基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计

基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计
基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计

毕业论文(设计)诚信声明

本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得或其他教育机构的学位或证书使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

论文(设计)作者签名:日期:年月日

毕业论文(设计)版权使用授权书

本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为。

论文(设计)作者签名:日期:年月日

指导教师签名:日期:年月日

1 绪论

1.1课题研究背景及目的

1.1.1 研究背景

直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能。在相当长时期内,高性能的调速系统几乎都是直流调速系统。尽管如此,直流调速系统却解决不了直流电动机本身的换向和在恶劣环境下的不适应问题,同时制造大容量、高转速及高电压直流电动机也十分困难,这就限制了直流拖动系统的进一步发展。

交流电动机自1985年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统。目前,交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四象限运行等优异特性,其稳、动态特性均可以与直流调速系统相媲美。

与直流调速系统相比,交流调速系统具有以下特点:

(1)容量大;

(2)转速高且耐高压;

(3)交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小;

(4)交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用;

(5)高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标;

(6)交流调速系统能显著的节能;

从各方面看,交流调速系统最终将取代直流调速系统。

1.1.1研究目的

本课题主要运用MATLAB-SIMULINK软件中的交流电机库对交流电动机调速系统进行仿真,由仿真结果图直接认识交流系统的机械特性。本文重点对三相交流调压调速系统进行仿真研究,认识PID调节器参数的改变对系统性能的影响,认识该系统动态及静态性能的优劣及适用环境。

在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电

动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点[1][2]。而交流调速系统凭着其绝对的优势,最终必将取代直流调速系统[3]。

近几年来,科学技术的迅速发展为交流调速技术的发展创造了极为有利的技术条件和物质基础。交流电动机的调速系统不但性能同直流电动机的性能一样,而且成本和维护费用比直流电动机系统更低,可靠性更高[4]。目前,国外先进的工业国家生产直流传动的装置基本呈下降趋势,交流变频调速装置的生产大幅度上升。在日本,1975年在调速领域,直流占80%,交流占20%;1985年交流占80%,直流占20%[5]。到目前为止,日本除了个别的地方还继续采用直流电机外,几乎所有的调速系统都采用变频装置[6][7]。

计算机仿真技术在交流调速系统的应用,使得对交流调速的性能分析和研究变的更为方便。传统的计算机仿真软件包用微分方程和差分方程建模,其直观性、灵活性差,编程量大,操作不便。随着一些大型的高性能的计算机仿真软件的出现,实现交流调速系统的实时仿真可以较容易地实现[8]。如:matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程。matlab语言非常适合于交流调速领域内的仿真及研究,能够为某些问题的解决带来极大的方便并能显著提高工作效率。随着新型计算机仿真软件的出现,交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步[9][10]。

交流调速技术发展到今天,相对而言已经比较成熟,在工业中得到了广泛的应用,但是随着一些新的电力电子器件和一些新的控制策略的出现,工业应用对交流调速系统又提了新的要求,现代交流电机调速技术的研究和应用前景十分广阔。

20世纪80年代中期研制开发出一种新型交流调速系统——开关磁阻电动机调速系统,它将新型的电机、现代电力电子技术与控制技术融为一体,形成一个典型的机电一体化的调速系统。由于它在效率、调速性能和成本方面都具有一定的优势,已成为当代电力拖动的一个热门课题,将会在调速领域占有一席之地。

交流调速的控制策略近年来发展非常迅速,诸如转差矢量控制,自适应控制(磁通自适应、断续电流自适应、参数自适应等模型参考自适应控制),状态观测器(磁通观测器、力矩观测器等),为补偿速度降以提高精度的前馈控制,以节能、平稳、快速等为目标函数的优化控制,线性二次型积分控制,滑模变结构控制,直接转矩控制及模糊控制等已见诸国内外有关文献及杂志中

1.3论文主要工作

1.分析各种调速系统在实际运用中的优缺点,分析各种调速方式适用的场合。

2.重点分析掌握三相交流调压调速原理,机械特性等,然后对其进行MATLAB的仿真实现,通过修改系统各部分的参数,可以输出稳定的波形。根据示波器输出结果,对系统的性能进行分析。

1.4 论文章节安排

第一章绪论:主要介绍本课题的研究背景和研究内容,以及交流调速系统在国内外的发展和前景展望;介绍了文章的主要工作安排以及论文章节安排。

第二章交流调速系统:比较交流调速系统的各种调速方案,重点分析了交流调压调速系统的原理及机械特性,及对交流调压调速电路以及闭环调压调速系统进行了重点的研究分析。

第三章交流调压调速系统的MATLAB仿真:运用MATLAB的SIMULINK工具箱分别对异步电动机调压调速系统的主电路与控制电路进行建模和参数设置,最终建立了异步电动机调压调速系统电路的仿真模型,并对其进行了仿真分析和研究,给出仿真结果,通过对仿真结果的分析验证了交流调压电路的工作原理和所建模型的正确性。

第四章结论:对全文进行总结,指明异步电动机调压调速系统的发展方向。

2 交流调速系统原理与特性

2.1交流调速系统

交流电机包括异步电动机和同步电动机两大类。对交流异步电动机而言,其转速为:

()min /)1(60r p

s f n -= (2-1) 从转速公式可知改变电动机的极对数p ,改变定子供电功率f 以及改变转率s 都可达到调速的目的。

对同步电动机而言,同步电动机转速为:

()min /601r p

f n = (2-2) 由于实际使用中同步电动机的极对数p 是固定的,因此只有采用变压变频(VVVF )调速,即通常说的变频调速。

运用到实际中的交流调速系统主要有:变级调速系统、串级调速系统、调压调速系统、变频调速系统[1]。

(1)变极调速系统:调旋转磁场同步速度的最简单办法是变极调速。通过电动机绕组的改接使电机从一种极数变到另一种极数,从而实现异步电动机的有级调速。

变极调速系统所需设备简单,价格低廉,工作也比较可靠,但它是有级调速,一般为两种速度,三速以上的变极电机绕组结构复杂,应用较少。变极调速电动机的关键在于绕组设计,以最少的线圈改接和引出头以达到最好的电机技术性能指标。

(2)串级调速系统:绕线转子异步电动机串级调速是将转差功率加以利用的一种经济、高效的调速方法。改变转差率的传统方法是在转子回路中串入不同电阻以获得不同斜率的机械特性,从而实现速度的调节。这种方法简单方便,但调速是有级的,不平滑,并且转差功率消耗在电阻发热上,效率低。自大功率电力电子器件问世后,采用在转子回路中串联晶闸管功率变换器来完成馈送转差功率的任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的晶闸管串级调速系统。转子回路中引入附加电势不但可以改变转子回路的有功功率——转差功率的大小,而且还可以调节转子电流的无功分量,即调节异步电动机的功率因数。

