海伦—秦九昭公式的推导和应用

海伦—秦九昭公式的推导和应用
海伦—秦九昭公式的推导和应用

海伦—秦九昭公式的推导与应用

海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦

(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。

假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:

S=√[p(p-a)(p-b)(p-c)]

而公式里的p为半周长:

p=(a+b+c)/2

——————————————————————————————————————————————

注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以

S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。

——————————————————————————————————————————————

由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。

证明(1):

与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为

cosC = (a^2+b^2-c^2)/2ab

S=1/2*ab*sinC

=1/2*ab*√(1-cos^2 C)

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2

则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/ 2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[p(p-a)(p-b)(p-c)]

所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

证明(2):

我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。

所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以

q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2]

当P=1时,△2=q,

S△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]}

因式分解得

1/16[(c+a) 2-b 2][b 2-(c-a) 2]

=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)

=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)

=p(p-a)(p-b)(p-c)

由此可得:

S△=√[p(p-a)(p-b)(p-c)]

其中p=1/2(a+b+c)

这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。

S=c/2*根号下a^-{(a^-b^+c^)/2c}^ .其中c>b>a.

根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积

这里用海伦公式的推广

S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d) (其中p为周长一半,a,b,c,d,为4边)

代入解得s=8√ 3

海伦公式的几种另证及其推广

关于三角形的面积计算公式在解题中主要应用的有:

设△ABC中,a、b、c分别为角A、B、C的对边,ha为a边上的高,R、r分别为△ABC外接圆、内切圆的半径,p = (a+b+c),则

S△ABC

=1/2 aha

=1/2 ab×sinC

=1/2 r p

= 2R2sinAsinBsinC

= √[p(p-a)(p-b)(p-c)]

其中,S△ABC =√[p(p-a)(p-b)(p-c)] 就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。

海伦公式在解题中有十分重要的应用。

一、海伦公式的证明

证一勾股定理

如右图

勾股定理证明海伦公式

证二:斯氏定理

如右图。

斯氏定理证明海伦公式

证三:余弦定理

分析:由变形②S = 可知,运用余弦定理c2 = a2 + b2 -2abc osC 对其进行证明。

证明:要证明S =

则要证S =

=

= ab×sinC

此时S = ab×sinC为三角形计算公式,故得证。

证四:恒等式

恒等式证明(1)

恒等式证明(2)

证五:半角定理

∵由证一,x = = -c = p-c

y = = -a = p-a

z = = -b = p-b

∴r3 = ∴r =

∴S△ABC = r·p= 故得证。

二、海伦公式的推广

由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广。由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD中,设p= ,则S四边形=

现根据猜想进行证明。

证明:如图,延长DA,CB交于点E。

设EA = e EB = f

∵∠1+∠2 =180○ ∠2+∠3 =180○

∴∠1 =∠3 ∴△EAB~△ECD

∴= = =

解得:e = ①f = ②

由于S四边形ABCD = S△EAB

将①,②跟b = 代入公式变形④,得:

∴S四边形ABCD =

所以,海伦公式的推广得证。

三、海伦公式的推广的应用

海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事倍功半。

例题:如图,四边形ABCD内接于圆O中,SABCD = ,AD = 1,AB = 1, CD = 2.

求:四边形可能为等腰梯形。

解:设BC = x

由海伦公式的推广,得:

(4-x)(2+x)2 =27

x4-12x2-16x+27 = 0

x2(x2—1)-11x(x-1)-27(x-1) = 0

(x-1)(x3+x2-11x-27) = 0

x = 1或x3+x2-11x-27 = 0

当x = 1时,AD = BC = 1

∴四边形可能为等腰梯形。

在程序中实现(VBS):

dima,b,c,p,q,s

a=inputbox("请输入三角形第一边的长度")

b=inputbox("请输入三角形第二边的长度")

c=inputbox("请输入三角形第三边的长度")

a=1*a

b=1*b

c=1*c

p=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c)

q=sqr(p)

s=(1/4)*q

msgbox("三角形面积为"&s), ,"三角形面积"

