高效、高功率因数开关电源单片机控制程序设计

高效、高功率因数开关电源单片机控制程序设计
高效、高功率因数开关电源单片机控制程序设计

高效、高功率因数开关电源单片机控制程序设计

(2011-05-08 14:08:53)

转载

标签:

分类:电子自动化电气

开关电源

数字控制技术

单片机

数控技术

进行

杂谈

摘要

传统开关电源是模数结合的硬件为主的控制方式,其控制精度、响应速度等都由电路拓扑结构和器件本身的参数决定,很难进一步提升其性能。随着微处理器处理技术的日趋成熟,开关电源的软硬件结合的控制技术得到了广泛的关注,它呈现出纯硬件控制方式无法比拟的优点。软硬件结合的控制方式便于计算机处理控制,使控制更快更灵活,有可能进一步提高功率因数、增大输出功率、提高效率以及提高系统运行的安全性,进一步提高抗干扰能力。因此,更灵活可靠的数字控制是开关电源的发展方向。

本论文以Microchip公司的8位单片机PIC18F4520为控制核心对开关电源进行了可编程控制的尝试。首先介绍了开关电源数控技术的研究现状及趋势;然后详细介绍了PIC18F4520的开发工具(MPLAB IDE)及设计方法,并对整个系统的硬件设计有简要的介绍并且对软件部分实现过程进行了详细阐述,并给出了优化设计后的结果分析和调试评估;文章最后对本文的研究进行了总结和展望。

关键字:开关电源;数字控制技术;PIC18F4520单片机;MPLAB IDE

第1章绪论

1.1选题意义

开关电源(Switching Power Supply)作为电力电子领域的一个重要分支,随着电力电子技术的高速发展而被广泛应用于以电子计算机为主的各种终端设备和通信设备中,是当今电子信息产业飞速发展不可缺少的一种电源方式。采用传统控制方式的开关电源,其控制精度、响应速度等都由电路拓扑和器件本身的参数决定,如果想进一步提高开关电源的性能,就只能选用参数更优的器件,或者对原有电路进行大范围的改动,这对电源产品的研发、生产都会带来很多麻烦,也制约了开关电源性能的提升。同时,由于模拟信号在传递过程中可能会出现信号失真、畸变以及受到外界电磁干扰,造成开关电源工作状态不稳定。所以,采用传统控制方式的开关电源在性能上的提升相当有限。

随着数字处理技术的日趋成熟,开关电源的可编程数控技术[1](Programmable Digital Control)得到了快速的发展和广泛的关注。与硬件控制方式相比,数字控制技术具有其无法比拟的优势:

? 克服了模拟信号容易出现的失真、畸变等弊病,使控制精度更高。

? 运用数控技术使得控制更加快速灵活,便于计算机的管理和控制;便于

修改,并且支持如PID算法的很多复杂的程序设计而不需要更改硬件电路;便于自诊断,容错等技术的植入等。

? 数字控制减少杂散信号的干扰,提高了开关电源整体的抗电磁干扰能

力,使得整个系统更加稳定可靠。

近几年来,数字控制技术在高效、高功率因素的开关电源的设计中发挥了越来越重要的作用。其中,利用高性能的单片机对开关电源进行数字控制是广大技术人员正在不断研究的方向之一。本毕业设计正是利用单片机改进原来的模拟控制,对开关电源进行数字控制的程序设计,从而熟悉和掌握数控的设计方法及技术。这也是整个研究课题的意义之所在。

1.2开关电源数控技术研究现状及趋势

开关电源真正的发展是从60年代末开始的。40多年来,开关电源经历了两个重要的发展阶段。第一个阶段是功率半导体器件从双极型器件(BJT、SCR、GTO)发展为MOS型器件(功率MOSFET、IGBT等),是电力电子系统有可能实现高频化,并大幅度降低导通损耗,提高了开关电源的效率,同时电路也更为简单。第二个阶段自20世纪80年代开始,高频化和数字控制技术的研究是过去20年国际电力电子界研究的热点之一。因此,开关电源中的数字控制技术一直受到广泛的关注。

1.2.1 研究现状[2]

开关电源的数字控制技术在开关电源控制方面显示出明显的优势,而当今主要有三种数字的控制方式。

(1) 带有PWM输出的单片机控制方式

用单片机控制的开关电源,信号采样由一个高精度A/D来完成。基准信号由外接键盘输人或者通过程序来设定,两路信号比较得到误差信号,再根据误差信号生成不同脉宽的PWM波形以驱动开关管。这种方式的控制电路结构比较简单,而且可以通过软件实现很多较复杂的算法。