(3)调压调速系统:异步电动机电机转矩与输入电压基波的平方成正比,所以改变电机端电压(基波)可以改变异步电动机的机械特性以及它和负载特性的交点,来实现调速。

异步电动机调压调速是一种比较简单的调速方法。在20世纪50年代以前一般采用串饱和电抗器来进行调速。近年来随着电力电子技术的发展,多采用双向晶闸管来实现交流调压。用双向晶闸管调压的方法有两种:一是相控技术,二是斩波调压。采用斩波控制方法可能调速不够平滑,所以在异步电机的调压控制中多用相控技术。但是采用相控技术在输出电压波形中含有较大的谐波,会引起附加损耗,产生转矩脉动[15]。

(4)变频调速系统:在各种异步电机调速系统中,效率最高、性能最好的系统是变压变频调速系统。变压变频调速系统在调速时,须同时调节定子电源的电压和频率,在这种情况下,机械特性基本上平行移动,转差功率不变,它是当前交流调速的主要方向[16]。

调压调速系统的优点是线路简单,价格便宜,使用维修方便,本文主要针对交流调压调速系统进行MATLAB仿真。下面对交流调压调速系统的原理及机械特性进行介绍。

2.2 交流异步电动机调压调速系统

2.2.1 三相交流调压电路

交流调压调速需要三相交流调压电路,晶闸管三相交流调压电路的接线方式很多,工业上常用的是三相全波星形连接的调压电路。如图2.1所示。这种电路的接法特点是负载输出谐波分量低,适用于低电压大电流的场合[11]。

图2.1 三相全波星形连接的调压电路

要使得该电路正常工作,必须满足下列条件:

(1)在三相电路中至少有一相的正向晶闸管与另一相得反相晶闸管同时导通。

(2)要求采用脉冲或者窄脉冲触发电路。

(3)为了保证输出电压三相对称并且有一定的调节范围,要求晶闸管的触发信号除了必须与相应的交流电源有一致的相序外,各个触发信号之间还必须严格的保持一定的

相位关系。即要求U 、V 、W 三相电路中正向晶闸管(即在交流电源为正半周时工作的晶闸管)的触发信号相位互差120°,三相电路中的反向晶闸管的触发信号相位互差120°;在同一相中反并联的两个正、反向晶闸管的触发脉冲相位应互差180°。由上面结论,可得三相调压电路中各晶闸管触发的次序为VT 1、VT 2、VT 3、VT 4、VT 5、VT 6、VT 1以此类推。相邻两个晶闸管的触发信号相位差60°。

在晶闸管交流调压中,晶闸管可借助于负载电流过零而自行关断,不需要另加换流装置,故线路简单、调试容易、维修方便、成本低廉,从而得到广泛的应用。

2.2.2 调压调速原理

根据异步电动机的机械特性方程式

()()[]2'21212'211'221'22'211//33l l M L L s R R s R pU s R I P P T +++==Ω=ωωω (2-3)

其中 p ——电动机的极对数

1U 、1ω——电动机定子相电压和供电角频率

s ——转差率

1R 、'2

R ——定子每相电阻和折算到定子侧的转子每相电阻 11L 、'12

L ——定子每漏感和折算到定子侧的转子每相漏感 可见,当转差率s 一定时,电磁转矩T 与定子电压1U 的平方成正比。改变定子电压可得到一组不同的人为机械特性,如图2.2所示。在带恒转矩负载L T 时,可以得到不同的稳定转速,如图中的A ,B ,C 点,其调速范围较小,而带风机泵类负载时,可得到较大的调速范围,如图2.2中的D ,E ,F 点。

风机类负载特性100

A B

C D E

T N U 17.0N U 15.0N

U 11n n

S S L T m T F

图2.2 异步电动机在不同定子电压时的机械特性

所谓调压调速,就是通过改变定子外加电压来改变电磁转矩T ,可得到较大的调速范围,从而在一定的输出转矩下达到改变电动机转速的目的[13]。

为了能在恒转矩负载下扩大调压调速范围,使电机在较低速下稳定运行又不致过热,可采用电动机转子绕组有较高电阻值时的机械特性。在恒转矩负载下的交流力矩电动机的机械特性。图2.3显示此类电动机的调速范围增大了,而且在堵转转矩下工作也不致烧毁电动机[1][4]。

A

B C

1n L T T N

U 1N

U 17.0N

U 15.0S 001

n

图2.3 交流力矩电机在不同定子电压时的机械特性

2.2.3 闭环控制的调压调速系统

2.2.

3.1 系统的组成及其静特性

异步电动机调压调速时,采用普通电机的调速范围很窄;并且在低速运行时候稳定性很差,在电网电压、负载有扰动时候会引起较大的转速变化。解决这些矛盾的根本方法是采用带转速负反馈的闭环控制,以达到自动调节转速的目的。在调速要求不高的情况下,也可采用定子电压负反馈闭环控制。

图2.4(a )是带转速负反馈的闭环调压调速系统原理图,图2.4(b )是相应的调速系统静特性。如果系统带负载L T 在A 点稳定运行,当负载增大导致转速下降时,通过转速反馈控制作用提高定子电压,使得转速恢复,即在新的一条机械特性上找到了工作点A '。同理,当负载减小使得转速升高时,也可以得到新的工作点A ''。将工作点A ''、A 、A '连起来就是闭环系统的静特性[1]。

ASR

M

3

TG n

GT

n

U *n U +

VVC

(a )原理图 A L T e T *

n1U *

n2

U *

n3

U 时的机械特性

min 1U 时的机械特性

N 1U n A ''A '

(b)静特性

图2.4 转速负反馈闭环控制的交流调压调速系统

在额定电压N U 1下的机械特性和最小电压min 1U 下的机械特性是闭环系统静特性左右两边的极限,当负载变化达到两侧的极限时,闭环系统便失去控制能力,回到开环机械特性上工作[14]。

对图2.4(a )所示的系统,可画出系统静态结构图,见图2.5所示:

*n U -α

ASR

ct U s K L T -n

()T U f n ,1=1U n

U

图2.5 异步电动机调压调速系统的静态结构图

图中:ct

S U U K 1=----晶闸管交流调压器VVC 和触发装置GT 的放大系数; ct U ----触发装置的控制电压;

n U n /=α----为转速反馈系数;

n U ----测速发电机TG 输出的反馈电压。

转速调节器ASR 采用PI 调节器;()T U f n ,1=是由式(2-3)描述的异步电动机械特性方程,它是一个非线性函数。

2.2.

