Author(s) Biography

Author(s) Biography
Author(s) Biography

DesignCon 2003

High-Performance System Design Conference Decomposition of Coplanar and Multilayer Interconnect Structures with Split Power Distribution Planes for Hybrid Circuit–Field Analysis

Neven Orhanovic

Dileep Divekar

Norio Matsui

Applied Simulation Technology

Abstract

A novel technique for decomposing complex interconnect systems into signal propagation and power distribution parts is presented. The decomposition is performed around the discontinuities in the signal or return current paths. The decomposed structure is ideally suited for hybrid analysis where one part of the problem is modeled using circuit methods and the second part is analyzed using field solvers. The method significantly extends the available decomposition techniques in its generality and its applicability to a wide range of structures, including coplanar structures as well as structures containing conductive planes with voids such as splits, slits, or gaps. The decomposed structure offers the possibility of more efficient analysis compared to the analysis of the non-decomposed structure. Author(s) Biography

Neven Orhanovic

Neven Orhanovic received his B.S. degree in Electrical Engineering from the University of Zagreb, Croatia and his M.S. and Ph. D. degrees in Electrical and Computer Engineering from Oregon State University, Corvallis. From 1992 until 1999, he was with Interconnectix and Mentor Graphics Corp. developing numerical methods and simulation software in the area of interconnect analysis and interconnect synthesis. He is currently with Applied Simulation Technology working mainly on full-wave analysis methods.

Dileep Divekar

Dileep Divekar obtained a B.S. in Electrical Engineering from Pune University, Pune, India and M.S. and Ph.D. in Electrical Engineering from Stanford University, Stanford, CA. He has worked in the areas of circuit simulation, semiconductor device modeling, static timing analysis and signal integrity. He is currently with Applied Simulation Technology.

Norio Matsui

Norio Matsui holds a Ph. D. from Waseda University, Tokyo and was a researcher in NTT Labs for over 16 years. During this period he developed noise simulation tools for Signal and Power Integrity as well as physical designs for high speed tele-switching systems. Apart from authoring numerous papers, he also lectured at Chiba University. He is currently President of Applied Simulation Technology and is actively involved in Power Integrity, Signal Integrity, and EMI/EMC solutions.

Introduction

The interconnect structures found in today’s printed circuit boards (PCBs) support several fundamental types of wave propagation. These fundamental modes of propagation can be separated into two categories: 1) modes that require two or more conductors to support the propagating waves; 2) modes of propagation that can be supported by single conductor containing a cavity or a void. The conductors that support the propagation can further have different shapes with widely varying dimensions and aspect ratios. Some of the condu ctors or voids in the conductors are thin and narrow and support mainly one dimensional (1D) propagation along the tangential (or longitudinal) direction. These 1D conductors or voids can usually be modeled accurately and efficiently using multiconductor transmission line models and conventional lumped element discontinuity models (Figure 1). Other conductors or voids are wide or thick and they can support more complex propagation in two or three dimensions (2D/3D). In most digital systems, the conductors used for signal propagation are mainly 1D while the conductors used for power distribution are 2D/3D. The 2D/3D conductors require more complex analysis techniques, which involve direct or indirect solutions of partial differential equations or integral equ ations in two or three space dimensions.

Figure 1: Simple structure supporting mainly 1D propagation on the left and mainly 2D propagation on the right. For this example, the decomposition into 1D and 2D partitions is trivial (b). Although the same techniques used for the analysis of 2D/3D systems of conductors can be applied to 1D conductors, the procedure is inefficient in general. The main reason for the inefficiency of 2D/3D analysis methods when applied to 1D problems is in the presence of both very large and very small features in the structure. The ratio of the sizes of the smallest and larges features in the structure is directly related to the efficiency of 2D/3D analysis methods. A particular class of analysis approaches usually works best for a particular type of structures. It is therefore highly advantageous to decompose

the structure into parts that support one type of propagation each, and to analyze the constituent parts using separate analysis methods.

The 1D and 2D/3D types of conductors and voids can typically be mixed freely in the interconnect system. As a result, the overall system will support a number of different 1D and 2D/3D modes of propagation simultaneously. The exact modes of propagation will depend on th e details of the structure as well as on the details of the excitations. Furthermore, the supported modes of propagation can be tightly coupled. A mode propagating in a region of the structure can excite a different mode in the same region. Consequently, the decomposition of the interconnect system into parts, such that each part supports one fundamental mode of propagation, is not a trivial problem.

Figure 2 shows a simple homogeneous stripline example where two fundamental propagation modes exist simultaneously: the TEM stripline mode and the TEM parallel plate mode. This simple structure can be decomposed into stripline and parallel plate parts only if an appropriate mode coupling mechanism is introduced.

Figure 2: Simple homogeneous stripline structure for which the 1D and 2D propagation regions overlap.

The decomposition of the structure into 1D and 2D propagation partitions requires an

appropriate mode transformation network.

A number of structure decomposition techniques have been proposed in the literature (e.g., [1–8]). Some of the methods perform simple geometrical separations of the structure into non-overlapping parts [1–3]. As each part of a general structure can support more than one form of fundamental propagatio n, these methods do not always take full advantage of analysis technique specialization for each constituent part. Others, decompose the circuit around via discontinuities [4–6]. The technique proposed in [6]

decomposes a stripline structure filled with a homogenous dielectric medium into a parallel plate structure and a transmission line. The decomposition is performed around a via discontinuity. The method handles the two separated structures efficiently, but it is applicable to a class of very special structures. In [7] the method of [6] is generalized for an arbitrary system of coupled planar conductors around arbitrary vertical discontinuities using a dependent voltage and current source mode coupling circuit. This method is still not general enough to deal with all of the structures present in complex PCBs and IC packages. The generalization to [6] proposed in [8] promises applicability to a wider range of cases, including magnetically coupled structures. However, this generalization comes with the pena lty of additional implementation complexity and larger storage and computational requirements.

The purpose of this paper is to propose a method for separating the 1D propagation network from the

2D/3D propagation partition at the discontinuities in the horizontal return plane. The paper extends the decomposition proposed in [7] and makes it applicable to planar discontinuities such as various voids in the signal return planes. The 1D part of the decomposed structure is solved using circuit simulation methods while the 2D/3D part can be solved using any of a number of analysis approaches. The generalization for the analysis of 2D partitions described in [8] can also be used in conjunction with [7] and our proposed decomposition method. The method is exemplified on microstrip examples containing voids in the return plane as well as on a coplanar structure.

Decomposition Approach for Microstrips

The proposed decomposition is first explained for a microstrip structure. Figure 3 shows a microstrip line passing over a split in the return plane.

εr = 1

Top boundary of the field partition

Figure 3: Example structure used to illustrate the decomposition around a slit in the return plane.

The split can represent a slit or gap in a single plane or two separated power planes with different DC voltage levels. The structure is decomposed into two microstrip lines on either side of the split and the split model. The difficulties in the accurate modeling of the structure of Fig. 3(a) arise due to the presence of the split. Conversion of propagation modes occurs around the split where the dominant quasi-TEM mode of the microstrip couples with the dominant slotline mode of the split. The split or gap can also have an irregular shape or it can couple to other oddly shaped gaps in the same plane or in nearby planes.