运用这种单片机控制高频PWM变换器就整体性价比来看,已经不低于传统模拟集成PWM芯片了,因为单片机电路除可以完成电压、电流调节及PWM生成功能以外,还可完成数据的采集、显示、参数调整、系统监控、通信等工作。

虽然单片机与传统模拟IC相比具有很多优势,但由于工作频率的限制,单片机的动态响应始终不能令人满意,其应用范围非常有限。

(2) 带有PWM输出的DSP控制方式

DSP构架是专为数字信号处理而设计的,其计算功能强大毋庸置疑,所以对于动态响应要求比较高的开关电源,可以选用计算功能强大的DSP芯片来实现控制电路。与单片机相比,DSP芯片在总线结构、数据处理能力以及指令执行时间上,都有明显的优势。

不过DSP芯片的价格却不能与传统模拟PWM芯片和单片机相比,这也是制约DSP 芯片应用于开关电源控制领域的一个重要因素。

(3) FPGA控制方式

FPGA具有容量大、逻辑功能强的特点,而且兼有高速、高可靠性。其内部主要分为2个模块,第1个模块是由软核CPU组成的通信管理模块,第2个模块由几个DSP块组成,主要完成调节器的PI或PID运算、高分辨率PWM信号的产生以及数字滤波等。

由FPGA内部结构可以看出,它能够在产生数字PWM波形的同时实现外部通信、显示等功能,由于内部有多个DSP块,所以它可以采用非常复杂的算法来进行控制和时延补偿。用FPGA控制可以得到非常好的控制精度和动态响应,只是在使用的时候需要外加高精度A/D。

与DSP相同,虽然它的性能优越,但是价格昂贵,有时甚至一块FPGA芯片的价格就比一台用传统集成IC的PWM芯片设计的开关电源高出许多。因此,FPGA 运用于开关电源的数字控制也有一定的局限性。

1.2.2 发展趋势

由上述的三种开关电源的数字控制方式我们可以清楚地看到每种控制方式都有其优点和不足的地方。如何既能又快又好又精准地进行对开关电源的控制又有较高的性价比适合于大规模批量的生产绝对是今后数控方式的发展方向。如今,数字控制技术向三个方向发展。

(1)向输出控制精度更高的方向发展

假设用l0位A/D采样,那么在开关管导通—关断的一个周期中,可以被分成1024份,如果占空比为50%,导通过程仅能被分成512份,考虑到脉冲宽度与电源输出并非线性关系,至少要再减小1倍,也就是256份,这就是说,对输出的控制只能达到1/256的精度。而且,上述分析是假设在单端工作的情况下,如果是推挽工作,那么精度只有1/128。所以,高精度A/D是非常必要的。

(2)向更高的工作频率的方向发展

数字控制PWM输出本质上是用可预置计数器,当计数器计数到预置数时,使一个触发器翻转,开关管关断。假设开关电源工作频率为50kHz,那么一个周期是20 μs,一个周期至少分成1000份,那么每份的时问就是20ns,这每一份就相当于PWM控制的步长,所以可得该计数器要工作在50MHz时钟频率下。如果是推挽模式的开关电源,时钟频率还要翻倍,也就是100MHz。这个频率对于同时要求具有PWM输出的单片机来说是苛刻的。同时,如果工作频率不够高,数字控制器的指令周期太长,也会对PWM波形带来误差。

(3) 向控制系统的动态响应更好的方向发展

数字电路中,由于控制环结构中的零阶保持、A/D转换、计算以及PWM信号生成等过程会产生一定的时延,降低了控制系统的响应特性,所以除了对元器件的参数要求较高以外,还必须对时延作出补偿。

综上所述,每种控制方式都有其各自的特点:单片机的价格低廉,但控制精度和响应速度不佳;DSP的计算功能强大,控制效果也不错,所以现在有很多电源产品都用了DSP芯片来做控制电路;FPGA控制效果好,能够产生高分辨率的数字PWM 波,还能实现更多的附加功能,但是价格昂贵。但是,由于数字控制的众多优点以及数字技术的高速发展,数字控制的开关电源有着极为广泛的应用前景,物美价廉性能又好的数字控制芯片必将在不远的将来出现在更为高效的开关电源中。