3.2 近似的动态结构图

异步电动机调压调速的近似动态结构图如下所示:

()s W ASR ()s W MA ()

s W FBS )(s U n ()s U ct ()s U i ()

s n )

(*s U n -)(s W V GT =图2.6 异步电动机调压调速系统的近似动态结构图

图中各环节的传递函数为:

(1) 转速调节器ASR

常用PI 调节器消除静差并改善动特性,其传递函数为:

()S

T S T K S W n n n ASR 1+= (2-4) (2) 晶闸管交流调压器和触发装置GT-V

假定该环节输入输出关系是线性的,在动态中可近似为一阶惯性环节,其近似条件与晶闸管触发与整流装置一样。本环节传递函数可表示为:

()1

+=-TsS K S W S V GT (2-5) (3) 测速反馈环节FBS

考虑到反馈滤波的作用, 传递函数为:

()1+=

S T S W on FBS α (2-6)

(4) 异步电动机MA 由于描述异步电动机动态过程是一组非线性微分方程,只用一个传递函数来准确的表示异步电动机在整个调速范围内的输入输出关系式不可能的。只有做出一定的假设,并用稳态工作点附近微偏线性化的方法才能得到近似的传递函数。

3 交流调压调速系统的MATLAB仿真

3.1系统的建模和模型参数设置

3.1.1主电路的建模和参数设置

主电路主要由三相对称交流电压源、晶闸管、晶闸管三相交流调压器、交流异步电动机、电机信号分配器等部分组成。

下面分别讨论三相交流电源、三相交流调压器、同步脉冲触发器、交流异步电动机、电机测试信号分配器的建模和参数设置问题[16]。

3.1.1.1 三相交流电源的建模和参数设置

首先从图3.1中的电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并把模块名称分别修改成A相、B相、C相。然后从图3.2中的链接器模块组中选取“ground”元件也复制成三份,按图3.3所示连接即可

图3.1 Simulink中的电源模块

图3.2 Simulink中的连接模块

图3.3 三相交流电源的模型

为了得到三相对称交流电压源,对其参数设置:

双击A相交流电压源图标打开参数设置对话框,A相得参数设置分别是:幅值(peak amplitude)取220V、初相位(Phase)设置成 0、频率(Frequency)设置为50HZ,其他为默认值。B、C的参数设置方法与A相相同,除了将初相位设置成互差

120以外,其它参数都与A相相同。由此可得到三相对称交流电源[4]。

3.1.1.2晶闸管三相交流调压器的建模与参数设置

晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管元件采用“相位控制”方式,利用电网自然换流。图3.4中所示为晶闸管三相交流调压器的仿真模型。

图3.4 晶闸管三相交流调压器仿真模型子系统

触发脉冲的顺序为V1-V2-V3-V4-V5-V6,其中V1-V3-V5之间和V4-V6-V2之间互差120度,V1-V4之间、V3-V6之间、V5-V2之间互差180度。

双击晶闸管对话框得到晶闸管参数设置图,根据图中要求及系统要求对其进行参数设置如下:

电阻(Resistance Ron):40 Ω;

电感(Inductance Lon):0H;

正向电压(Forward voltage Vf):0.8V;

初始电流(Initial current Ic):0A;

缓冲器电阻(Subber resistance Rs):1200Ω;

μ。

缓冲器电容(Subber capacitance Cs):250 F

上图是用单个晶闸管元件按三相交流调压器的接线要求搭建成仿真模型的,单个晶闸管的参数设置仍然遵循晶闸管整流桥的参数设置原则,具体如下:如果针对某个具体的变流装置进行参数设置,对话框中的参数应取默认值进行仿真,若仿真结果理想,就可认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。这一参数设置原则对其它环节的参数设置也是适用的[18]。

在使用Simulink进行系统仿真分析时,首先需要进行模块参数设置,因此需要对系统中所有模块进行正确的参数设置。如果逐一的对各个系统进行参数设置时很繁琐的,因为子系统一般均为具有一定功能的模块组的集合,在系统中相当于一个单独的模块,具有特定的输入和输出关系。对于已经设计好的子系统而言,能够像Simulink模块库中的模块一样进行参数设置,则会给用户带来很大的方便,这时用户只需要对子系统参数选项中的参数进行设置,无需关心子系统的内部模块的实现。具体封装步骤如下:选择需要封装的子系统(Subsystem),然后单击鼠标右键,在弹出的菜单中选择Mask Subsystem项,或者单击Edit-Mask Subsystem项[19]。这时将出现图中所示的封装编辑器。使用封装编辑器子系统中的图标、参数初始化设置对话框以及帮助文档,从而可使使用户设计出非常友好的模块界面,以充分发挥Simulink的强大功能。

打开Mask editor:Subsystem对话框,如图3.5所示。使用此编辑器可以对封装后的子系统进行各种编辑。在默认情况下,封装子系统不使用图标。但友好的子系统图标可使子系统的功能一目了然。为了增强封装子系统的界面友好性,用户可以自定义子系统模块的图标。只需在途中编辑对话框中的“图标和端口”选项卡中“绘制命令”栏中使用MATLAB中相应便可以绘制模块图标,并可设置不同的参数控制图标界面的显示[20]。

图3.5 子系统封装编辑器

下图为晶闸管三相交流调压器子系统封装图如下所示:

a

U b

U c

U a b

c

P

图3.6 三相交流调压器子系统封装图

图中,Ua ,Ub ,Uc 分别连接三相交流电源的三相,P 连接从脉冲触发器出来的触发脉冲,输出a ,b ,c 分别连接交流电动机的A ,B ,C 输入[4]。

3.1.1.3 同步脉冲触发器的建模和参数设置

通常,工程上将触发器和晶闸管整流桥作为一个整体来研究,所以,在此处讨论同步脉冲触发器。同步脉冲触发器包括同步电源和6脉冲触发器两部分。6脉冲触发器可

以从图3.7所示的附加模块(Extras Control Blocks)子模块组获得。

图3.7 附加模块(Extras Control Blocks)子模块

6脉冲触发器需要三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压。同步电源与6脉冲触发器符号图如下所示[4]:

图3.8 同步脉冲触发器子系统

同步脉冲触发器封装后子系统符合如下:

Ua

Ub

Uc

Out

In2

Uct

图3.9 同步脉冲触发器封装后子系统符号

然后根据主电路的连接关系,建立起主电路的仿真模型。图3.10中ln2为脉冲器开关信号,当脉冲器开关信号为“0”时,开放触发器;为“1”时,封锁触发器[4]。

3.1.1.4 交流异步电动机的建模和参数设置

在Power System 工具箱中有一个电机模块库,它包含了直流电机、异步电机、同步电机以及其他各种电机模块。其中,模块库中有两个异步电动机模型,一个是标幺值单位制(PI unit )下的异步电动机模型,另一个是国际单位制(SI unit )下的异步电动机模型,本设计中采用后者。国际单位制下的异步电动机模型符号如图所示[2]:

图3.10 异步电动机模块

其电气连接和功能分别为:

A ,

B ,

C :交流电机的定子电压输入端子;

m T :电机负载输入端子,一般是加到电机轴上的机械负载;

a,b,c:绕线式转子输出电压端子,一般短接,而在鼠笼式电机为此输出端子;

m:电机信号输出端子,一般接电机测试信号分配器观测电机内部信号,或引出反馈信号[2]。

异步电动机模型参数设置如下。双击异步电动机的模型,即了得到参数设置对话框。分别对其进行参数设置如下所示[6]:

(1)绕组类型(Rotor type ): 转子类型列表框,分别可以将电机设置为绕线式(Wound )和鼠笼式(Squirrel -cage )两种类型。在本文中用鼠笼式(Squirrel -cage )异步电动机;

(2)参考坐标系(Reference Frame ):参考坐标列表框,可以选择转子坐标系(Rotor )、静止坐标系(Stationary )、同步旋转坐标系(Synchronous )。在本文中选择同步旋转坐标系(Synchronous );

(3)额定参数: 额定功率n P (KW )取30KW ,线电压n V (V )为380V ,频率f (赫兹)为50HZ ;

(4)定子电阻s R (Stator )(ohm )取0.087Ω和漏感ls L (H )取为0.8mH ;

(5)转子电阻r R (Rotor )(ohm )为0.028Ω和漏感lr L (H )取为34.7mH ; 其它设置为默认值

3.1.1.5 电动机测试信号分配器的建模和参数设置

电动机测试信号分配器模块的模型图如下3.11所示:

图3.11 Machines Measurement Demux

电动机测试信号分配器模块

双击电动机测试信号分配模块得图3.12电机测试信号分配器参数设置图。

图3.123 电动机测试信号分配器参数设置对话框及参数选择

图中:ir_abc :转子电流ira,irb,irc ;

ir_qd :同步d-q 坐标下的q 轴下的转子电流ir_q 和d 轴下的转子电流ir_d ;

phir_qd :同步d-q 坐标下的q 轴下的转子磁通phir_q 和d 轴下的转子磁通phir_d ; vr_qd :同步d-q 坐标下的q 轴下的转子电压vr_q 和d 轴下的转子电压vr_d ; is_abc :定子电流isa,isb,isc ;

is_qd :同步d-q 坐标下的q 轴下的定子电流is_q 和d 轴下的定子电流is_d ;

phir_qd :同步d-q 坐标下的q 轴下的定子磁通phis_q 和d 轴下的定子磁通phis_d ; vs_qd :同步d-q 坐标下的q 轴下的定子电压vs_q 和d 轴下的定子电压vs_d ; wm :电机的转速wm ;

Te :电机的机械转矩Te ;

Thetam :电机转子角位移Thetam [1]。

3.1.2 控制电路的建模和参数设置

交流调压系统的控制电路包括:给定环节、速度调节器、限幅器、速度反馈环节等。控制电路的有关参数设置如下:

速度反馈系数设为20;

调节器的参数设置分别是:ASR :30=pn K ;300=n τ;上下限幅为[400-0];

其它没做说明的为系统默认参数。

3.1.2.1 给定环节的建模与参数设置

在调压调速的仿真模型中有几个给定环节,它可以从图3.13中的输入源模块组中选取“constant ”模块,模块路径为Simulink/Commonly Used Blocks [14]。

图3.13 输入源模块组

然后双击该模块的图标,打开参数设置对话框,在该系统中用到两个给定模块,分别将给定值(Constent value)设置为-20以及0两个。其它设置为默认值。

实际调速时,给定信号是在一定的范围内变化的,我们可以通过仿真实践,确定给定信号允许的变化范围[4]。

3.1.2.2 速度调节器的建模和参数设置

速度调节器通常采用PI控制,比例和积分参数的设置要根据系统的仿真结果不断地变化改动,以得到最稳定的输出特性以及动态特性。限幅器、速度反馈环节也一样。具体方法是分别设置这些参数的一个较大和较小的值进行仿真,弄清它们对系统性能影响的趋势,据此逐步将参数进行优化。

PID Controller位于Simulink Extras/Additional Linear中,如图3.14所示:

3.14 Simulink Extras/Additional Linear模块组

在此仿真中,经过不断地变化改动,最终确定转速调节器为

K(Proportional)为30;

(1)比例常数

p

K(Integral)为300;

(2)积分时间常数

i

K(Derivative)为0(PI控制)。

(3)微分时间常数

d

3.1.2.3 限幅器的建模和参数设置

限幅器模块位于Simulink/Commonly Used Blocks模块库中,如图3.13所示:

限幅值的值设置为[400-0]。具体参数设置步骤如下:

双击限幅器图标,得到限幅器参数设置对话框,对其进行参数设置。根据题目要求,通过不断地试验,最后设定限幅器的参数值为[12]:

最大值(Upper limit):400

最小值(Lower limit):0

3.1.3 系统仿真参数的设置

交流电机调压调速系统(matlab)正文

1 设计任务 1、了解并熟悉双闭环三相异步电机调压调速原理及组成。 2、学习 SIMULINK,熟悉相关的模块功能。 3、进一步理解交流调压系统中电流环和转速环的作用。 2 设计要求 1、利用SIMULINK建立闭环调速系统仿真模型。 2、调试完成调压模块仿真、开环系统仿真、闭环系统仿真。 3 设计设备 1、计算机一台 2、MATLAB仿真软件 4 设计原理 调压调速即通过调节通入异步电动机的三相交流电压大小来调节转子转速的方法。理论依据来自异步电动机的机械特性方程式: 其中,p为电机的极对数; 为定子电源角速度; w 1 为定子电源相电压; U 1 R ’为折算到定子侧的每相转子电阻; 2 为每相定子电阻; R 1 L 为每相定子漏感; 11 L 为折算到定子侧的每相转子漏感; 12 S为转差率。 图1 异步电动机在不同电压的机械特性