A general and efficient approach to modeling such structures is to decompose the structure into the 2D propagation partition and the signal propagation partition. The 2D propagation partition, consisting of the original structure without the signal trace, can be analyzed using field analysis methods. The signal propagation partition can be analyzed using transmission line models. The two partitions are connected in the area of the discontinuity underneath the signal trace. If the analysis of the planes is performed in the time domain using FDTD, the connection between the two parts can be made using FDTD–SPICE interfacing methods ([9–14]). The placement of the FDTD to SPICE interface port is shown in Fig. 3(b).

A similar connection approach can be used if other field analysis methods are used [15]. Since the traces are not included in the part of the structure that is analyzed using field solution methods, the amount of detail and the discretization requirements for this part of the m odel are reduced significantly compared to those of the original structure.

Figure 4 compares the results obtained by using FDTD–SPICE on the decomposed structure to those obtained using FDTD on the non-decomposed structure that includes the signal trace. The voltages at the trace input and output are shown along with the voltages at the two ends of the split. Good agreement is observed. The simulation of the decomposed structure was more than ten times faster than for the corresponding non-decomposed structure. For complex multilayer boards with coupled thin traces, the computational advantages of the decomposition are usually larger.

Figure 4. Voltage response of microstrip trace over open split in the return plane: proposed method (solid lines) and FDTD analysis of original structure without decomposition (dashed lines).

The split in the above example completely separates the plane into two parts. The modeling procedure is the same for slits or holes in the plane. Figure 5 shows the microstrip structure of Fig. 3 with a slot in the return plane. The length the voltage responses for varying lengths of the slot are shown in Fig. 6. The results obtained using the proposed decomposition technique are again plotted with solid lines and the results obtained by analyzing the full non-decomposed structure in FDTD are shown by dashed lines.

Figure 5. Microstrip trace over a slot of variable length d. The width of the slot is held constant.

Figure 6. Voltage responses of the structure shown in Fig. 5 for four different slot lengths.

Good agreement between the decomposed result and the result computed by analyzing the non -decomposed structure in FDTD is observed. As the length of the slot decreases, its effect on propagated signal diminishes. When the delay along the length of the slot becomes smaller than the rise time of the signal, the effect of the slot becomes negligible.

For microstrip traces passing over isolated conductor islands or multiple slots, the decomposition procedure described above needs to be applied at each crossing.

Decomposition Approach for Coplanar Structures

The decomposition for coplanar structures is a direct application of [7] to horizontal discontinuities. The approach is described on the coplanar structure of Fig. 7. Figure 7(a) shows the top view of the structure. The signal conductor is 200 μm wide while each of the neighboring return conductors is 9.2 mm wide. The separation between the signal conductor and each of the neighboring return conductors is 300 μm. The length of the structure is 90 mm. The conductor material is copper. The conductors are positioned on top of a low loss dielectric substrate that is 1 mm thick and has a dielectric constant of 4. The decomposition is performed at the discontinuity in the center of the structure (Fig. 7(b)). The 2D

propagation partition consists of the original stricture without the signal trace. It contains two ports that interface with the 1D partition. The 1D propagation partition is represented by a circuit model. The circuit model contains two transmission lines that model the 1D propagation on the two sides of the discontinuity. The two transformation networks shown in the circuit model are needed to take into account the mode conversions at the discontinuity [7]. The interface ports consist of a circuit model as well as a field solver model. Their implementation using FDTD–SPICE analysis techniques is described in [13–14].

Figure 7. Decomposition at planar discontinuities: (a) structure; (b) decomposition into 1D and 2D parts.

Excitation

2D Propagation Partition (Field Solver Model) 1D Propagation Partition (Circuit Model)

Excit Loa d

(b)

A comparison of the results obtained using the decomposition method of Fig. 7 and the results obtained using direct FDTD discretization of the original structure is shown in Fig. 8. Different inputs were used to excite the structure between the bottom and center conductors and between the top and center

conductors in order to excite two different modes on the three conductor system. The excitation circuit is shown in Fig. 9 together with the reference directions of the voltages in the plots. A high impedance load terminates the structure of Fig. 7 on the right end.

Figure 8. Voltage response of the coplanar structure of Fig. 7: FDTD–SPICE analysis of decomposed

structure (solid lines), FDTD simulation of non -decomposed structure (dashed lines).

Figure 9. Excitation circuit for the structure of Fig. 7. Both lowest order modes of the three conductor

system are excited.

v 2 v 1 + –

– +

Concluding Remarks

An extension to the decomposition technique described in [7] was described on several examples. The decomposition can be applied to microstrips passing over voids in the return planes and for coplanar geometries. When used with appropriate analysis methods, the decomposition results in a general, efficient, and practical simulation procedure that can be applied to a large set of structures found on today’s printed circuit boards and in other interconnect systems.

References

[1] Z. Zhou, H. Ji, W. Hong, “An efficient algorithm for parameter extraction of 3D-interconnect structures in VLSI

circuits: domain-decomposition method,” IEEE Trans. MTT, vol. 45, no. 8, pp. 1179–1184, Aug. 1997.

[2] J. Choi, M. Swaminathan, “Computation of the frequency response of multiple planes in gigaherz packages and

boards,” IEEE 8th EPEP, pp. 157–160, Oct. 1999.

[3] L. Wan, M. Swaminathan, R. R. Tummala, “Simulation of switching noise in multi-layer structures using generalized

transmission line equation method,” Proc. IEEE Int. Symp. Electromagnetic Compatibility, pp. 1026–1031, Aug. 2002.

[4] H. J. Liaw and Henri Merkelo, “Mode conversion at vias in multilayer interconnections,” Proc. 45th ECTC Conference,

pp. 361–367, May, 1995.

[5] R. Abhari, G. V. Eleftheriades, E. van Deventer-Perkins, “Physics-Based CAD Models for analysis of vias in parallel-

plate environments,” IEEE Trans. MTT, vol. 49, no. 10, pp. 1697–1707, October 2001.

[6] J. Fang, Y. Chen, Z. Wu, D. Xue, “Modeling of interaction between vias and metal planes in electronic packaging,”

IEEE 3rd EPEP., pp. 211–214, Nov. 1994.

[7] N. Orhanovic, D. Divekar, N. Matsui, “Structure decomposition for hybrid analysis of multilayer interconnect systems,”

IEEE 11th, pp. 137–140, Oct. 2002.

[8] C. T. Wu, R. B. Wu, “Two-dimensional finite-difference time-domain method combined with open boundary for signal

integrity issues between isolation islands,” IEEE 11th, pp. 283–286, Oct. 2002.

[9] W. Sui, D. A. Christensen, C. H. Durney, “Extending the two-dimensional FDTD method to hybrid electromagnetic

systems with active and passive lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 4, pp. 724–730, Apr. 1992.