1.3 论文结构

第一章,详细论述了开关电源数字控制技术的研究现状及发展趋势,进而提出了本论文的研究任务。

第二章,对本设计需要使用的器件和开发工具进行了详细说明,并对整个程序设计进行了总体的阐述。

第三章,简要地对本设计的硬件电路的设计进行了描述,如PWM驱动电路、电压采样电路、电流采样电路、键盘及LCD显示电路等。

第四章,给出了软件部分较为详细的设计方案,包括互补推挽的PWM生成模块,A/D转换模块,键盘及LCD显示模块,PID控制算法模块等。

第五章,对本系统在设计和实现过程中可能出现的问题进行了总结,并详细介绍了调试过程。

第六章,对全文进行系统的总结和展望。

第2章单片机数字控制使用器件及开发环境

本设计采用的是Microchip公司的高性能8位单片机—PIC 18F4520,并且使用C语言进行程序的编写,同时在MPLAB IDE集成开发环境中程序的编译和调试对整个系统进行描述和设计。

参考文献

[1] 王小波.直流开关电源的数字控制设计及应用[M]. 电子工业出版社,2005.1-3

[2] 常敏慧,申功迈等.开关电源应用、设计与维修[M]. 科学技术文献出版社,2007.55-57

[3] 何希才. 实用开关电源数字控制技术[M]. 电子工业出版社,2002.169-175

[4] 高飞, 田玉冬. 36V/2A稳压开关电源的设计[J]. 上海电机学院学报,2007,10(2): 94-97

[5] 林雯. 浅谈开关电源的技术发展趋势[J]. 通信电源技术,2008,25(6):79-80

[6] 孔锋封. 开关电源单片机外围元器件选择与检测[M]. 北京: 中国电力出版社, 2009.1-3

[7] 刘松又. 高频开关电源的数字化控制电路的设计[J]. 湖南大学学报, 2003(6): 97

[8] 雷媛媛,吴胜益. 试论开关电源技术的发展[J]. 通信电源技术,2008,25(4):75-77

[9] 胡玮,康永. 基于单片机控制的双路输出数字开关电源的研制[J]. 上海电机学院学报,2008,10(2): 65-67

[10] 刘鹿生.电力电子的高频数字控制[J].电力电子,2005(1):53—55

[11] 马彦霞,李俊. 等型变换器的闭环控制性能分析与仿真[J]. 中原工学院学

报,2004(4):36—39

[12] 汪超. 基于高性能单片机的功率直流开关电源的设计[J]. 湖南工程学院学

报,2003(6): 97

[13] 王增福,李翅等. 软开关电源原理与应用[M]. 北京: 电子工业出版社, 2009.1-3: 200

[14] 孙著. 新型PID控制在开关电源中的应用[J]. 电力电子技术, 2009,43(2): 73-75

[15] 姜少飞等.基于DSP的数字PID控制在开关电源中的应用[J]. 漳州师范学院学报, 2009(3): 53-55

[16] 魏旭光, 陈建锋. 开关电源时变模型的新型PID算法[J]. 通信电源技术, 2009, 26(4):28-30

[17] 刘文军, 罗玉峰. 开关电源模糊控制PID的设计和MATLAB仿真研究[J]. 通信电源技术,2007,25(4):23-26

[18] 席俊国. 一种新型的PID参数自整定策略[J]. 电力电子技术, 2008,23(3):83-85

[19] F.Lin, D.Y.Chen. Reduction of power supply EMI emission by switching frequency modula-

Tion[J]. IEEE Transactions on Power Electronics, 1994, 9(1): 132–137

[20] Yamashita N. Conduction Power Loss in MOSFET Synchronous Rectefier with Paralled Connected

Schottky Barrier Diode[J]. IEEE Transactions on Power Electronics, 1998,134: 667-673

[21] H. Deng, X. Duan, Y. Ma, A. Huang, D. Chen. Monolithically digital technique based on 0.5um cmos process[J]. IEEE Transactions on Power electronics,

2005,20(3):0(2): 94-97

[22] Xuefang Lin-Shi, Bruno Allard, Jean-Marie R′etif, Florent Morel. Digital control strategies for switch-mode power supply[J]. ,2006,80-84