在VC中实现

#include

#include

main()

{

inta,b,c,s;

printf("输入第一边\n");

scanf("%d",&a);

printf("输入第二边\n");

scanf("%d",&b);

printf("输入第三边\n");

scanf("%d",&c);

s=(a+b+c)/2;

printf("面积为:%f\n",sqrt(s*(s-a)*(s-b)*(s-c))); }

海伦公式

海伦公式

海伦公式 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长:p=(a+b+c)/2 ——————————————————————————————————————————————注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。——————————————————————————————————————————————由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 编辑本段证明过程 证明(1) 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√

[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2) 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”。秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以q=1/4{a^2*c^2-[(a

海伦公式的推导和应用

海伦公式 海伦公式又译作希伦公式、海龙公式、公式、海伦-秦九韶公式,传说是古代的国王希伦(,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家也提出了“三斜求积术”,它与海伦公式基本一样。 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 —————————————————————————————————————————————— 注1:Metrica(《度量论》)手抄本中用s作为半周长,所以 S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。 —————————————————————————————————————————————— 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 证明(1): 与海伦在他的着作Metrica(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] ):2证明( 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国着名的数学家九韶提出了“三斜求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上

海伦公式

海伦公式 初等几何的海伦公式,由于大学、中学课本配合不够,许多同学对这一公式感到陌生,现将这一公式证明如下: 海伦公式:三角形的面积 ()()()c p b p a p p S ---= 其中:a 、b 、c 分别是三角形的三边长,()c b a p ++= 2 1 证明(1):由余弦定理可知:b a c b a C 2cos 2 22-+= ,由此得出 由 ()c b a p ++= 2 1 可得: p c b a 2=++ , ()c p c p c c b a c b a -=-=-++=-+2222 , ()a p a p a c b a c b a -=-=-++=++-2222 , ()b p b p b c b a c b a -=-=-++=+-2222 , 因此: ()()()()()()()c p b p a p p b a c b a c b a c b a c b a b a C ---=+-++--+++= 221 sin ()() ()() ()()()()()() c b a c b a c b a c b a b a b a b a c b a c b a b a b a b a c b a c b a b a b a c b a b a c b a C C C C +-++--+++= --?-+=-+-? -++=??? ? ??-+-???? ??-++=-+=-=21 2222222121cos 1cos 1cos 1sin 2 222222222 2222222

由三角形面积公式 C b a S sin 2 1 = 即得 ()()()c p b p a p p S ---= 上述证明用到了三角函数 C sin 、C cos ,若要求纯初等几何的证明,则可如下证之。 BT 是 △ABC 的AC 边上的高,点 T 为垂足。记 c AB =,b AC =,a BC =,h BT =,d CT =(见上图)。 证明(2):若 △ABC 是锐角三角形(图1),则由勾股定理有 ()()() ? ??=--=-2122 22 22h d b c h d a 由(1)式得出 22h a d -= ,带入(2)式 : ( )2 2 2 22 h h a b c =-- - 。 展开,即得 ( ) 2222 2222h h a b h a b c =---+- ,由此式解得 ( )()()()()2 2 2 2 22222 444b c b a c b a c b a c b a b c b a b a h -++-++-++=-+-= , 类似于证明(1),得出 ()()()2 24b c p b p a p p h ---= , 由于三角形面积 h b S 2 1 = ,由上式即得 ()()()c p b p a p p S ---= 。 C A B T 图1 T B A C 图2

高中数学必修3海伦公式的证明方法

高中数学必修3海伦公式的证明方法 海伦公式的证明⑴ 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c 的对角分别为A、B、C,则余弦定理为[1] cosC=(a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b- c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 海伦公式的证明⑵ 中国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角