[10] B. Toland, B. Houshmand, T. Itoh, “Modeling of nonlinear active regions with the FDTD method,” IEEE Microwave

and Guided Wave Lett., vol. 3, no. 9, pp. 333–335, Sept. 1993.

[11] V. A. Thomas, M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, “The use of SPICE lumped circuits as sub-grid

models for FDTD analysis,” IEEE Microwave Guided Wave Lett., vol. 4, no. 5, pp. 141–143, May 1994.

[12] G. Kobidze, A. Nishizawa, and S. Tanabe, “Ground bouncing in PCB with integrated circuits,” Proc. IEEE Internat.

Symp. Electromagnetic Compatibility, vol. 1, pp. 349–352, August 2000.

[13] R. Raghuram, N. Orhanovic, N. Matsui, “Nonlinear full wave time domain solutions using FDTD–SPICE for high

speed digital and RF, DesignCon 2001, Jan. 2001.

[14] N. Orhanovic and N. Matsui, “Full wave signal and power integrity analysis of printed circuit boards using 2D and 3D

FDTD–SPICE methods,” DesignCon 2002, Jan. 2002.

[15] K. Guillouard, et al., “A new global time-doma in electromagnetic simulator of microwave circuits including limped

elements based on finite-element method,” IEEE Trans. MTT, vol. 49, no. 10, pp. 2045–2048, Oct. 1999.

如何写好成长感悟类的中考作文

如何写好成长感悟类的中考作文 一、文题解析 成长既可指身体等各个方面的渐渐成熟,又可以指人在思想、意志、品质、道德等精神方面的成熟或进步。因此,凡是与自身成长有关的经历、体验、收获等内容,都属于成长感悟类话题的范畴。 写作成长感悟类作文,意在引导学生关注自身的成长经历,总结自己成长过程中的经验和教训,在反思中辨别真伪、明晰是非、甄别善恶,逐步形成正确的人生观、价值观,拥有健康、积极的价值观和人生态度,从而为学生今后的学习和生活打下坚实的基础。 二、中考作文展望 从中考命题形势看,成长感悟类考题在逐年升温,如XX 年四川安岳县中考作文题其中之一是:以“成长”为话题,自选角度,写一篇文章。XX年济宁中考作文题:以“成长的脚印”为话题或题目作文。XX年内蒙古呼和浩特中考作文题:成长的脚印。XX年贵州贵阳中考作文:成长也需要??XX年南充市中考作文题:以“成长”或“等待”为话题。这类考题往往结合学生的生活实际,要求考生展现个性特长,记录成长足迹,畅写情感历程,表现精神追求,引导中学生认识自我,增强自信,加强责任感。专家预测,在推行课程改革、强调人文关怀的新时代,此类考题会逐渐成为命题的核心。

成长类作文命题最贴近考生,注重引导考生对自我的认识,对个人成长过程的体验和感悟,最易引起考生的共鸣,所以在中考作文命题中一直保持强劲势头。 三、成长感悟类作文大概涉及哪些方面 1.自身的成长。成长是一个不断蜕变的过程,从幼稚逐步变得成熟。会主动帮助同学了,学会谦让了,会站在父母的角度考虑问题了,会自己洗衣服做饭了??学习能力、生活自理 能力也在成长中日渐体现出来。而个人的品德、能力、交际方面也得以不同程度地提升。如XX年广安市中考作文题目:学会了__________;XX年三明中考作文题目之一:第一次__________;XX年福建福州中考作文题目:“在尝试中成长”。 2.从成长的经历而言,这类作文又可以细化为成长中的快乐、烦恼,成长路上遇到的挫折、打击、困难等。青少年 时代,挫折、失败、忧伤、哀愁不可避免,这就要求我们在面对这些问题的时候,一定要有一个积极乐观的态度。面对生活的波折,要始终坚持自己对真、善、美的追求与向往,对假、恶、丑的批判与鞭挞。如XX年绍兴市中考作文题目:越长大,越__________;XX年辽宁朝阳中考作文题目:我的快乐之旅;XX年湖南株洲中考作文题目:我在

心愿作文700字完美版

心愿作文700字 风来,蒲公英散了;秋来,树叶落了。夕阳下我们奔跑的身影已慢慢退去,还记得我给你指过的那颗最亮的星星吗?我已经让它把我的话悄悄带入你的梦乡。 小学的六年,我最稚嫩的时期,刚转学过来的我,不愿将心事坦露。感谢你这些年来的帮助与关怀。现在我终于明白了那句话:一场考试,考散了一群人。我至今也不能理解,生活六年的同学为什么要分开?可人在慢慢地长大,也明白了新的生活在继续,新的事物也在靠近。你还记得,当年我们的约定吗?我们说二十年后要一起到巴黎铁塔下许下新的梦,因为你认为那是一件美好浪漫的事。 开学了,我认识了好多新朋友…… 那天,我走进707这个大家庭,那一张张陌生却纯真的脸,那一双双眼里充满着梦想,脸上洋溢着青春,身上散发着朝气。老师的话语中则带着满满的希望和期待,我们会拿出100分的状态,告诉老师:我们可以做得很好。看着新同学,我的骨子里不知从哪又冒出当年热血沸腾的那股冲劲。我知道追梦这条路上的坎坷和曲折,我将和新同学一起努力,因为我相信他们和我一样,就算汗水淌过脸庞,就算泪水划过侧脸,我们也绝不放弃,绝不低头。我们一定会闯过重重难关,一路披荆斩棘,最终走向目标,获得成功。就算跌倒100次,我也会华丽地站起;就算失败100次,在第101次我仍然会坚定地说:让我再试试!所以我会奔跑,一直不停地奔跑,就算是逆风,我也会努力。 不知道你的新同学怎么样?你是不是也和我一样,把身上的正能量传递给别人?还记得毕业分开那天,你对我说:杜福容,你不能哭你要一直微笑,因为哭了就不好看了,只有笑着才能拥有王者般的风范,才会像胜利者那样有着优雅的姿态。谢谢你,我的生命中有你的出现,我的成长中有你的陪伴。 当那颗星星走进你的梦中,麻烦你让它带着你最新的消息回来告诉我,好吗?