由电机原理可知,当转差率s 基本保持不变时,电动机的电磁转矩与定子电压的平方成正比。因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。 4.1 调压电路 改变加在定子上的电压是通过交流调压器实现的。目前广泛采用的交流调压器由晶闸管等器件组成。它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。这里采用三相全波星型联接的调压电路。 图2 调压电路原理图 4.2 开环调压调速 开环系统的主电路由触发电路、调压电路、电机组成。原理图如下: Ua Ub Uc T2 T3 T5 T4 T6 R R R N T1

图3 开环调压系统原理图 AT为触发装置,用于调节控制角的大小来控制晶闸管的导通角,控制晶闸管输出电压来调节加在定子绕组上的电压大小。

转速开环恒压频比控制的交流异步电动机调速系统典型例子

课题:转速开环恒压频比控制的交速 姓名:谢海波 学号:P091812925 专业班级:电气工程及其自动化(3)班 西北民族大学电气工程学院 转速开环恒压频比控制的交流异步电动机调速系统

摘要:转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都有这项功能,恒压频比的转速开环工作方式能满足大多数场合交流电动机调速控制的要求,并且使用方便,是通用变频器的基本模式。采用恒压频比控制,在基频以下的调速过程中的转差率基本不变,所以电动机的机械特性较硬,电动机有较好的调速性能。异步电动机的变压变频调速系统一般简称为变频调速系统。由于在调速时转差功率不随转速而变化,调速范围宽,无论高速还是低速时效率都较高,在采取一定的技术措施后能实现高动态性能,可与直流调速系统媲美。因此现在它的应用面很广,目前交流异步电动机的调速系统已经广泛应用于数控机床、风机、泵类、传送带、给料系统、空调器等设备的电力源和动力源,并起到了节省电能,提高设备自动化,提高产品质量的良好效果.下文在详细分析交流异步电动机变频调速的原理基础上,应用MATLAB/SIMULINK仿真软件,实现了转速开环恒压频比控制的交流异步电动机调速系统的仿真,并且详细分析了仿真结果。 关键词:异步电动机;变频调速;MATLAB 仿真 1.仿真系统说明 本文对交流系统进行建模仿真,可以更加熟悉交流调速系统的结构,掌握各种调速系统的优缺点,选择合理的方案,解决实际中的问题。在进行电动机调速时,常须考虑的一个重 要因素,就是希望保持电动机中每极磁通量为额定值不变。如果磁通太弱,没有充分利用 电机的铁芯,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。对于直流电机,励磁系统是独立的,只要对电枢反应有恰 当的补偿,保持不变是很容易做到的。在交流异步电机中,磁通由定子和转子磁动势合成产生,要保持磁通恒定就要费一些周折。 2.变频调速控制方式和原理 转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都带有这项功能,在异步电动机调速时,总希望保持主磁通为额定值。由异步电机定子每相电动势有效值可知,如果略去定子阻抗下降,有 (1) 由(1)式知,若定子端电压不变,随着升高,将减小。又由转矩公式 知,在相同的情况下,减小会导致电动机输出转矩下降,严重时会使电动机堵转。因此, 在变频调速过程中应该同时改变定子电压和频率,以保持主磁通不变。而如何按比例改变电压和频率,要分基频以下和基频以上两种情况。 2.1基频以下调速 恒定压频比调速要求;当相对较高时,可忽略定子电阻那么最大实用转

电流转速双闭环直流调速系统matlab仿真实验

仿真设计报告

转速、电流双闭环直流调速系统的Simulink仿真设计 一、系统设计目的 直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB 软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 二、系统理论分析 2.1双闭环直流调速系统工作原理 电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器,此时以最大电流给定值使电流调节器输出移相信号直流电压迅速上升,电流也随即增大直到最大给定值,电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后,速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化校正和补偿电动机的转速偏差。另外电流调节器的小时间常数,还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢

直流电动机开环调速MATLAB系统仿真

东北石油大学 MATLAB电气应用训练 2013年 3 月 8日

MATLAB电气应用训练任务书 课程 MATLAB电气应用训练 题目直流电动机开环调速系统仿真 专业电气信息工程及其自动化姓名赵建学号 110603120121 主要内容: 采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善 基本要求: 1.设计直流电动机开环调速系统 2.运用MATLAB软件进行仿真 3.通过仿真软件得出波形图 参考文献: [1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007. [2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000. [3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006. [4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006. 完成期限 2013.2.25——2013.3.8 指导教师李宏玉任爽 2013年 2 月25 日

目录 1课题背景 (1) 2直流电动机开环调速系统仿真的原理 (2) 3仿真过程 (5) 3.1仿真原理图 (5) 3.2仿真结果 (9) 4仿真分析 (12) 5总结 (13) 参考文献 (14)

1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代

电力系统分析毕业设计

目录 引言 (1) 1 电力系统有功功率平衡及发电厂装机容量的确定 (2) 2 确定电力网的最佳接线方案 (4) 2.1 方案初选 (4) 2.2 方案比较 (5) 2.3 最终方案的确定 (18) 3 发电厂及变电所电气主接线的确定 (18) 3.1 电气主接线的设计原则 (18) 3.2 发电厂电气主接线的设计原则及选择 (19) 3.3 变电所电气主接线的设计原则 (19) 3.4 主接线方案确定 (20) 4 选择发电厂及变电所的主变和高压断路器 (20) 4.1 发电厂及变电所主变压器的确定 (20) 4.2 短路电流计算 (23) 4.3 高压断路器的选择与校验 (37) 5 各种运行方式下的潮流计算 (42) 5.1 潮流计算的目的和意义 (42) 5.2 丰水期最大负荷的潮流计算 (43) 5.3 丰水期最小负荷的潮流计算 (49) 6 电力系统无功功率平衡及调压计算 (55) 6.1 电力系统无功功率平衡 (55) 6.2 调压计算 (56) 7 浅谈电力网损耗及降损节能措施 (60) 7.1 损耗计算 (61) 7.2 电网电能损耗形成的主要原因 (62) 7.3 降损节能的措施 (64) 参考文献 (68) 谢辞 (69) 附录一计算机潮流计算程序: (71)