形,要找出它来并非易事。所以他们想到了三角形的三条边。如果 这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来 求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜 求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方, 送到上面得到的那个。相减后余数被4除,所得的数作为“实”, 作1作为“隅”,开平方后即得面积。 所谓“实”、“隅”指的是,在方程px2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 当P=1时,△2=q, △=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 因式分解得 △^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2] =1/4[(c+a)^2-b^2][b^2-(c-a)^2] =1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c) =1/4[2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c) 由此可得: S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c)

海伦公式的证明(精选多篇)

经典合同 海伦公式的证明 姓名:XXX 日期:XX年X月X日

海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2-c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2 +b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4* √[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+ b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式 =√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:海伦公式的几种证明与推广 海伦公式的几种证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重 要且优美的公式——海伦公式〔heron's formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1 第 2 页共 32 页

海伦-秦九韶公式

海伦公式 在几何中,已知三边的长,求三角形的面积,我们都知道使用求积公式: △=√[s(s-a)(s-b)(s-c)] 其中s=1/2(a+b+c) 这个公式一般称之为海伦公式,因为它是由古希腊的著名数学家海伦首先提出的。有人认为阿基米德比海伦更早了稳这一公式,但是由于没有克凿的证据而得有到数学界的承认。 诲伦是亚历山大学派后期的代表人物,亚历山大后期,希腊文明遭到了严重的摧残,随着罗马帝国的扩张,希腊处于罗马的统治之下,亚里山的图书馆等被付之以火,这是历史上最大的文化浩动之一。在罗马统治下,科学技术主要是为阶级的军事征战和一公贵族的奢侈需要服务的,他们讲求实用而轻视理论。虽然亚历山大城仍然保持着数学中心的地痊,出现了诸如托勒密和丢番图等数学家,但是毕竟无法挽救希腊衰亡的命运。 与此同时,基督都在希腊兴起,基督教的兴起和传播,使得相像在一定历史条件下的科学淹没在宗教的热忱中,从此,希腊数学蒙受了更大的灾难。到了公元415年,希腊女数学家希帕提亚在街上被疯狂的基督教徒割成碎块,她的学生被迫逃亡,从此,盛极一时的亚历山学派就这样无声无地结束了。 海伦就生活在这样的黑暗统治之中,幸运的是,他生活在亚历山大文明遭到摧残的早期,作为一各杰出的工程师和学者,他有许多发明,在数学、物理、测量等方面都有著作,是一位学识非常渊博的学者。他注重实际应用。最著名的贡献就是提出并证明了已知三边求三角形面积的公式。这个公式出现在他的》几何学《一书中,除此之外,他还研究了正多边形示积法、二次方程求解等问题。 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南亲,我国著名的数学家九韶提出了“三斜求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。 所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c 表示三角形面积、大斜、中斜、小斜所以 q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2] 当P=1时,△2=q, △=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]} 分解因式得 1/16[(c+a) 2-b 2][b62-(c-a) 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c) =S(S-b)(S-a)(S-c) 由此可得: △=√[s(s-b)(S-a)(S-c) 其中S=1/2(a+b+c) 这与海伦公式完全一致,所以现在有人把这一公式称为“海伦-秦九韶公式”。

海伦公式的证明(精选多篇)

海伦公式的证明(精选多篇)第一篇:海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在变形此我们用三角公式和公式变形来说明。设三角形的三边a、b、c 的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2- c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1- (a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2- c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2- b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a- b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:莉莉公式的几种证明与推广 海伦公式的几类证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重要且优美的公式——海伦公式〔heron"s formula〕:换言之有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1