五年级关于感恩作文350字

五年级关于感恩作文350字 【篇一】五年级关于感恩作文350字 我是爸爸妈妈的宝贝,爸爸妈妈对我无微不至的关爱,所以我也从心底里爱着他们。 记得有一次,我肚子痛得很厉害,老师打电话给妈妈,妈妈听了以后非常着急,下班后匆匆忙忙地赶到朱泾,马上和奶奶把我送到医院。经过医生初步诊断,说我可能得了阑尾炎,这可把妈妈吓坏了,医生要我留院观察一夜,我躺在床上挂盐水,妈妈照顾了我一夜,连觉也没有睡好,明天还要去上班,真是太辛苦了。 爸爸对我的学习非常关心,平时的时候晚上总是给我指导作业,星期六和星期天常常帮我复习一周的课程。每个学期开学的时候都会陪我到新华书店,亲自给我挑选课外读物,购买学习用品。 爸爸妈妈这样关爱我,我非常感谢他们。夏天,看见爸爸下班回家满头大汗,我就倒水给爸爸喝;我吃水果的时候,总是要和奶奶、妈妈一起分享。这个月,妈妈要过生日了,我和爸爸商量,用我的压岁钱和爸爸一起买个手机送给妈妈,祝妈妈生日快乐。 【篇二】五年级关于感恩作文350字 今天是“三八“妇女节,我要送给妈妈一份礼物。 今天妈妈还没有起床,我已经早早的起床了。我要给妈妈一个惊喜,那就是干家务。我看到家里非常脏,便开始打扫卫生了。我先打扫我的卧室,我把书桌上的垃圾擦到废纸

上,再倒进垃圾桶。我又开始扫地上的垃圾,我把扫起来的垃圾堆到一起,扫进簸箕后,倒进了垃圾桶里。我又扫客厅里、餐桌下的垃圾,扫出来的全是吃饭时掉在地上的食物或吃水果时掉下的果核、果皮之类的东西。我扫完以后,妈妈正好醒来,妈妈看到屋子里既整齐又干净,高兴的问:“其慧,这是你干的?”我回答说:“妈妈,这是我送给您的节日礼物。” 妈妈听了我的话,心里比吃了蜜还甜。 【篇三】五年级关于感恩作文350字 在我的成长中,有很多老师教过我,他们细心地培育我。这不,二年级上学期又来了一位新老师。 好看的老师 这位老师是高老师,大大的眼睛,还戴了一副眼镜,小小的鼻子,嘴巴不大不小刚刚好,笑起来像花开了一样。她很美丽,乌黑的长发像闪闪发亮的流水。 严格的老师 上课了,老师走进来。我们班有几位很调皮的学生,而且学习也不好,上课也不认真听讲,老师看到他们这样,就把他们叫起来让他们站到后面去。下课后把他们批评了一顿,叫他们到前面来坐,上课时他们都不敢走神了,他们上课时会的就举手回答,不会的就听老师讲,不会讲话。现在同学们既喜欢高老师,又怕她,我觉得老师这样也是为我们好。 关心我们的老师

中考作文四大常考主题

中考作文四大常考主题 人生感悟类——自信、勤奋、乐观、信念等; 感恩感动类——父母、师友、祖国、社会; 审视探究类——思想认识、关注社会; 审美体验类——文化、自然、风俗。 一、人生感悟类 思路一: 总括心境——点出原因——受到鼓励——发生变化——点明中心。 例文: 自己造翅的鸟 当我踏进大门,我深呼吸了一口气。这是一个新的开始。 没人知道我以前是多么弱小。我以前骨瘦如柴,从不做有冒险性的事。即使家住在一个小街上。 我出生便没有翅膀。 坐在初中的教室里,看那些同龄人们都比我强,我也曾自卑过。直到有一天,父亲告诉我几句话,至今记忆犹新。 “你知道鸵鸟与蝙蝠吗?它们一个有翅膀,一个没有,可鸵鸟飞不起来,蝙蝠却生出了膜翼,在天上翱翔。” 父亲的话看似不经意,却点醒了我。没有翅膀的人,一样能飞!我铮铮七尺男儿,安与妇孺比较?我的血管里流淌着男儿的热血,我也应该搏击于天际! 于是,我满怀豪情地学习跆拳道。飘逸的道带、雪白的服装,一丝晃动,几分洒脱,旋转着将意念踢进靶中,在挥洒荷尔蒙的一瞬间,我看到了背后生出的左翼——力量。 我不是最强的,可我是最拼命的。 怀着执著,我拿起书籍。我原本不爱书,如今却渐渐视其为生命。于是,爱丽丝带我走入奇境,简·爱向我诉说她那不幸的爱情,雨果看到悲惨世界的无奈,巴尔扎克引我目睹人间喜剧的悲哀。当我与屈原共叹“路漫漫其修远兮,吾将上下而求索”时,我仿佛看到背后长出的右翼——知识。 鲁迅说过:“世上本没有路,走的人多了,便成了路”。也许没有翅膀很痛苦,可是我们却拥有更多——执著、信念、知识、力量。若不去开拓,何方有路?若不去创造,何人有翅? “北冥有鱼,其名为鲲。鲲之大,不知其几千里也。化而为鸟,其名为鹏。鹏之背,不知其几千里也。怒而飞,其翼若垂天之云。”我们既生于此世,便不能甘于如此,自己造翅,却能飞得更远,自己造翅,才能更显鲲鹏之志! 也许你是一只无翅鸟,可你却能抬着头,飞得很骄傲! 思路二: 切入主题——调动素材,追加意义——深化中心。 例文: 长亭古梦 翻开《史记》微微泛黄的扉页,展现在眼前的,十一条没有尽头的长亭。亭中包含着什么呢?是秦皇汉武指点江山的叱咤风云?是文人墨骚客的踌躇满志?石雕龙殿的金碧辉煌?还是古道盘柳的恣意招摇信步长亭,我在踏寻,寻那美丽的人生;我在选择,选那人生道路。

六年级作文:心愿作文700字_1

心愿 每人都有自己的心愿,有些人心愿十分远大,大得像浩瀚的海洋,他们通常想要考取武汉二中的火箭班,还有的甚至已经计划考上硕士、博士、院士。有些人的心愿很小,小得像一粒沙土一样普通,小到想要吃一顿饱饭,或是拥有一本图画书。我的心愿可能大多数人都有,而且正在烦心——希望妈妈少一些唠叨。 由于我的成绩在班上还算不错,所以我的妈妈便给我立了一个“小目标”——考上武汉二中,而且还要是火箭班!因为这个“小目标”一直悬在我的脑门上,所以她一看到我不学习,或抵触学习,便像机关枪开火似的唠叨起来:“现在大家都在努力,俗话说‘逆水行舟,不进则退’,大家生怕自己成绩掉下去,便努力努力再努力,你不努力,再优秀到了初中也要落下来,还有……”每当听到这些话,我就感觉脑仁儿都要炸了,一副被抽了魂的样子,不管她说什么,我都只“哦”地回应一声。 有一次“谈心”,我又说:“妈妈,你不要一天到晚老是唠叨什么‘二中’不‘二中’,火箭不火箭的,我想减压呀!”妈妈一听我这句话,又开始“念紧箍咒”了:“什么?减压?笑话!要减压,做梦吧!你一减压,别人一看你松懈了,就抓紧学习,到时候,你会为你所谓‘减压’而后悔的!告诉你,二中火箭班里都是小学成绩顶尖的学生,你现在不把成绩搞好,以后到了火箭班又怎样?一样最后一名!除非放弃考取二中,否则,你就等着压力一层层压吧。” 我心中涌上一阵辛酸:现在的家长,不顾孩子感受,给孩子报补

习班,还在家里念“紧箍咒”,增大孩子的压力,不给孩子放松的时间。可他们什么时候考虑过,童年是一个人成长中最快乐的时期,可是,我的金色童年呢?我的阳光童年呢?没有!没有!我只看到书山,只看到题海。我只能在书山跋涉,在题海挣扎。 我真希望天下家长都不要再唠叨,多想想孩子的感受,让孩子感受到童年的快乐吧!这,就是我的心愿!

