号来表示: n2S+1L2J+1 核外电子的运动状态描述: 1、单个价电子(valence electron)运动状态 以四个量子数(quantum number)描述: n:主量子(main quantum)数,电子能量及距原子核的距离;n=1,2,3,… l:角量子(azimuthal quantum)数,电子角动量大小,及轨道形状(空间伸展方向)l=0,1,2,…,(n-1)

X射线荧光光谱仪的结构和性能.

第一章 X 射线荧光光谱仪的结构和性能 X 荧光光谱仪可分为同步辐射 X 射线荧光光谱、质子 X 射线荧光光谱、全反射 X 射线荧光光谱、波长色散 X 射线荧光光谱和能量色散 X 射线荧光光谱等。 波长色散 X 射线荧光光谱可分为顺序(扫描型、多元素同时分析型(多道谱仪和固定道与顺序型相结合的谱仪三大类。顺序型适用于科研及多用途的工作, 多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合则结合了两者的优点。 X 射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。 §1.1 激发源 激发样品的光源主要包括具有各种功率的 X 射线管、放射性核素源、质子和同步辐射光源。波长色散 X 射线荧光光谱仪所用的激发源是不同功率的 X 射线管, 功率可达 4~4.5kW, 类型有侧窗、端窗、透射靶和复合靶。能量色散 X 射线荧光光谱仪用的激发源有小功率的 X 射线管,功率从 4~1600W,靶型有侧窗和端窗。靶材主要有 Rh 、 Cr 、 W 、 Au 、 Mo 、 Cu 、 Ag 等,并广泛使用二次靶。现场和便携式谱仪则主要用放射性核素源。 激发元素产生特征 X 射线的机理是必须使原子内层电子轨道产生电子空位。可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象和核衰变等。商用的 X 射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。电磁辐射激发源主要用 X 射线管产生的原级 X 射线谱、诱发性核素衰变时产生的γ射线、电子俘获和内转换所产生 X 射线和同步辐射光源。 §1.1.1 X射线管 1、 X 射线管的基本结构

相关文档
最新文档