《海伦-秦九韶公式》说课稿

海伦-秦九韶公式 教学内容:人教版数学八年级下册第十六章“阅读与思考”内容 教学对象:八年级学生 教材分析:本节内容是初中数学八年级下册第十六章,是阅读与思考部分中的内容,《初中数学新课程标准》中并没有做要求。教材中只占用一页篇幅,叙述了秦九韶公式与海伦公式的记载历史,并未给出证明和应用。本节内容之前学生已经学习了解三角形,二次根式等相关知识,它是三角形面积公式的延续与拓展。本节课的主要设置对象为数学学习程度较好的学生――在完成《初中数学新课程标准》中要求的学习之后仍有余力的同学,意在引领学生运用所学知识对海伦公式与秦九韶公式进行转换,并会有简单应用,让同学们从中体会到数学之美。 学情分析:八年级学生在进入本节课的学习之前,需要熟悉前面已学过的二次根式、三角形面积公式以及平方差公式和完全平方公式等知识。 教学目标: 1、知识与技能: (1)了解秦九韶公式与海伦公式历史及意义。 (2)会对秦九韶公式与海伦公式进行转换,理解秦九韶公式与海伦公式的本质相同; (3)会用海伦-秦九韶公式解决简单的涉及到三角形三边与面积之间关系的问题。 2、过程与方法:(1)经历转换秦九韶公式及海伦公式的全过程,培养学生严谨的数学逻辑思维;(2)提高学生应用海伦公式解决涉及三角形三边与面积之间关系问题的能力。 3、情感态度价值观:(1)体会到数学的简洁美;(2)体会数学以不变应万变的魅力。 教学重难点:

1、重点:转换秦九韶海伦公式的过程 2、难点:海伦-秦九韶公式的应用 教学准备:多媒体课件 教学方法:引导探究、实例运用。 教学过程: 一、回顾旧知引出新知 1、回顾三角形面积公式。通过提问,让学生回答出已经学习过的公式。板书:1/2*底*高 2、已知三边a,b,c,求三角形面积 (1)已知三边具体值你会求三角形面积吗? (2)适时出示海伦公式 设计意图:直接以古希腊数学家海伦发现的公式作为问题背景,让学生对S 作出猜想.S是三角形的周长还是面积? 教师适时引导学生根据公式的特点,作出合理的猜想.例如可以从等式的右边根号里量纲的特征,开根号的结果是边长的平方,应该和面积有关;还可以根据对称性,使根号里面的每一条边地位平等,培养学生敏锐的观察能力,发展学生的合情推理和概括能力. 二、介绍海伦公式与秦九韶公式的历史与意义(PPT) 1、海伦公式的历史与意义、 古希腊的数学发展到亚历山大里亚时期,数学的应用得到了很大的发展,其突出的一点就是三角术的发展,在解三角形的过程中,其中一个比较难的问题是如何利用三角形的三边直接求出三角形面积。这个公式是由古希腊数学家阿基米德得出的,但人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式,因为这个公式最早出现在海里的著作《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。 海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地得出答案。

海伦公式

海伦公式一一探求任意三角形面积 一、内容和内容解析 1.内容 海伦公式 2. 内容解析 本节课和学生一起探究海伦公式的推导过程,感受海伦公式带来任意三角形面积求法的 便利性,以及古今外人们对海伦公式的研究,感受知识的世界性。 基于以上分析,本节课的教学重点是:海伦公式的推导及研究问题的数学方法。 二、目标和目标解析 1. 目标 (1) 认识海伦公式并能熟练应用。 (2) 经历海伦公式的证明过程,了解研究问题的数学方法,感受文化无墙,学术无边。 2. 目标解析 目标(1)是让学生会用海伦公式求任意知三边的三角形面积,感受公式带来的便利性。 目标(2)是学生经历海伦公式的证明过程,学会从“特殊”到“一般”研究问题的基本方法,以及对海伦公式历史背景的了解,具有民族自豪感。 三、教学问题诊断分析 海伦公式是书本上的阅读材料,学生对海伦公式知其然而不知其所以然。故通过推导证明,加深学生对海伦公式的理解。但由于海伦公式的证明设计到很多字母的运算,基础较差的学生难以完成,故需要老师指导。 本节课的教学难点是:海伦公式的证明 四、教学过程设计 1.提出问题 在古希腊,土地是农民的生命,土地面积划分一直困扰着当时人们,因土地划分不均匀发生很多暴力冲突事件。这时,出现了一位智者,他说:土地形状大多是不规则多边形,而 任意多边形可分割成三角形。只要告诉我三角形的三边长,我就能够快速求出三角形面积。你 知道他是如何做到的吗? 2.探究新知 Rt A ABC的三边长为, 求面积 等腰△ ABC三边长为5,5,6 ,求面积 3,4,5 般厶ABC三边长为5,6,7 特殊