Brief Biography

Brief Biography Judy Rice majored in instructional psychology and cognition and has spent the past 11 years conducting research on user experience, designs for impaired populations, cultural needs, evaluations, and contextual inquiry. Clients have included Brigham Young University, Financial Fusion, Intermountain Health Care, and The Church of Jesus Christ of Latter-day Saints. Dan Lawyer majored in business and information systems and has spent the last 14 years defining products, managing product lines, and helping bring software and services to market around the world. Clients and companies have included WordPerfect, Fibernet, Seranova, Novell, and The Church of Jesus Christ of Latter-Day Saints. Grant Skousen was trained as a software developer but has spent the last 15 years helping companies improve their customer experience using customer-centered design, contextual inquiry, low and high fidelity prototyping, user testing and expert evaluations. Clients have included Intel, Novell, WordPerfect, Perot Systems and PowerQuest (now part of Symantec) as well as The Church of Jesus Christ of Latter-day Saints. Interest in Collective Remembering We currently work for the Family History Department of The Church of Jesus Christ of Latter-day Saints conducting research exploring user needs, and applying our findings to product features and interfaces. Our recent research identified the desire for people to share, discuss and easily access family artifacts and stories—to engage in collective remembering to produce collective memories. People told us of situations where they had photographs with unknown people in them, but after connecting with a distant relative, that person was able to provide the missing names. We heard similar accounts where different members of a family each had a part of a story, but when they got together they were able to arrive at a richer shared understanding. Family history abounds with such experiences. Our interest in collective remembering stems from the recognition that people do need this type of activity to further their family history research. We believe the Internet provides an ideal environment for the generation of collaborative, collective memories—a way to facilitate capturing an artifact or memory with its source, metadata and data, and any associated stories. It allows people to participate in discussions reaching consensus, or accommodating conflicting views. We propose these interactions reconnect families and produce a superior user experience and a more valuable data collection. Description of Relevant Research The Family History Department is about to release Family Tree, a web-based application. As part of the design process we conducted extensive contextual inquiry sending teams to Asia, the Pacific Islands, Europe, Canada, Central and South America, as well as various regions in the United States. From this research we identified major user goals and needs, barriers to participating in family history activities, and technology limitations; we defined segments, and generated personas to guide us in its design. Our team is now involved in the design of the second phase where the focus will be on family history research and collaboration. Our user research is ongoing as we explore evolving enhancements and needs. Our latest focus has been on capturing and sharing the memories surrounding artifacts and stories. We have identified several types of items people wish to preserve: personal memories; stories or oral histories that have been handed down; souvenirs or memorabilia; photographs; letters and journals; government or church certificates or documents; published books or articles; official records. They have varying degrees of reliability. We have concluded we need to provide a way of preserving not only living memory and artifacts, but also family legends and stories regardless of their verifiable authenticity. Our responsibility will be to design the technology that will provide the repository and the platform for discussion. We will rely on the online community to evaluate and respond to content.

感悟类中考满分作文5篇_0

感悟类中考满分作文5篇 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! 在灰蒙蒙的天幕下,一杆风中的芦苇,摇曳于莽莽苍苍的水面,像一支羽毛笔,划动在洁白的稿纸上。水面上荡起的涟漪,就是这脆弱的芦苇写下的最清新的文字,也是我生命力量的最美源泉。蒹葭苍苍,白露为霜。那一片芦苇不只是提供了背景,也摇曳着情思,一片起伏的芦苇,其实就是心潮的激荡。青青的叶片是那样柔滑,可以随着手掌的安抚,但却不会改变原来的形状。一根小小的芦苇,竟然承担起了世界所能给予它的所有的负荷。由此,人生便有了生命的动力与激情。人是“会思想的芦苇”,哲人帕斯卡尔曾这样妙喻。芦苇是韧性的,哲人才以之相比人生。人的生命若也像一根芦苇,那就虽柔而韧。如此,生命

还有一种反弹,正是凭着这种反弹才得以拔节向上。但岁岁年年,都有一根芦花飘过。飘着飘着,芦苇就在水面上飘出了美丽得让人心痛的涟漪,一圈又一圈,层层打开的如莲花一样的心事,能让我们积蓄起喷涌的生命之泉。沉甸甸的苇絮,被现实捉弄着,摇晃着,摧残着,像风雨中深一脚,浅一脚艰难跋涉的旅人,又像雷电击中,左歪右斜,凄凄惨惨,哀鸣着找不着家的雏燕。那些飘飘然,沉甸甸的芦花,乍看去是一团蓬松,疏懒得很,却又并非懒散,只能说是困倦吧。仿佛一场酣睡醒来,生命已到了另一个飘飞的季节。命运的跌宕就这样通过那一管纤细的苇秆与一团蓬松的芦花,被感知与激励着。不过生命并未远离,仍是此时此地还在守候那个老地方,可堪寄托的只有希冀。点点飞花,漫空而去,抵达的会是一片遥远吗?然而,这时节的天空多么高远,大片大片的湛蓝,让人的视线无法含及,而朵朵白云,又仿佛在梦幻里飘游。对于无

以愿望为话题的700字作文

以愿望为话题的700字作文 或许我的愿望有一些不会实现,但多年以后当我盘点它们审视自己,我定然会躬身自省。下面是为大家的关于愿望的,一起来看看吧。 金秋来临,果园里传出阵阵香味。每一棵树上都硕果累累,苹果、梨子、桔子……各种各样的果娃娃都成熟了,扬起了笑脸,准备去实现自己的愿望。 我也住在这美丽的果园里。我是一个苹果。在树妈妈身上有许许多多和我长得一样的兄弟姐妹。此刻,我们正在大谈着自己的愿望。有一些姐妹准备到城里去光荣一回,有一些兄弟准备成为小动物的晚餐,有一些姐妹想就留在土壤中陪伴树妈妈一生,还有一些兄弟准备到农民伯伯的仓库里住下,而我——一只青色的小苹果则想到遥远的沙漠扎根,成为一片绿洲。 兄弟姐妹们已陆续实现了愿望,只剩下我还赖在树妈妈身上。树妈妈对我说:“孩子,你的哥哥姐姐,弟弟妹妹都已经实现了自己的愿望,你也不能赖在我身上了,你的愿望是什么呢?”我有点自豪的扬起头,对妈妈说:“我想到沙漠里扎根,成为一片比这儿更美的绿洲!”妈妈有点不相信,用疑问的语气对我说:“孩子,沙漠离这儿很远,你能承受住这一路的艰辛吗?”我咬了咬嘴唇:“能”。