程序代码

//******RD5口与P1A口复用了,所以RD5口改为了RD6口,而AD采集有三路,故将LCD的AN2改为AN3了

//从而AN0为按键检测,AN1电压检测,AN2电流检测P1A(RD5),P1B(RC2)为PWM半桥输出

//LCD(RD0,RD1,RD2,RD3,RD4,RD6,RA3),三路输出控制(RD5,RC2,RC3)

#include

#include

#include

//************************PID结构************************************* struct PID{

unsigned int Setpoint; //Set Volt value

unsigned int LastOut; //上次输出值

float Pgain;

float Dgain;

float Igain;

unsigned int PositivePIDLimit; //Max PWM

unsigned int NegativePIDLimit; //Min PWM

int Last_error; //上次差值

int Last_derror; //上次偏差的偏差

int Last_dderror; //积分求和

}Volt_PID;

#define LCD_DATA LATD //PORTD低四位传输数据

#define RS PORTDbits.RD4

#define RW PORTDbits.RD6 //RD5口为P1A占空比输出,改为RD6输出#define LCD_E PORTAbits.RA3 //RA3使能信号,数字信号

void TMR0_ISR(void); //定时中断函数

int AD_Get(char Tongdao); //获得AD 1 AN0;5 AN1;9 AN2

void Keyprocess(void); //键盘处理

void Initial_Lcd(void); //初始化页数:50 字数:18000

单片机控制开关电源

单片机控制开关电源 单片机控制开关电源,单从对电源输出的控制来说,可以有几种控制方式. 其一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单. 其二是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法. 其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作最多. 第三种方式是最彻底的单片机控制开关电源,但对单片机的要求也最高.要求单片机运算速度快,而且能够输出足够高频率的PWM波.这样的单片机显然价格也高. DSP类单片机速度够高,但目前价格也很高,从成本考虑,占电源成本的比例太大,不宜采用.

廉价单片机中,AVR系列最快,具有PWM输出,可以考虑采用.但AVR单片机的工作频率仍不够高,只能是勉强使用.下面我们具体计算一下AVR单片机直接控制开关电源工作可以达到什么水平. AVR单片机中,时钟频率最高为16MHz.如果PWM分辨率为10位,那么PWM波的频率也就是开关电源的工作频率为16000000/1024=15625(Hz),开关电源工作在这个频率下显然不够(在音频范围内).那么取PWM分辨率为9位,这次开关电源的工作频率为16000000/512=32768(Hz),在音频范围外,可以用,但距离现代开关电源的工作频率还有一定距离. 不过必须注意,9位分辨率是说功率管导通-关断这个周期中,可以分成512份,单就导通而言,假定占空比为0.5,则只能分成256份.考虑到脉冲宽度与电源的输出并非线性关系,需要至少再打个对折,也就是说,电源输出最多只能控制到1/128,无论负载变化还是网电源电压变化,控制的程度只能到此为止. 还要注意,上面所述只有一个PWM波,是单端工作.如果要推挽工作(包括半桥),那就需要两个PWM波,上述控制精度还要减半,只能控制到约1/64.对要求不高的电源例如电池充电,可以满足使用要求,但对要求输出精度较高的电源,这就不够了.

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电又如何使直流电压(电流)稳定这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A;

③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=±; 发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源浪涌吸收方法

开关电源的冲击电流控制方法 开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。 由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3.通信系统的最大冲击电流限值(AC/DC电源) 图4.通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源) 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。 冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法 2.1 串连电阻法 对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。 图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。 图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。 2.2 热敏电阻法 在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。 用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

基于单片机控制的开关电源的设计

哈尔滨剑桥学院 毕业设计 论文题目:基于单片机控制的开关电源的设计 学生:孙中凯 指导教师:李德胜高级工程师 专业:电气工程及其自动化 班级: 12级电气2班 2016年5月

毕业设计(论文)审阅评语

毕业设计(论文)答辩评语及成绩

基于单片机控制的开关电源的设计 摘要 电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术,随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科。他对现代通讯、电子仪器、计算机、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠的电源起着关键作用。 本文设计主要目的是实现一个单片机控制开关电源,所以在这次设计中使用了单片机实现。在这次设计文档中,详细阐述了开关电源与线性电源的比较,总体结构设计,通过键盘预置期望输出电压值,模/数转换器对输出电压进行采样,由软件控制单片机输出相应的脉冲宽度,对开关电源进行脉宽调制,输出预期的电压。并采用PID算法控制输出电压稳定,构成可输出12v到0v的可调节电压,并显示实时预置值与电压。 关键词:财开关电源;半导体;PID算法;闭环控制;数控