问题:已知△ ABC三边为a,b,c,求△ ABC的面积 (用含a,b,c的字母表示)

海伦公式几种证明方法

已知三角形的三个边c b a 、、求它的面积S ,有公式))()((c p b p a p p S ---=, 其中)(21 c b a p ++=。这就是大家所熟知的“海伦公式”,在中学几何课本上一般都有介紹。人们认为这 个公式一定是海伦所首先发现,其实并不然。在一些有关数学史著作中,对此早有不同提法。海伦是古希腊的数学家,同时他还是一位优秀的测绘工程师及亚历山大学派的科学家,他对于物理学和机械学很有研究,发明了不少很有价值的机械和仪器。对于他的准确生活时代我们还不知道,大概在公元1-3世纪期间。 为何会出现海伦公式?由于当时数学的应用性得到了很大的发展,其突出的一点就是三角术的发展,三角术是由于人们想建立定量的天文学,以使用来预报天体的运行路线和位置以帮助报时,计算日历、航海和研究地理而产生的。而在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边c b a 、、直接求出三角形的面积,据说这个问题最早是由古希腊的数学家阿基米德解决的,于是他得到了海伦公式。 而本文的重点归纳研究海伦公式几种证明方式,希望这些方法对其它有关解三角形问题有一定的启发作用。 一种方法是用解三角形基本的知识解决。 已知三角形的三边为c b a 、、,设)(2 1 c b a p ++=, 求证:三角形的面积))()((c p b p a p p S ---=. 证明:由正弦定理C ab S sin 21= 可得)(C b a C b a S 2222222cos 14 1sin 41-==, 又由余弦定理2 2222222222 4)(2cos b a c b a ab c b a C -+=-+=)(,从而有 )((222222222 4141b a c b a b a S -+-=16412 22222)(c b a b a -+-= ]4[1612 22222)(c b a b a -+-= ]2(2[(161222222))c b a ab c b a ab +---++= )])(()[((1612222b a c c b a ---+=)))()()((16 1b a c b a c c b a c b a +--+-+++= 2 ) (2)(2)(2)(b a c b a c c b a c b a +-?-+?-+?++= 2 )2(2)2(2)2(2)(a b a c b b a c c c b a c b a -++?-++?-++?++=

(完整版)海伦秦九韶公式

【教学设计】人教版数学九年级上册《海伦─秦九韶公式》【教学对象】九年级学生 【教材分析】本节内容是初中数学的第21章,是阅读与思考部分中的内容,《初中数学新课程标准》中并没有做要求。教材中只占用一页篇幅,叙述了秦九韶公式与海伦公式的记载历史,并未给出证明和应用。本节内容之前学生已经学习了解三角形,它是三角形面积公式的延续与拓展,又是后续研究三角形面积相关知识的基础。本节课的主要设置对象为数学学习程度较好的学生——在完成《初中数学新课程标准》中要求的学习之后仍有余力的同学,意在引领学生运用所学知识对海伦公式进行证明,并让同学们从中体会到数学之美。 【学情分析】初三学生在进入本节课的学习之前,需要熟悉前面已学过的勾股定理、三角形面积公式以及平方差公式和完全平方公式。 【教学目标】 1、知识与技能: (1)理解秦九韶公式与海伦公式的本质相同; (2)会证明秦九韶公式与海伦公式,并理解海伦公式的本质;