引言 本次设计的课题内容为电力网规划设计及降损措施的分析,是电气工程及其自动化专业学生学习完该专业的相关课程后,在毕业前夕所做的一次综合性的设计。 该次毕业设计的目的在于:将所过的主要课程进行一次较系统而全面的总结。将所学过的专业理论知识,第一次较全面地用于实践,用它解决实际的问题,而从提高分析能力,并力争有所创新。初步掌握电力系统(电力网)的设计思路,步骤和方法,同时学会正确运用设计手册,设计规程,规范及有关技术资料,掌握编写设计文件的方法。 其意义是对所学知识的进行总的应用,通过这次设计使自己能更好的掌握专业知识,并锻炼自己独立思考的能力和培养团结协作的精神。此外,在计算机CAD绘图及外文资料的阅读与翻译方面也得到较好的锻炼.。 本设计是电力系统的常规设计,主要设计发电厂和变电所之间如何进行科学、合理、灵活的调度,把安全、经济、优质的电能送到负荷集中地区。发电厂把别种形式的能量转换成电能,电能经过变电所和不同电压等级的输电线路输送被分配给用户,再通过各种用电设备转换成适合用户需要的各种能量。这些生产、输送、分和消费电能的各种电气设备连接在一起而组成的整体称为电力系统。本设计是一门涉及科学、技术、经济和方针政策等各方面的综合性的应用技术科学。 设计的基本任务是工程建设中贯彻国家的基本方针和技术经济政策,做出切合实际、安全使用、技术先进、综合经济效益好的设计,有效地为国家建设服务。从电力系统的特点出发,根据电力工业在国民经济的地位和作用,决定了对电力系统运行要达到以下的技术要求:保证安全可靠的供电;保证良好的电能质量;保证电力系统运行的经济性。

直流电动机开环调速系统设计与仿真

东北大学秦皇岛分校控制工程学院自动控制系统课程设计 设计题目:直流电动机开环调速系统 设计与仿真 专业名称自动化 班级学号 学生姓名 指导教师 设计时间2015.7.13~2014.7.24 成绩

目录 1.设计任务书 (3) 2.概述 (4) 2.1前言 (4) 2.2 系统原理 (4) 2.3 simulink框图 (5) 3.元件参数设置 (7) 3.1三相交流电压源设置 (7) 3.2.同步六脉冲触发器 (7) 3.3.三相全控桥整流电路 (8) 3.4.直流电动机设计 (8) 4.仿真结果分析 (9) α=时 (12) 4.2 当30o α=时 (14) 4.3 当60o α=时 (17) 4.4 当90o 4.5励磁电流 (19) 5.结论 (20) 6.参考文献 (22) 7.结束语 (22)

东北大学秦皇岛分校控制工程学院 《自动控制系统》课程设计任务书 专业自动化班级姓名 设计题目:直流电动机开环调速系统设计与仿真 一、设计实验条件 地点:实验室 实验设备:PC机 二、设计任务 直流电动机的额定数据为220V,136A,1460r/min,4极, R=0.21 , a 22 GD=22.5N m;励磁电压为220V,励磁电流为1.5A。采用三相桥式全控整流电路。平波电抗器 L=200mH。 p 设计要求:设计并仿真该晶闸管-电动机(V-M)开环调速系统。观察电动机在全压起动和起动后加额定负载时电动机的转速、转矩和电流变化。 三、设计说明书的内容 1、设计题目与设计任务(设计任务书) 2、前言(绪论)(设计的目的、意义等) 3、主体设计部分 4、参考文献 5、结束语 四、设计时间与设计时间安排 1、设计时间:7月13日~7月24日 2、设计时间安排: 熟悉课题、收集资料:3天(7月13日~7月15日) 具体设计(含上机实验):6天(7月16日~7月21日) 编写课程设计说明书:2天(7月22日~7月23日) 答辩:1天(7月24日)

基于MATLAB交流电机变频调速系统仿真

摘要 异步电动机采用变频调速技术,具有调速范围广,调速时因转差功率不变而无附加能量损失的优点,因此,变频调速是一种性能优良的高效调速方式。 本文以MATLAB为仿真工具,介绍了Simulink中的仿真模块,研究了交流电机变频调速系统,分析了变频器的构成和工作原理,并据此对逆变电路进行了仿真设计。首先对调速系统仿真所需要的各种电力系统模块做了简要的介绍,说明了逆变器的工作原理,在此基础上用MATLAB/Simulink软件分别对各种电路模块进行了仿真设计,进而设计出了实际中广泛应用的交-直-交变频器的仿真模型,实现了对交流电机变频调速系统的仿真研究,在此基础上建立电机模型,进行矢量控制设计,以带转矩内环的转速、磁链闭环矢量控制的方法对异步电动机变频调速系统进行建模和仿真,并对仿真结果进行了分析,由仿真结果可以看出系统转速的动态响应快,稳态跟踪精度高,表明此建模方法是可行和有效的。 关键词:MATLAB/Simulink变频调速逆变器仿真

ABSTRACT With the application of frequency and speed conversion technology to synchronous motor, its speed can be wide-ranged adjusted. When it comes to adjusting speed, because of slip power unchanged, there is no additional energy lost. Thus it makes this technology a high-equality and efficient way to exchange the speed. This thesis, aiming at MATLAB as simulation tool, introduces Simulink simulation module and the AC motor speed control system as the subject of the research and analyzes the structure of the inverter and how it works. On this basis,a variety of inverter circuit simulation designs are conducted. First of all, this thesis makes a brief introduction about power system module power which needs power electronic simulation, the working principle of the inverter included. Based on the theory above, then MATLAB / Simulink software are used in the simulation designs about different kinds of circuit modules. Moreover the designs of the simulation model of widely-used cross - DC - AC inverter are conducted to achieve the goal of the simulation study of AC motor speed control system, carries the modelling and the simulation on asynchronous motor adjusting-speed system based on vector control with torque inner rim and flux linkage of closed loop,gives out the simulation and makes analyse to it.The simulation result of the model shows the speed of dynamic response and the accuracy of steady-state tracking,also confirmes that the modelling is feasible and effective. Key words:MATLAB/Simulink Frequency Control Inverter Simulation

电力系统毕业设计题目

电力系统毕业设计题目 【篇一:电力系统及其自动化专业毕业论文参考选题大 全(158个)】 电力系统及其自动化专业毕业论文参考选题大全(158个) 1、110kvxx(箕山)变电站电气设备在线监测方案 2、110kv变电所电气部分设计 3、110kv变电所电气一次部分初步设计 4、110kv变电站电气一次部分设计 5、110kv变电站综合自动化系统设计 6、110kv常规变电站改无人值班站的技术方案研究 7、110kv电力网规划 8、110kv线路保护在xx(郴电国际)公司的应用 9、110kv线路微机保护设计 10、110kv线路微机保护装置设计 11、220kv变电所电气部分技术设计 12、220kv变电所电气部分设计 13、220kv变电所电气一次部分初步设计 14、220kv变电所电气一次部分主接线设计 15、220kv变电站设计 16、220kv地区变电站设计 17、220kv电气主接线设计 18、220kv线路继电保护设计 19、2x300mw火电机组电气一次部分设计 20、300mv汽轮发电机继电保护(一) 21、300mv汽轮发电机继电保护设计(一) 22、300mw机组节能改进研究 23、300mw机组优化设计 24、300mw凝汽式汽轮机组热力设计 25、300mw汽轮发电机继电保护 26、300mw汽轮发电机继电保护设计 27、50mva变压器主保护设计 28、scada系统的设计 29、sdh光纤技术在电力系统通信网络中的应用 30、xx电厂电气一次部分设计