妈妈点点头,把我抖落到了旁边的河中,我连再见都没来得及说,就开始了旅行。 我顺着河流向远方奔去。一路上都很平安,我和路边的树伯伯对阿姨们打着招呼,看着河上飞过的小鸟惬意极了。这平安的路没走多久。我就到了一处河流很急的路段,河床上还时不时会有一两块尖利的石头,“呀——”我惊叫一声便被旋涡卷了进去。我重重地摔到了河床上,痛得张大了嘴,比害虫咬我时还痛。我努力往上游,终于出来了。我游呀游。看见了前方有一个瀑布,我被冲到了下面。身上摔出了一个大口子,我痛得失去了知觉。 阳光暖暖的烤着大地,我在哪?还好,我被河水冲到了岸上。我到了一处可爱的草地,这没有树,只有嫩绿的软软的小草和漂亮的蝴蝶。在这儿生长也不错,我活动活动,伤口不痛了。虽然没有到我愿望中的沙漠,可这个地方也不错。我笑了笑,与周围的草打了个招呼,便开始了我漫长的生长过程…… “太好了!相信有了愿望石,世界将变得更加美好!”娜莉笑着说,娜灵在一旁也很开心地笑着。

个人简介(Biography)的编写及翻译

在投寄论文时,有些刊物要求作者在论文后面附上“个人简介”(biography),内容包含何时何校何专业毕业,获得何学位,以及主要工作经历(学术活动)等。下面是7个“个人简介”(biography)范例,撰写个人简历时常用单词(词组)以粗体标记,供读者参考。 范例1: Maryam Kolahdoozan received her MSc of applied science, specializing in concrete materials, from Ryerson University, Toronto, ON, Canada. Her areas of research include sustainable alternatives for producing unshrinkable fill and deterioration mechanism of concrete exposed to internal sulfate attack and method for mitigation. 范例2: Douglas F. CRICKNER was born at McAlpin, a southern West Virginia coal camp, and had his first experience in coal mining at age 18 at the McAplin mine where for three successive summers he was employed on conveyor sections in 34-in. coal to drag pans and supplies, hang canvas, etc. He graduated from Virginia Polytechnic Institute with a degree in mining engineering in 1941. Following this, he served with Koppers Coal Co. and The New River Co. as mining engineer and assistant mine foreman. In 1946, he was employed by his present company, Pocahontas Land Corp., which he has served as mine inspector, chief engineer, general manager, and currently as vice president. During one four-year period he was transferred to an associated company, Norfolk & Western Railway Co., as superintendent of mines at its Pond Greek Colliers in Pike County, KY. He has taken an active part in a number of engineering and coal institutes. He is a past chairman of The Society of Mining Engineers of AIME Coal Division and is currently serving as a director of

心愿的作文700字

心愿的作文700字 在我们每个人的成长道路上都要经历许多的磨难与挫折,不同的喜怒哀乐,与此同时,也会在心灵的某个角落悄悄地生起一个小小的心愿,但它也会随着岁月的流逝而渐渐凋零,又重新生根,发芽记下来年的希望…… 范文1 每个人的心愿都各种各样,每个人都有着自己的心愿。那些美好的心愿能够实现固然是美好的,但是那些不能变为现实的心愿却不乏唯一个个美好的梦想,其中在我的记忆的闸门里,有一个愿望就是当一名科学家。 对于男孩子来说,当一名科学家可能是每个男孩子都有的愿望,但是又有多少不是三分钟热度呢?我的愿望在我的心中一直存在着,滋长着。但当上科学家也只是一个幻想罢了。 小时,我曾幻想如果科学家的行列中出现了我的名字那该是多么美好的事啊!甚至到我长大后我也曾幻想过,如果我当上科学家,我会想方设法地去制造出能改变空气的机器,让它们能够将我们所生存的环境的空气净化地一尘不染,因为现代社会空气污染太严重了。 如果我成为了一名科学家,我会让人们懂得去遵守合法的规则,因为当今社会的人们太不遵守规则了,什么“中国

式过马路”、“随地吐痰”、“乱丢垃圾”...其实都可以说成中国人大多数的真实写照了,人们不懂得如何去遵守交通规则,让当今社会秩序混乱不堪,而似乎人们对现在的社会现象—抢劫、破坏环境?恶习已经麻木了,所以我不得不制造出改变人们恶劣习惯的机器,来净化人们的思想。 假如我是一名科学家,我会奉献我的一生给地球母亲,人们给她的伤害太多太多,原来地球母亲那光滑的脸蛋已不复存在了,留下的只有破坏,地球母亲已经遍体鳞伤了,我将为了她奉献我一切的一切。 虽然当上一名科学家只是一个比较遥远的梦想,但是人们所遇的处境、地球母亲所逢的处境不是幻想,即使梦想不会实现,但这愿望是美好的!同样也是真诚的! 范文2 终于放学了,经过了一天的学习,我拖着沉重的身子走在回家的路上,刚一到家我就像一滩烂泥似的趴在了地上,用撒娇的口气叫着:“妈妈,我回来了,饭怎么还没好?” 听见我的呼唤声,妈妈就飞似的跑了过来,拎起了我那沉重的书包,把我从地上拉了起来:“哟,身上凉冰冰的,外面很冷吧,你先去做作业,我给你冲杯牛奶暖暖身子。”我极不情愿地从地上爬了起来,提过书包进了书房。 这时妈妈端着一杯暖烘烘的牛奶向我走了过来,小心翼翼的递给了我。然后轻轻的用手抚摸着我的头,笑盈盈的说:

感恩父母作文350字5篇

感恩父母作文350字5篇 感恩,从古至今都是一种文明的礼仪,更是一种健康的心态,所以学会感恩非常重要。下面我们来看看感恩父母作文350字,欢迎阅读借鉴。 感恩父母作文350字1人们常说“父爱是山,母爱如海”,是的,我的爸爸妈妈在生活中也是无微不至地关心着我。我的爸爸是个“大力士”,它一下子就可以把我和妹妹给抬起来。我的妈妈是一个“超级侦探”,因为我的每件事总躲不过她的眼睛。 星期六,我把随便地做了一下作业就去玩了。因为爸爸妈妈都不在家,我便打开电视机,尽情地欣赏着精彩的电视节目,真是大饱眼福了。 “作案”后,我又小心翼翼地关掉电视机,并把电源插头放回到老地方,还照着着原来的样子为电视机盖好布……直到伪装完毕,我才松了一口气。 谁知“大力士”和“超级侦探”一回家,便随手摸了摸电视机,问我:“你又看电视了吧!”我一本正经地摇了摇头,妈妈们打趣说:“哦,那就是电视机感冒了,不然,它怎么浑身热乎乎的呢?”听了妈妈这么说,我不好意思地低下了头。“大力士”又检查了我的作业,说:“字怎么写得这么差?”但是,爸爸妈妈并没有骂我,而是耐心地给我讲道理,讲得我心服口服。 看,我的爸爸妈妈就是这么不动声色地教育我,培育着我健康茁壮地成长。 感恩父母作文350字2在《史努比》的漫画世界里,莎莉说:“幸福是当雪花飘上你的舌尖……”露西说:“幸福是一只温暖的小狗……”我说“幸福就是爸爸,妈妈和我……” 感谢我的父母给予我生命。他们给了我明亮的眼睛,让我看到漂浮的云彩,灿烂的阳光,清澈的流水,辽阔的草原。 他们给了我灵巧的耳朵,让我听到溪水的叮咚、小鸟的欢唱、微风吹进树林的沙沙声、雪花轻盈地飘落在大地上。他们给了我灵敏的鼻子,让我闻到早春泥土的芬芳、山谷里盛开的玉兰的清香。我可以尽情地体会春的生机、夏的繁盛、秋的丰美、冬的纯洁。 感谢我的父母用辛勤的劳动给我创造了美好的成长环境。他们给我精心烹调营养丰富的食物,让我拥有健康强壮的身体;他们给我购买新奇精巧的玩具,让我在游戏中锻炼聪明的头脑与灵巧的双手;他们利用节假日带我游览祖国的名山大川,让我开拓视野、增加阅历。 感谢我的父母身传言教,培养我优秀的品格与思想。是他们用“跌倒了自己爬起来”教会我独立,坚韧和勇敢。当我和一岁多的小妹妹争吵的时候,是他们循偱善诱教会我用谦让和合作赢得友谊。 “谁言寸草心,报得三春晖。”让我们对天下的父母怀感恩之心,做一个正直、善良、快乐的人,就是对他们最好的回报。 感恩父母作文350字3每年十一月的第四个星期四是感恩节。感恩节源于美国,可在中国---发达的文明古国,不也需要这样一个感恩节吗?它可以用来感恩父母,感谢教师,答谢你所要答谢的人。 感恩节快到了,我为父母准备了一个小小的礼物,想要给父母一个小小的惊喜。感恩父母,不需要惊天动地,也不需要华美的金饰,更不需要晶莹透亮的水晶。其实,感恩父母,只需要做一个细微的动作,便足以让你的父母感动。在节日来临之际,我准备为爸爸妈妈画一张画。其实,早在两天前,我就开始准备了。 现在,我拿出已经画好的画像,一股自豪感马上从心底涌上来。我细细端祥妈妈的画像:画像是用彩色铅笔画的,我为妈妈画了一头棕色的大波浪卷发,两只大大的眼睛水汪汪的,一闪闪,可逼真了。再看爸爸的,是挺像,但比真人瘦了不少,但愿他以后也能变成这样。五点的钟声很快响了起来。爸爸妈妈回来了,看到墙上的画,妈妈泪流满面;而爸爸则是可爱地笑了笑,说:"还挺帅的,但愿以后我也能变成这样。"其实,爸爸嘴上不说,心里一定也很感动。 感恩,不需要甜言蜜语;不需要千言万语;不需要华丽的陈词。只要我们的一个动作,一

感悟成长中考的满分作文

感悟成长中考的满分作文 我们渐渐的长大,我们要面对越来越多的问题,有些问题我们能够想的更加清楚和透彻。我们在成长那是一个事实。 我们在成长,我在想如果让我选择我还会选择成长吗?我想我会的,也许跟我的性格有关我不喜欢被蒙在鼓里的感觉我要将每件事都知道的透彻,也许这样不够现实,但是我还是这样坚持着。 成长总是和烦恼是如影随形的,因为你知道的更多就会想的越多顾及的越多,那烦恼就自然而然的多了起来,有件事我感到很奇怪,以前非常厌恶的事情现在竟然能够理解了,并且赞同他们这种行为,我不想对自己的行为做过多的猜测,初中生活中里接受的思想让我明白了一切。以前认为有些行为是怪异的那是错误的, 成长让我面对越来越多的困惑。我认为对的有可能是错的,这让我在做决定的时候难免要犹豫不决,这也是让我痛苦的地方,知道的越多就发现自己越无知! 有时会萌生一种消极的情绪人生在世到底为了什么,到头来还不是一死结果又能怎么样,也许有很多的人有这种想法,我以前却没有这样想过,难道这也是成长带来的,我沉思…… 成长可能就是一种使人们懂事的药物,也是他使我们改

变了自我。成长让我变的乐观,让我们有所追求,我会想到未来我会死,但是我可以让我的有生之年更精彩!我曾看到过这样的一篇报道,现在有一种很流行的Hip-Hop风,不少的年轻人都在奏折这样的路线,而且他们自称会将这种精神一直走到七八十岁! 成长让我明白我再也不是一个人,而是一家人的寄托,我明白了这是我脱不开的责任。我喜欢这种有牵挂的感觉,同样的,也是一种依赖! 成长让我明白你要走的路是你自己选择的不是别的什么人强加给你的,你可以创造自己想要的生活,而不是整天的怨天尤人! 成长让我明白什么都比不上你的亲情,亲情是你的一切,亲情让你有归属感,亲情让你无论在那里都有家的感觉,亲情是你在受伤是最好的止痛药。 成长让我明白在我的世界里我能想作的事情,如果我努力的话就一定能够做成功! 成长让我明白你不是永远最强你也要别人的帮助! 成长让我明白你的命运是掌握在自己的手中的! 人,会随着时间的流逝而慢慢长大。当一个人长大的时候,想的东西便越来越多,思想也慢慢走向成熟,有了属于自己的秘密。 有个女孩长大了,渐渐有了一些不愿让别人知道的隐私,

感恩妈妈作文350字

感恩妈妈作文350字 【第1篇】 她,是我最感激的人,我心中最伟大的人。她像春天般的温柔, 像我的护身符,保护我,她给予了我一切,培养我,引导我,她就是——我的妈妈! 从我呱呱坠地到上学,这一段路程是妈妈在抚养我、关心我、呵护我。多少次坎坷,都是妈妈帮我铲平;多少泪水,是妈妈帮我擦干。 记得有一次,我生日,妈妈陪我去爬山。我一个劲地往山上冲,可一不留神就抓到了灌木丛中的蜂窝,蜜蜂像吃了兴奋剂一样追着我,我哭着往山下跑,哪知很多蜜蜂顺风而来,结果我滚到了干水渠里。妈妈像离了弦的箭一样冲了过来,用嘴吸我身上被蜜蜂蛰过的地方,吸去我体内的蜂毒。如果没有妈妈,我不知道会怎样。谢谢妈妈! 在家里,妈妈总让我闲着,她却累得气喘吁吁。每当吃饭时,妈妈总吃剩菜剩饭和泡菜,把炒肉一个劲儿往我碗里夹,而我一往她碗

里夹,她就生气了。 妈妈,您是这个世界上我最感激的人。也许有一天,我真离开了您的怀抱,带着您的感恩,踏上这属于我人生的那条路,但我会时时刻刻惦记着您的! 【第2篇】 感谢妈妈在40岁高龄冒险生下了我,并含辛茹苦地哺育我长大。妈妈每次讲到我小时候的故事,脸上都会露出阳光般温暖又慈爱的笑容。 感恩妈妈培养我的读书习惯。从小妈妈就陪我一起读书,给我讲故事。书带给了我快乐和知识,更教育了我怎样做人。 感恩妈妈给了我信心和勇气。前不久我去参加曹灿杯初赛,上台前妈妈一直鼓励我,但我还是有点紧张,竟然忘了做自我介绍。还好朗诵得不错,居然晋级了!初赛后,我暗下决心,一定要晋级省赛。在妈妈的陪伴下,我做了充分的练习。决赛时,妈妈一直注视着我,给我了极大的信心。评委给了我9.12分,而9.03分就能晋级!我高