(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题。 2、过程与方法: (1)经历证明秦九韶公式及海伦公式的全过程,培养学生严谨的数学逻辑思维; (2)提高学生应用海伦公式解决涉及三角形三边与面积之间关系问题的能力。 3、情感态度价值观:(1)体会到数学的简洁美;(2)体会数学以不变应万变的魅力。 【教学重点】证明秦九韶海伦公式的过程。 【教学难点、关键】海伦公式的本质。 【教学方法】引导探究、实例运用。 【教学过程设计】 一、回顾旧知 1、三角形面积公式。通过提问,让学生回答出已经学习过的公式,板书:1/2*底*高 2、复习课本例题。复习已知三边的具体值求三角形面积的方法。

海伦公式的几种证明与推广(简洁)

海伦公式的几种证明与推广 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重要且优美的公式——海伦公式〔Heron's Formula 〕:假设有一个三角形,边长分别为,,,c b a ,三角形的面积S 可由以下公式求得: ))()((c p b p a p s ---=,而公式里的)(2 1 c b a p ++= ,称为半周长。 图1 C 为了证明该公式,海伦公式有多种变形,如:S= ))()((c p b p a p p --- = ))()()((41a c b b c a c b a c b a -+-+-+++=])(][)[(412222b a c c b a ---+ =)]2()[2(41222222ab c b a ab c b a --+-+-+=222222)(441 c b a b a -+- =4442222222224 1 c b a c b c a b a ---++ (方法一):利用三角形面积公式C ab s sin 2 1=和余弦定理C ab b a c cos 22 22-+= C ab s sin 21==C n ab 2 cos 121-=2222)2(121ab c b a ab -+-下略。 (方法二):利用三角形最基本的面积公式a ABC ah S 2 1 = ?入手,并利用勾股定理,如图2。

y 图2 B C 在△ABC 中,AD 为边BC 上的高,根据勾股定理,有?? ???=+=+=+a z y b z x c y x 2 22222解方程,得a b c a y 2222-+=, a c b a z 2222-+=,2222222222222)(421)2(b c a c a a a b c a c y c x -+-=-+-=-=下略。 (方法三):利用三角形内切圆 图3 z z C 如图3,在△ABC 中,内切圆⊙O 的半径是r,则x r A =2tan , y r B =2tan ,z r C =2tan ,代入恒等式2tan 2tan B A ?+2tan 2tan C A ?+2 tan 2tan C B ?=1,(考虑三角形内角和之半为九十度,并考虑和角正切公式) 得1222=++yz r xz r xy r ,两边同乘xyz ,有等式 xyz z y x r =++)(2 ………①

巧解海伦公式

海伦公式 编辑 海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。 目录 1原理简介 2证明过程 证明⑴ 证明⑵ 证明⑶ 证明⑷ 3推广 4应用 证明 推广 5例题 1原理简介 中国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。 假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: 而公式里的p为半周长(周长的一半): 注1:"Metrica"(《论》)手抄本中用s作为半周长,所以

和 两种写法都是可以的,但多用p作为半周长。 由于任何n边的多边形都可以分割成(n-2)个三角形,所以海伦公式可以用作求多边形面积的公式,但需要先知道分割用的对角线的长度。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 2证明过程 证明⑴ 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为下述推导[1] cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明⑵ 中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。

三角函数推导,公式应用大全

三角函数公式及证明 基本定义 1.任意角的三角函数值: 在此单位圆中,弧AB 的长度等于α; B 点的横坐标αcos =x ,纵坐标 αsin =y ; (由 三角形OBC 面积<弧形OAB 的面积<三角形OMA 的面积 可得: a a tan sin <<α (2 0πα<<)) 2.正切: α α αcos sin tan = 基本定理 1.勾股定理: 1cos sin 22=+αα 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2 =b 2 +c 2 -2bc A cos bc a c b A 2cos 2 22-+=? 3.诱导公试: απ ±k 2