31、xx电厂水轮发电机组保护二次设计 32、xx水电厂计算机监控系统的设计与实现 33、xx水电站电气一次初步设计 34、xx县电网高度自动化系统初步设计 35、xx小城市热电厂电气部分设计 36、变电气绕阻直流电阻检测 37、变电站电压智能监测系统 38、变电站设备状态检修研究 39、变电站数据采集系统设计 40、变电站数据采集系统设计—数据采集终端 41、变电站微机监控系统 42、变电站微机检测与控制系统设计 43、变电站微机数据采集传输系统设计—监控系统 44、变电站微机数据采集系统设计—scada 45、变电站无人值班监控技术的研究 46、变电站智能电压监测系统开发 47、变电站自动化的功能设计 48、变电站自动化综合设计 49、变电站综合自动化(微机系统上位机功能组合) 50、变电站综合自动化的研究与设计 51、变电站综合自动化发展综述 52、变压器电气二次(cad)部分设计 53、变压器电气二次部分 54、变压器故障分析和诊断技术 55 、变压器故障检测技术 56、变压器故障检测技术--常规检测技术 57、变压器故障检测技术--典型故障分析 58、变压器故障检测技术--介质损耗在线检测 59、变压器故障检测技术--局部放电在线检测 60、变压器故障检测技术--绝缘结构及故障诊断技术 61、变压器故障检测技术--油气色谱监测 62、变压器故障维修 63、变压器局部放电在线监测技术研究--油质检测 64、变压器绝缘老化检测

交流电动机调速系统的分类

交流电动机调速系统的分类 1.同步电动机调速系统 同步电动机只能依靠改变频率来进行调速,而根据频率控制方式的不同,可把同步电动机调速系统分为他控式和自控式两种类型。 如果用独立的变频装置作为同步电动机的变频电源进行调速,则称之为他控式同步电动机调速系统,大多用于类似永磁同步电动机的小容量场合。 采用频率闭环方式的同步电动机调速系统称为自控式同步电动机调速系统,它是用电动机轴上安装的位置检测器来控制变频装置触发脉冲,使同步电动机工作在自同步状态。自控式同步电动机调速系统又可细分为负载换向自控式同步电动机调速系统和交一交变频供电的自控式同步电动机调速系统。 负载换向自控式同步电动机调速系统叉称为x换向器电机,它的主电路采用交一直-交电流型变流器,利用同步电动机电流超前电压的特点,使逆变器的晶闸管工作在自然换向状态。这种系统又被称为LCI(Load Commutated Inve11er),它的容量已达到数万千伏安,电压达万伏以上。 交一交变频同步电动机调速系统的逆变器由晶闸管组成,采用交一交循环变流结构和矢量控制技术,具有优良的动态性能,广泛地用于轧钢机主传动系统中。交一交变频同步电动机调速系统的容量很大,但调频范围只能限制在工频的三分之一左右。 2.异步电动机调速系统 在异步电动机中,从定子传入转子的电磁功率可以分成两部分:一部分是拖动负载的有效功率;另一部分是转差功率,与转差率成正比,它的去向是调速系统效率高低的标志。就转差功率的处理方式的不同,异步电动机调速系统可分成三大类。 (1)转差功率消耗型调速系统。这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,因而效率也随之降低。降电压调速、电磁转差离合器调速及绕线异步电动机转子串电阻调速这三种方法都属于这一类。 (2)转差功率回馈型调速系统。这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线异步电动机转子双馈调速即属于这一类。 (3)转差功率不变型调速系统。在这种调速系统中,转差功率仍旧消耗在转子里,但小论转速高低,转差功率基本不变。如变极对数调速、变频调速两种调速方法即属于这一类。 2.异步电动机转差回馈型调速系统 双馈调速足指将电能分别馈入异步电动机的定子绕组和转子绕组,通常将定子绕组接入工频电源,将转子绕组接到频率、幅值、相位和相序都可以调节的变频电源。如果改变转子绕组电源的频率、幅值、相位和相序,就可以调节异步电机的转矩、转速、转向及和定子侧的无功功率。这种双馈调速的异步电动机可以超同步或亚同步运行,不但可以工作在电动状态,而且可以工作在发电状态。 因为交一交变流器采用晶闸管自然换向方式,结构简单,可靠性高,而且交,交变流器能够直接进行能量转换,效率高,所以,在双馈调速方式中采用交.交变流器作为转子绕组的变频电源是比较合适的。 绕线式异步电动机串级调速系统是从定子侧馈入电能,从转子侧馈出电能的系统。从广义上说,它也是双馈调速系统的一种。 在双馈调速中,所用变频器的功率仅占电动机总功率的一小部分,可以大大降低变频器的容量,从而降低了调速系统的成本,此外,双馈电机还可以调节功率因数,由于具有这些优点,双馈电机特别适合应用于大功率的风机、水泵类负载的调速场合;双馈调速方式在风力、

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真 一、实验目的 1.熟练使用MATLAB 下的SIMULINK 仿真软件。 2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。 二、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 三、实验要求 建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。 四、实验原理 图4-1 带转速反馈的闭环直流调速系统原理图 调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控

制,可以有效的抑制甚至消除扰动造成的影响。 当t=0时突加输入U in时,由于比例部分的作用,输出量立即响应,突跳到U ex(t)=K P U in,实现了快速响应;随后U ex(t)按积分规律增长,U ex(t)=K P U in+ (t/τ)U in。在t=t1时,输入突降为0,U in=0,U ex(t)=(t1/τ)U in,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。 五、实验各环节的参数及K P和1/τ的参数的确定 5.1各环节的参数: 直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电动机电动势系数C e=0.192V ? min/r。 假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s=0.00167s。 电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数T l=0.00167s电力拖动系统机电时间常数T m=0.075s。 转速反馈系数α=0.01V ? min/r。 对应额定转速时的给定电压U n?=10V。 稳态性能指标D=20,s 5% 。 5.2 K P和1/τ的参数的确定: PI调节器的传递函数为 W PI(s)=K Pτs+1 τs =K P τ1s+1 τ1s 其中,τ1=K Pτ。 (1)确定时间常数 1)整流装置滞后时间常数T s=0.00167s;