中考作文成长感悟类

中考作文成长感悟类 【篇一:成长感悟类作文】 主题一、成长感悟类 【佳作展示一】 盼望破茧成蝶的美丽 光影流转,众生浮动。从那冬天浅浅的碎雪一路走到山花烂漫的缱 绻春日。我们各自聆听生命的小小变迁,一不小心眉梢目间已写满 青春年华,在常青藤下总有静静的忧郁。艳黄的日光晒出影子棕色 的纤长,原来在疏影暗香之中,如此盼望那份破茧成蝶的美丽?? 流年如锦,雀跃着的童年像个没穿裤子的孩子,跑得飞快。我亦是 在馨香的岁月中,和成长不期而遇在粲然的花期。于是我想要更加 美丽地绽放,但在其中却总有些难以名状的东西似乎在尽力阻止我 隐秘的瑰丽想望,使想要凌空飞舞的我感到包裹在我身上的茧,如 此厚重?? 桌上放着刚刚发下来的数学试卷,上面刺眼的殷红已然被眼泪打成 氤氲的湿晕。为什么?为什么我的数学成绩总是在及格线流连忘返?我的心就好像被人揉进了一把碎玻璃,千沟万壑的心脏表面,穿针 走线般的缝合进悲伤。曾经对自己的期盼,现在如冬天的落日,随 着下拉的嘴角,惶惶然往下坠。 周遭的空气亦仿佛经历年华若干,变得苍白而缄默,全宇宙的快乐 至此剧终,剩下的只有低垂的黯然暮色以及我逆流成河的悲伤,地 心深处那些怆然的情绪,彷徨地往上涌,在眼眶里迷茫地积蓄着。 暗黑色的云朵大朵大朵地走过天空,沉重得像黑色的悼词。 是不是,我也就只能这样了? 平庸地度过初中,梦想还是刚刚开场的样子,而我要提前离场。 眼前朦胧一片,肃穆的白在我脑海里越来越清晰,忽然凝结成几根 突兀的白发,温柔地藏匿在鬓角。白色什么时候会闪光,我想。 就是现在吧,我突然感到了一阵亮晶晶的温暖与释然。 “孩子,你不是说你要成为那只最美丽的蝴蝶吗?现在你还没有长成,仍有厚重的茧包裹着幼小的你。成长就是这样,美丽中总带着伤痛。”一席足以把冰封中的火焰点燃的话语。 我的思维顿时澄明一片。

我有一个小小的心愿作文700字

我有一个小小的心愿作文700字 我们的生活充满了七色阳光,但即使是在阳光普照的时候,也难免出现短暂的阴云。成长中的少年,会有一些挥之不去的烦恼。这些烦恼来自生活,来自学习,来自与同学的交往……但是,有烦恼并不可怕,关键是要正确对待它。我的学习成绩只处中上水平, 小考的时候我差点考不上。上了初中我发现自己越来越不喜欢学习了。妈妈常常说:\"你怎么不努力学习,你怎样考高中啊,你初中就差点靠不上,你如果考不上,你以后的工作怎么办啊?你这初中文凭那有人要你,你又没有什么特长,你去干什么呢啊?现在读书才出息啊,孩子读书是为了你自己啊,不是为父母啊。\"是啊,现在不读书哪有出人投地的一天啊,现在连有些大学生都没有工作啊。想起这个问题我心就烦。在我12岁的时候,就想到自己的未来,爸爸希望我能上清华北大,为家里争光、而妈妈却希望我能找一份好工作、外公外婆呢,就只希望我天天过得开心。我从小就被培养各种兴趣班,如:

钢琴、绘画、书写、钢琴等等。但不知道哪一项将注定我的命运! 随着我一天天的长大,有很多的烦恼围绕着我。在学校里发生的一些事情,大多不愿与家长谈论,因为只要一谈,他们就要长篇大论,不准我插一句话,而且我的耳朵也受不了那么多话的进出,所以我不愿让耳朵受罪,就不想与家长说啰!然而,我就把一切想说的话,每天都写在一个本子上,也就是日记。写完后,让自己欣赏,自己来解决自己的事情。开始进行的很好,可是渐渐的,我觉得家长们看我的眼神很不自然,似乎我有一些事情瞒着他们。那天,我放学回家,写完作业后,按照常规,去拿日记本,忽然,我发现日记本被移动过,我顿时火冒三丈,一想便知道一定是他们。我走出卧室,大声问他们是不是看过我的日记?他们反而正大光明的说,了解我的全部,是他们的义务。 我受不了了,我只是想拥有自己的一片蓝天,你们为什么这样自私的夺走它,就是想要了解我吗?我回到房间里,觉得自己已经什么都没有了,唉!为什么家长在我们长大后总想了解我们,不想让我

妈妈的愿望作文700字

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除 妈妈的愿望作文700字 以下是为大家整理的妈妈的愿望作文700字的相关范文,本文关键词为妈的,愿望,作文,700字,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在优秀作文中查看更多范文。 篇一:生活需要母亲的陪伴(700字)作文 精选作文:生活需要母亲的陪伴(700字)作文母爱这两个字,对于别的人来说,是那 么平常,可对于我来说,是那么的可望而不可即小的时候妈妈每天都陪在我的身边,一 家人其乐融融的在一起生活,我觉得幸福就是这么简单,可是我越来越大了,花销也多了, 妈妈决定和爸爸出去拼搏,我上小学二年级的时候,就开始住宿,刚来的时候,我看到了,

有许多小朋友来的时候都哭了,但我没哭,我比同龄人都坚强,我理解妈妈,她是为了我, 为了我能过上更好的生活妈妈每逢过年过节,都会回来看我,我觉得这样就够了,三年 了,我见到妈妈的次数用手指头都能查过来这样我上了初中,每天都在别人家吃住。看 着别人的脸色,这些年我受到的委屈,她都不知道,我也不想告诉她,少女的心事,不想被 人知道,我在梦中经常喊到的就是她的名字,醒来时,枕头已被泪水浸湿,我无数次因为太 想她,而掉眼泪,终于我自甘堕落,上课开始溜号,注意力开始不集中,老师注意到我的变 化,找我长谈,我什么都没有和老师说,老师把电话打到妈妈那里,第二天下午,她回来了, 她不分青红皂白,劈头盖脸一顿说,说我不上进,不省心,我也忍不住了,积压在心里多年 的情绪终于爆发。我大喊这么多年你管过我吗?你只给我物质上的满足,可你知道我要的不 是这些,你记得我的生日吗?你给我过过生日吗?你给我参加过家长会吗?说完我转身就走, 不给她解释的机会晚上,她回来了,看见我在洗衣服,她说你长大了,都会洗衣服了我

相关文档
最新文档