目录 摘要.................................................................................................................................................. I 1 绪论 (1) 1.1 课题环境背景 (2) 1.1.1绿色节能型开关电源 (2) 1.1.2 智能化数字电源 (1) 1.1.3 可编程开关电源 (1) 1.2 电源技术的发展与方向 (2) 1.2.1 线性电源和开关电源 (2) 1.2.2 电源技术的发展方向 (2) 1.2.3 开关电源的市场前景和研究现状 (3) 1.3 本文研究主要内容 (3) 2 系统方案设计 (4) 2.1 开关电源工作原理 (4) 2.2 开关电源与线性电源的比较 (4) 2.2.1 线性电源的缺点 (4) 2.2.2 开关电源的优点 (4) 2.3 系统方案论证 (5) 2.3.1 方案1 (5) 2.3.2 方案2 (5) 2.3.3 方案3 (6) 2.3.4 方案分析 (6) 2.3.5 总体结构设计 (6) 2.4 系统难点分析 (7) 2.4.1 如何提高电源工作频率 (7) 2.4.2 储能电感的绕制 (8) 2.4.3 标度转换技术 (9) 2.5 开关变换器结构分析与选择 (9) 2.5.1 降压变换电路分析 (9)

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动, 应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种PWM空制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1.开关电源控制电路原理分析 DC- DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成 另一等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间 长度来控制平均输出电压,这种方法也称为脉宽调制[PWM法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode con trol )和电流型 控制(current modecontrol )。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PW信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个—阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图即为电压型控制的原理框图。 1

基于单片机控制的开关电源设计

基于单片机控制的开关电源设计 系部:电子与通信工程系 姓名:龚倩倩 专业班级:电信10D1 学号: 102222105 指导老师:邵雯 2012年9月21日

声明 本人所呈交的基于单片机控制的电源开关设计,是我在指导教师的指导和查阅相关著作下独立进行分析研究所取得的成果。除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名: 日期:

【摘要】 开关电源体积小、效率高,被誉为高效节能电源,现己成为稳压电源的主导产品。随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。 本文介绍了一款基于PWM技术的DC-DC开关稳压电源,用proteus仿真,输出纹波小,电压稳定可靠. [关键词]:开关电源,DC-DC,单片机,proteus [Abstract]: The small size of the switching power supply, high efficiency, known as energy-efficient power supply, has now become the leading products of the regulated power supply.With the wide application of switching power supplies in computers, communications, aerospace, instrumentation and household appliances, people growing their demand and higher power efficiency, size, weight, and reliabilityrequirements. Switching power supply for its high efficiency, small size, light weight advantages in many ways to gradually replace the inefficient, clunky, heavy linear power. This article describes a DC-DC switching power supply based on PWM technology, with proteus simulation output ripple voltage is stable and reliable. [Keywords]: switching power supplies, DC-DC, single-chip, proteus

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则 引言 对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了。目前主要由下述诸多电压组合而成:+3.3V,+5V,±15V,±12V,-5 V,±9V,+18V,+24V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+3000V、+5000V(包括一个系统中需求多个上述相同电压供电电源)等。不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力(输出电流),电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等。 2多路输出电源 对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。

从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。对Vaux1、Vaux2而言,其精度主要依赖以下几个方面: 1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np3 2)辅助电路的负载情况。 3)主电路的负载情况。 注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。 2.1电源变换器多路输出交叉负载调整率测量与计算步骤 1)测试仪表及设备连接如图2所示。