电力系统及其自动化毕业设计课题(电力方向)

电力系统及其自动化专业毕业设计(论文)课题(电力方向) 【总体要求】 1.给出方案与论证; 2.画出系统原理图和电路图; 3.主要电路设计与计算; 4.系统测试与指标; 5.稳定性与可靠性; 6.毕业设计(论文)用计算机处理打印后用A4纸装订成册; 7.在规定的时间内答辩通过后由答辩小组给出设计(或论文)的成绩; 8.每位毕业生任选一题,每题不超过10名学生; 9.理工类毕业设计(论文)课题类别包括设计类、软件类两大类,对选题要求的指导性意见如下: ⑴设计类:学生必须独立完成一份10000字以上的设计计算说明书(论文),折合不少于5张1~2#图纸(电气信息类设计不少于3张1~2#图纸)设绘工作量,设计计算说明书(论文)中涉及参考文献不低于10篇,其中外文文献不少于2篇; ⑵软件类:学生必须独立完成一个系统或较大系统中的一个模块,要有足够的工作量;完成一份10000字以上的软件说明书和论文;如涉及电路方面的内容,应完成调试工作并提供测试结果;如涉及软件开发的内容,要进行程序演示并给出结果。论文(说明书)中涉及参考文献不低于10篇,其中外文文献不少于2篇。 课题一降压变电站电气一次部分设计 ——指导教师:姜永豪徐鹏 【原始资料】 1.设计变电所在城市近郊,向开发区的炼钢厂供电,在变电所附近还有地区 负荷。 2.本变电所的电压等级为220/110/10KV,220KV是本变电所的电源电压,110KV和10KV 是二次电压。 3.待建变电所的电源,由双回220KV线路送到本变电所;在中压侧110KV 母线,送出2 回线路;在低压侧10KV母线,送出12回线路;在本所220KV母线有三回 输出线路,送 向负荷。该变电所的所址,地势平坦,交通方便。 4.110KV和10KV用户负荷统计资料见表2-1和表2-2。最大负荷利用小时 数Tmax=5500h,同时率取0.9,线路损耗取5%。

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

实验四直流调速系统仿真与设计

实验四 直流调速系统仿真与设计 一、 实验目的 1、掌握连续部分的程序实现方法; 2、熟悉仿真程序的编写方法。 二、 实验内容 一转速、电流双闭环控制的H 型双极式PWM 直流调速系统,已知电动机参数为:N P =200W ,N U =48V ,N I =4A ,额定转速 500r/min ,电枢电阻Ra=6.5欧,电枢回路总电阻R=8欧,允许电流过载倍数2λ=,电势系数C 0.12min/e V r =?,电磁时间常数s T l 015.0=,机电时间常数s T m 2.0=,电流反馈滤波时间常数 s T oi 001.0=,转速反馈滤波时间常数s T on 005.0=。设调节器输入输出电压 ** nm im cm U U U 10V ===,调节器输入电阻Ω=k R 400。已计算出电力晶体管D202 的开关频率f 1kHz =,PWM 环节的放大倍数s K 4.8=。 试对该系统进行动态参数设计,设计指标:稳态无静差,电流超调量i 5%σ≤;空载起动到额定转速时的转速超调量n 20%σ≤;过渡过程时间s t 0.1s ≤。 建立系统的仿真模型,并进行仿真验证。 一、 设计计算 1. 稳态参数计算 根据两调节器都选用PI 调节器的结构,稳态时电流和转速偏差均应为零;两调节器的输出限幅值均选择为12V 电流反馈系数;A V A V I U im /25.14210nom *=?==λβ 转速反馈系数:r V r V n U nm min/02.0min /50010max *?===α 2. 电流环设计 (1)确定时间常数 电流滤波时间常数T oi =0.2ms ,按电流环小时间常数环节的近似处理方法,则 s T T T oi s i 0003.00002.00001.0=+=+=∑ (2)选择电流调节器结构 电流环可按典型Ⅰ型系统进行设计。电流调节器选用PI 调节器,其传递函数为 s s K s W i i i ACR ττ1 )(+=

基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

交流调速系统仿真分析开题报告

交流调速系统仿真分析 1 课题来源 本课题来源于三峡大学电气与新能源学院毕业论文自选课题。 2 研究的目的和意义 电动机(尤其是交流电动机)在工业.农业.交通运输.国防军事设施以及日常生活中被广泛的应用。其中许多的场合有着调速的要求从节能的角度出发。开发研究与风机,泵类负载相适应的配套调速装置,市场是非常广阔的,与我国的经济能源状况相适应,对交流系统进行建模仿真,可以熟悉交流调速系统的结构,掌握各种调速系统的优缺点,选择合理的方案,解决实际中的问题。 3 国内外的研究现状和发展趋势 目前,交流调速已进入逐步替代直流调速的时代。电力电子器件的发展为交流调速奠定了物质基础。50年代末出现了晶闸管,由晶闸管构成的静止变频电源输出方波和阶梯波的交变电压,取代旋转变频机组实现了变频调速,然而晶闸管属于半控型器件,可以控制导通,但不能由门极控制关断,因此由普通晶闸管组成的逆变器用于交流调速必须附加强迫换相电路。70年代以后,功率晶体管(GTR).门极关断晶闸管(GTO晶闸管).功率场效应晶闸管(Power MOSFET).绝缘栅双极晶体管(IGBT)。 MOS控制晶闸管(MCT)等已经先后问世,这些器件都是既能控制导通又能控制关断的自关断器件,又称全控型器件。它不再需要强迫换相电路,使得逆变器构成简单.结构紧凑。IGBT由于兼有MOSFET和GTR的优点,是用于中小功率目前最为流行的器件,MCT则综合了晶闸管的高电压.大电流的特性和MOSFET的快速开关特性,是极有发展前景的大功率.高频率开关器件。电力电子器件正在向大功率化.高频化.模块化.智能化的方向发展。80年代以后出现的功率集成电路(Power IC),集功率开关器件,驱动电路,保护电路,接口电路于一体,目前已应用于交流调速的智能功率模块(Intelligent Power Module IPM)采用IGBT作为功率开关,含有电流传感器.驱动电路及过载.短路.超温.欠电压保护电路,实现了信号处理.故障诊断.自我保护等多种智能功能,既减少了体积.减轻了重量,又提高了可靠性,使用.维护都更加方便,是功率器件的重要发展方向。

相关文档
最新文档