cot tan cos sin ?? 奇变偶不变,符号看相线 4.正余弦和差公式: ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± 推导结论 1. 基本结论 ααα2sin 1)cos (sin 2+=+ α α2 2cos 1 1tan = + 2. 正切和差公式: β αβ αβαβαβ αβαβαβαβαtan tan 1tan tan sin sin cos cos sin cos cos sin )cos()sin() tan( ±= ??? ? ??±=±±=± 3.二倍角公式(包含万能公式): θ θθθθθθθθ2 22tan 1tan 2cos sin cos sin 2cos sin 22sin +=??? ?? +== θθθ θθ θθθθθθ2222222 2 2 2 tan 1tan 1cos sin sin cos sin 211cos 2sin cos 2cos +-=??? ? ? ?+-=-=-=-= θ θ θθθ2tan 1tan 22cos 2sin 2tan -== θ θ θθ222 tan 1tan 22cos 1sin +=-= 22cos 1cos 2θθ+= 4.半角公式:(符号的选择由2θ 所在的象限确定)

海伦—秦九昭公式的推导和应用

海伦—秦九昭公式的推导与应用 海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦 (Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 —————————————————————————————————————————————— 注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以

S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。 —————————————————————————————————————————————— 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 证明(1): 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/ 2,

数学人教版八年级下册海伦-秦九韶公式历史介绍

补充知识 1.海伦简介和海伦公式的历史与意义: 海伦,古希腊数学家、力学家、机械学家。海伦有许 多学术著作,都用希腊文撰写,但大部分已失传。主要 著作是《度量论》一书。该书共3卷,分别论述平面图形的面积,立体图形的体积和将图形分成比例的问题。其中卷Ⅰ第8题给出著名的已知三边长求三角形面积的海伦公式。 古希腊的数学发展到亚历山大里亚时期,数学的应用得到了很大的发展,其突出的一点就是三角术的发展,在解三角形的过程中,其中一个比较难的问题是如何利用三角形的三边直接求出三角形面积。这个公式是由古希腊数学家阿基米德得出的,但人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式,因为这个公式最早出现在海里的著作《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地得出答案。 2、秦九韶简介和秦九韶公式的历史与意义、 秦九韶(1208年-1261年),南宋官员、数 学家,与李冶、杨辉、朱世杰并称宋元数学 四大家。字道古,汉族,生于普州安岳(今 四川省安岳县)。精研星象、音律、算术、诗词、弓剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州

任所,1247年完成著作《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理)、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献划时代巨著—《数书九章》秦九韶是一位既重视理论又重视实践,既善于继承又勇于创新,既关心国计民生,体察民间疾苦,主张施仁政,又是支持和参与抗金、抗蒙战争的世界著名南宋数学家。他所提出的大衍求一术和正负开方术及其名著《数书九章》,是中国数学史、乃至世界数学史上光彩夺目的一页,对后世数学发展产生了广泛的影响。清代著名数学家陆心源(1834-1894)称赞说:“秦九韶能于举世不谈算法之时,讲求绝学,不可谓非豪杰之士。”德国著名数学史家M.康托尔(Cantor,1829-1920)高度评价了大衍求一术,他称赞发现这一算法的中国数学家是“最幸运的天才”。美国著名科学史家萨顿(G·Sarton,1884-1956)说过,秦九韶是“他那个民族,他那个时代,并且确实也是所有时代最伟大的数学家之一