用单片机控制LED流水灯方案(电路程序全部给出)开关电源方案制作

用单片机控制的LED流水灯设计<电路、程序全部给出)开关电源设计制作学习园地 »。您尚未登录注册 | 社区服务 | 勋章中心 | 帮助 | 首页 | 无图版 社区服务 银行 朋友圈 开关电源设计制作学习园地 -> 好好学习-天天向上 -> 用单片机控制的LED流水灯设计<电路、程序全部给出) XML RSS 2.0 WAP --> 本页主题: 用单片机控制的LED流水灯设计<电路、程序全部给出)加为IE收藏 | 收藏主题 | 上一主题 | 下一主题 pwmdy 级别: 电源-1级工程师 精华: 0 发帖: 212 威望: 126 点 金钱: 212 RMB 贡献值: 0 点 注册时间:2009-05-21 最后登录:2009-11-22 用单片机控制的LED流水灯设计<电路、程序全部给出) 1.引言 当今时代是一个新技术层出不穷的时代,在电子领域尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统,正以前所未见的速度被单片机智能控制系统所取代。单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。学习单片机的最有效方法就是理论与实践并重,本文笔者用AT89C51单片机自制了一款简易的流水灯,重点介绍了其软件编程方法,以期给单片机初学者以启发,更快地成为单片机领域的优秀人才。 2.硬件组成 按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。AT89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS 8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个

高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。 功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。使电源的工作特性就像一个电阻一样,而不在是容性的。 目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。这种类型的控制方式,在小功率PFC电路中非常常见。 今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。 要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例: 已知参数: 交流电源的频率fac——50Hz 最低交流电压有效值Umin——85Vac 最高交流电压有效值Umax——265Vac 输出直流电压Udc——400VDC 输出功率Pout——600W 最差状况下满载效率η——92% 开关频率fs——65KHz 输出电压纹波峰峰值Voutp-p——10V 那么我们可以进行如下计算: 1,输出电流Iout=Pout/Udc=600/400=1.5A 2,最大输入功率Pin=Pout/η=600/0.92=652W 3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A 4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A 5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A 6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A 7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH 8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。实际的电路中,我用了1320uF,4只330uF的并联。 有了电感量、有了输入电流,我们就可以设计升压电感了! PFC电路的升压电感的磁芯,我们可以有多种选择:磁粉芯、铁氧体磁芯、开了气隙的非晶/微晶合金磁芯。这几种磁芯是各有优缺点,听我一一道来。

开关电源CCM和DCM工作模式

开关电源Buck 电路CCM 及DCM 工作模式 一、Buck 开关型调整器: 图1 二、CCM 及DCM 定义: 1、CCM (Continuous Conduction Mode),连续导通模式:在一个开关周期内,电感电流从不会到0。或者说电感从不“复位”,意味着在开关周期内电感磁通从不回到0,功率管闭合时,线圈中还有电流流过。 2、DCM ,(Discontinuous Conduction Mode)非连续导通模式:在开关周期内,电感电流总会会到0,意味着电感被适当地“复位”,即功率开关闭合时,电感电流为零。 3、BCM (Boundary Conduction Mode ),边界或边界线导通模式:控制器监控电感电流,一旦检测到电流等于0,功率开关立即闭合。控制器总是等电感电流“复位”来激活开关。如果电感值电流高,而截至斜坡相当平,则开关周期延长,因此,BCM 变化器是可变频率系统。BCM 变换器可以称为临界导通模式或CRM (Critical Conduction Mode )。 图1通过花电感电流曲线表示了三种不同的工作模式。 图2 电感工作的三种模式 电流斜坡的中点幅值等于直流输出电流o I 的平均值,峰值电流Ip 与谷值电流V I 之差为纹波电流。 三、CCM 工作模式及特点 根据CCM 定义,测试出降压变换器工作于连续模式下的波形,如下图3所示。 图3 波形1表示PWM 图形,将开关触发成导通和截止。当开关SW 导通时,公共点SW/D 上的电压为Vin 。相反,当开关断开时,公共点SW/D 电压将摆到负,此时电感电流对二极管D 提供偏置电流,出现负降压——续流作用。 波形3描述了电感两端电压的变化。在平衡点,电感L 两端的平均电压为0,及S1+S2=0。S1面积对应于开关导通时电压与时间的乘积,S2面积对应于开关关断时电压与时间的乘积。S1简单地用矩形高度(in V -out V )乘以D sw T ,而S2也是矩形高度-out V t 乘以(1-D )sw T 。如果对S1和S2求和,然后再整个周期sw T 内平均,得到 (D (in V -out V )sw T -out V (1-D )sw T )/ sw T =0 化简上式可以到CCM 的降压DC 传递函数: out V = D in V =M in V 或M= out V /in V