海伦公式几种证明方法

已知三角形的三个边c b a 、、求它的面积S ,有公式))()((c p b p a p p S ---=, 其中)(21c b a p ++=。这就是大家所熟知的“海伦公式”,在中学几何课本上一般都有介紹。人们认为这个公式一定是海伦所首先发现,其实并不然。在一些有关数学史著作中,对此早有不同提法。海伦是古希腊的数学家,同时他还是一位优秀的测绘工程师及亚历山大学派的科学家,他对于物理学和机械学很有研究,发明了不少很有价值的机械和仪器。对于他的准确生活时代我们还不知道,大概在公元1-3世纪期间。 为何会出现海伦公式?由于当时数学的应用性得到了很大的发展,其突出的一点就是三角术的发展,三角术是由于人们想建立定量的天文学,以使用来预报天体的运行路线和位置以帮助报时,计算日历、航海和研究地理而产生的。而在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边c b a 、、直接求出三角形的面积,据说这个问题最早是由古希腊的数学家阿基米德解决的,于是他得到了海伦公式。 而本文的重点归纳研究海伦公式几种证明方式,希望这些方法对其它有关解三角形问题有一定的启发作用。 一种方法是用解三角形基本的知识解决。 已知三角形的三边为c b a 、、,设)(21c b a p ++= , 求证:三角形的面积))()((c p b p a p p S ---= . 证明:由正弦定理C ab S sin 21= 可得)(C b a C b a S 2222222cos 141sin 41-==, 又由余弦定理2 22 22222 2224)(2cos b a c b a ab c b a C -+=-+=)(,从而有 ))((222222222 4141b a c b a b a S -+-=1641222222)(c b a b a -+-= ]4[161222222)(c b a b a -+-=]2(2[(16 1222222))c b a ab c b a ab +---++= )])(()[((1612222b a c c b a ---+=)))()()((16 1b a c b a c c b a c b a +--+-+++= 2 )(2)(2)(2)(b a c b a c c b a c b a +-?-+?-+?++=2)2(2)2(2)2(2)(a b a c b b a c c c b a c b a -++?-++?-++?++= ))()((a p b p c p p ---=

海伦公式的推广

海伦公式的几种另证及其推广 2002级3班 欧锦峰 关于三角形的面积计算公式在解题中主要应用的有: 设△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,h a 为a 边上的高,R 、r 分别为△ABC 外接圆、内切圆的半径,p =21(a+b+c),则 S △ABC =21ah a =2 1ab×sinC = r p = 2R 2sinAsinBsinC =R abc 4 =))()((c p b p a p p --- 其中,S △ABC =))()((c p b p a p p ---就是著名的海伦公式,在希腊数学家海伦的著作《测地术》中有记载。 海伦公式在解题中有十分重要的应用。 一、 海伦公式的变形 S=))()((c p b p a p p --- =))()()((4 1 a c b b c a c b a c b a -+-+-+++ ① =])(][)[(4 12222b a c c b a ---+ ② =)]2()[2(4 1222222ab c b a ab c b a --+-+-+ ③ =222222)(44 1c b a b a -+- ④ =44422222222241c b a c b c a b a ---++ ⑤ 二、 海伦公式的证明 证一 勾股定理 分析:先从三角形最基本的计算公式S △ABC =2 1ah a 入手,运用勾股定理推导出 海伦公式。

证明:如图h a ⊥BC ,根据勾股定理,得: ?????-=-=-=222222x c h y b h y a x a a x =a b c a 2222-+ y =a b c a 2222+- h a =22y b -=222222 4)(a b c a b +--=a b c a b a 2)(4222222+-- ∴ S △ABC =21ah a =21a×a b c a b a 2)(4222222+--=222222)(441c b a b a -+- 此时S △ABC 为变形④,故得证。 证二:斯氏定理 分析:在证一的基础上运用斯氏定理直接求出h a 。 斯氏定理:△ABC 边BC 上任取一点D , 若BD=u ,DC=v,AD=t.则 t 2 = uv a cv u b -+2 2 证明:由证一可知,u =a c b a 2222+- v =a c b a 2222-+ ∴ h a 2 = t 2 =242222224222a c b c a c c b b a b -+++--222244)(a c b a -- ∴ S △ABC =21ah a =21a ×a c b a c b c a b a 2222444222222---++ =4442222222224 1c b a c b c a b a ---++ 此时为S △ABC 的变形⑤,故得证。 证三:余弦定理

相关文档
最新文档