基于单片机控制的开关电源及其设计

2.基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机和开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3.最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机和许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型的开关电源普遍存在的问题———由于单片机输出的的PWM脉冲频率低, 导致精度低, 不能满足要求的问题。因此, 单片机和PWM芯片相结合, 是一种完全可行的方案。第三种方案: 是最彻底的单片机控制开关电源, 但对单片机的要求也高。要求单片机运算速度足够快, 且能输出足够高频率的PWM波。DSP 类单片机速度够快, 但价格也很高, 占电源总成本的比例太大, 不宜采用。廉价单片机中, AVR 系列最快, 具有PWM输出, 但AVR单片机的工作频率仍不够高, 只能是勉强

开关电源控制模式的探讨

开关电源控制模式的探讨 随着科学技术的发展,开关电源数字化、模块化、高频化的实现,促进了开关电源控制技术的不断发展。文章主要对开关电源控制模式进行分析,结合开关电源发展的历程,探讨了开关电源数字化控制技术以及电流型控制模式,以供参考。 标签:开关电源;控制模式;电子技术 1 开关电源概述 开关电源是在现代电子电力技术的发展基础上,控制开关管的开通及关断时间比率,以稳定输出电压的一种特殊的电源。一般来说,开关电源由脉冲宽度调制控制IC、MOSFET组成。随着科学技术的发展,开关电源技术也不断进行改革和创新。开关电源效率能够高达85%,与普通线性电源相比,开关电源的利用效率提高了一倍。同时,开关电源采用了小体积的滤波元件及散热器,可靠性、安全性也较高。从开关电源的类别来看,可以分成AC/AC、DC/DC等类型,其中,DC/DC开关电源的变换器已经实现了模块化设计和发展,因而得到用户普遍认可。 从开关电源的产生和发展来看,自上个世纪六十年代以来,由于晶闸管控制模式的出现,大大促进了开关电源的发展。到七十年代初期,开关电源进入了长时期的瓶颈时期,开关电源的效率问题更加突出。直至七十年代后期,由于集成电技术的创新,催生了各种开关电源芯片的产生。当前,集成化电源已经广泛应用于航天、彩电、计算机等各个领域中,随着半导体技术、电子技术的快速发展,电子设备的总量和体积不断减小,导致电源体积与电子设备的体积不相匹配。因此,开关电源体积成为当前研究的重点。 从我国开关电源的研究情况来看,在上个世纪六十年代,我国已经成功研制出稳压电源。经过十年的发展,稳压电源已经成功应用于电视机和中小型计算机。到八十年代,我国已经成功研制出了0.5~5MHz谐振的软开关电源。从八十年代起,我国开关电源进入了大规模更新换代的时期,现代晶闸管稳压电源逐渐取代了传统铁磁稳压电源,对办公自动化产生了很大的影响。进入九十年代,我国成功研制了新型专用的开关电源,供特殊行业使用,如卫星及远程导弹系统所使用的开关电源。经历了约半个世纪的发展,我国开关电源技术研发已经取得了较大的成就,开关电源应用范围也逐渐扩展,但与国外开关电源技术相比,在使用方法和集成度方面,我国还存在很大的不足,还应该继续加强开关电源研究及应用。 2 开关电源数字控制技术分析 近年来,随着计算机技术及网络技术的快速发展,数字控制技术在社会生产生活中广泛应用。数字控制技术的产生,是由于控制领域的监控和计算任务的要

开关电源中几种过流保护方式的电路比较分析

找电源工作上----------------------------电源英才网 开关电源中几种过流保护方式的电路比较分析 引言 电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。 1开关电源中常用的过流保护方式 过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。过电流的设定值通常为额定电流的110%~130%。一般为自动恢复型。 图1中①表示电流下垂型,②表示恒流型,③表示恒功率型。 图1过电流保护特性 1.1用于变压器初级直接驱动电路中的限流电路 在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。图2是在这样的电路中实现限流的两种方法。 图2电路可用于单端正激式变换器和反激式变换器。图2(a)与图2(b)中在MOSFET的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。 图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样

开关电源设计与实现

Xx大学机电工程学院 Mechanical &Electronic Engineering Department 开关电源技术原理及应用设计报告 说明书 设计题目:开关电源的设计与实现 专业: 学号: 姓名: 指导教师: 设计时间:

开关电源的设计与实现 摘要: 本文通过对日常生活中用到的开关电源,进行了比较详细的描述和说明,也就相关制作问题进行了描述。再根据开关电源的理论、电路分析、及变压器的基础,从电路工作的角度分析了开关电源的工作原理,制作了一种比较简单,工作可靠,且适用于目前生活中常用的开关电源。这个设计的主要特点是稳压开关电源,设计中运用了开关电源中的整流、滤波、变压、过压保护等设计。最后按照电路图焊接元件,当接入220V的交流电时,负载所接的灯泡亮。 关键字:开关电源脉宽调制变压器 Design and Realization of Switching Power Supply Abstract: Based on the switching power supply used in daily life, for a more detailed description and explanation, also making the problem is described. According to the theory of switching power supply, circuit analysis, and the transformer, the-working principle of switching power supply circuit from the angle of the work,making a relatively simple, reliable, and suitable for the switch power supply in life. This design is the main characteristics of switching power supply, use in the design of rectifier, filter, transformer, overvoltage protection design of switch power supply. The final element welding according to the circuit diagram, when the access 220V alternating current, load the light bulb. Key words:switching power supply PWM transformer

开关电源中的电流型控制模式

開關電源中的電流型控制模式 摘要:討論了開關電源中電流迴授控制模式的工作原理、優缺點,以及與之有關的斜波補償技術。關鍵詞:開關電源;電流型控制;斜波補償 1、前言 PWM型開關穩壓電源是一個閉迴路控制系統,其基本工作原理就是在輸入電壓、內部元件參數、外接負載等因素發生變化時,通過檢測被控制信號與基準信號的差值,利用差值調整主電路功率開關元件的導通脈波寬度,從而改變輸出電壓的平均值,使得開關電源的輸出電壓保持穩定。 以開關電源中的降壓型變換為例(其它類型如正激型、推挽型等,均可由降壓型衍生得到),圖1表示了該變換器的主電路的基本拓撲結構。 圖1降壓型開關電源 根據選用不同的PWM控制模式,圖1電路中的輸入電壓U in、輸出電壓U o、開關功率元件電流(可從A 點取樣)、輸出電感電流(可從B或C點採樣)均可作為控制信號,用於完成穩壓調整過程。 目前在開關電源中廣泛使用的控制方式是通過對輸出電壓或電流(功率開關元件或輸出電感上流過的電流)進行取樣,即形成2類控制方式:電壓控制模式與電流控制模式。

2電流控制模式的工作原理 圖2為檢測輸出電感電流的電流型控制的基本原理圖。它的主要特點是:將取樣得到的電感電流直接回授去控制功率開關的責任週期,使功率開關的峰值電流直接跟隨電壓迴授電路中誤差放大器輸出的信號。 從圖2中可以看出,與單一迴路的電壓控制模式相比,電流模式控制是雙閉迴路控制系統,外迴路由輸出電壓迴授電路形成,內迴路由電感器取樣輸出電感電流形成。在該雙迴路控制中,由電壓外迴路控制電流內迴路,即內迴路電流在每一開關週期內上升,直至達到電壓外迴路設定的誤差電壓閾值。電流內迴路是瞬時快速進行逐個脈衝比較工作的,並且監測輸出電感電流的動態變化,電壓外迴路只負責控制輸出電壓。因此電流型控制模式具有比起電壓型控制模式大得多的頻寬。 圖2檢測輸出電感電流的電流型控制原理圖 實際電路以單端正激型電源為例,如圖3所示。誤差電壓信號U e送至PWM比較器後,並不是像電壓模式那樣與振盪電路產生的固定三角波狀電壓斜波比較調寬,而是與一個變化的、峰值代表功率開關上的電流信號(由Rs上採樣得到)的三角狀波形信號(電感電流不連續)或矩形波上端疊加三角波合成波形信號(電感電流連續)比較,然後得到PWM脈衝關斷時刻。在電路中,電流的取樣通常使用一

基于单片机控制的开关电源及其设计

2、基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅就是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机与开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3、最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅就是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只就是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不就是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机与许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型的开关电源普遍存在的问题———由于单片机输出的的PWM脉冲频率低, 导致精度低, 不能满足要求的问题。因此, 单片机与PWM芯片相结合, 就是一种完全可行的方案。第三种方案: 就是最彻底的单片机控制开关电源, 但对单片机的要求也高。要求单片机运算速度足够快, 且能输出足够高频率的PWM波。DSP 类单片机速度够快, 但价格也很高, 占电源总成本的比例太大, 不宜采用。廉价单片机中, AVR 系列最快, 具有PWM输出, 但AVR单片机的工作频率仍不够高,

相关文档
最新文档